Détail du CWE-176

CWE-176

Improper Handling of Unicode Encoding
Draft
2006-07-19
00h00 +00:00
2024-02-29
00h00 +00:00
Notifications pour un CWE
Restez informé de toutes modifications pour un CWE spécifique.
Gestion des notifications

Nom: Improper Handling of Unicode Encoding

The product does not properly handle when an input contains Unicode encoding.

Informations générales

Modes d'introduction

Implementation

Plateformes applicables

Langue

Class: Not Language-Specific (Undetermined)

Conséquences courantes

Portée Impact Probabilité
IntegrityUnexpected State

Exemples observés

Références Description

CVE-2000-0884

Server allows remote attackers to read documents outside of the web root, and possibly execute arbitrary commands, via malformed URLs that contain Unicode encoded characters.

CVE-2001-0709

Server allows a remote attacker to obtain source code of ASP files via a URL encoded with Unicode.

CVE-2001-0669

Overlaps interaction error.

Mesures d’atténuation potentielles

Phases : Architecture and Design
Avoid making decisions based on names of resources (e.g. files) if those resources can have alternate names.
Phases : Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.


Phases : Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.

Notes de cartographie des vulnérabilités

Justification : This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Commentaire : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Modèles d'attaque associés

CAPEC-ID Nom du modèle d'attaque
CAPEC-71 Using Unicode Encoding to Bypass Validation Logic
An attacker may provide a Unicode string to a system component that is not Unicode aware and use that to circumvent the filter or cause the classifying mechanism to fail to properly understanding the request. That may allow the attacker to slip malicious data past the content filter and/or possibly cause the application to route the request incorrectly.

Références

REF-62

The Art of Software Security Assessment
Mark Dowd, John McDonald, Justin Schuh.

Soumission

Nom Organisation Date Date de publication Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Nom Organisation Date Commentaire
Eric Dalci Cigital 2008-07-01 +00:00 updated Potential_Mitigations, Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2008-11-24 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2009-03-10 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2009-05-27 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2009-07-27 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2010-12-13 +00:00 updated Name
CWE Content Team MITRE 2011-03-29 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences
CWE Content Team MITRE 2011-06-27 +00:00 updated Common_Consequences
CWE Content Team MITRE 2011-09-13 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2012-05-11 +00:00 updated Observed_Examples, References, Relationships
CWE Content Team MITRE 2012-10-30 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Taxonomy_Mappings
CWE Content Team MITRE 2020-02-24 +00:00 updated Potential_Mitigations, Relationships
CWE Content Team MITRE 2020-06-25 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2023-01-31 +00:00 updated Description
CWE Content Team MITRE 2023-04-27 +00:00 updated Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes
CWE Content Team MITRE 2024-02-29 +00:00 updated Demonstrative_Examples