CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
A vulnerability was found in GraphQL due to improper access controls on the GraphQL introspection query. This flaw allows unauthorized users to retrieve a comprehensive list of available queries and mutations. Exposure to this flaw increases the attack surface, as it can facilitate the discovery of flaws or errors specific to the application's GraphQL implementation. | 5.3 |
Medium |
||
A denial of service (DoS) vulnerability was found in OpenShift. This flaw allows attackers to exploit the GraphQL batching functionality. The vulnerability arises when multiple queries can be sent within a single request, enabling an attacker to submit a request containing thousands of aliases in one query. This issue causes excessive resource consumption, leading to application unavailability for legitimate users. | 6.5 |
Medium |
||
A flaw was found in Podman. This issue may allow an attacker to create a specially crafted container that, when configured to share the same IPC with at least one other container, can create a large number of IPC resources in /dev/shm. The malicious container will continue to exhaust resources until it is out-of-memory (OOM) killed. While the malicious container's cgroup will be removed, the IPC resources it created are not. Those resources are tied to the IPC namespace that will not be removed until all containers using it are stopped, and one non-malicious container is holding the namespace open. The malicious container is restarted, either automatically or by attacker control, repeating the process and increasing the amount of memory consumed. With a container configured to restart always, such as `podman run --restart=always`, this can result in a memory-based denial of service of the system. | 7.7 |
High |
||
A flaw was found in the Openshift console. The /API/helm/verify endpoint is tasked to fetch and verify the installation of a Helm chart from a URI that is remote HTTP/HTTPS or local. Access to this endpoint is gated by the authHandlerWithUser() middleware function. Contrary to its name, this middleware function does not verify the validity of the user's credentials. As a result, unauthenticated users can access this endpoint. | 6.5 |
Medium |
||
A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. | 8.1 |
High |
||
A flaw was found in cri-o. A malicious container can create a symbolic link to arbitrary files on the host via directory traversal (“../“). This flaw allows the container to read and write to arbitrary files on the host system. | 8.1 |
High |
||
A flaw was found in OpenShift's Telemeter. If certain conditions are in place, an attacker can use a forged token to bypass the issue ("iss") check during JSON web token (JWT) authentication. | 7.5 |
High |
||
The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in [email protected] and (if CBC is used) the [email protected] MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust. | 5.9 |
Medium |
||
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | 7.5 |
High |
||
A flaw was found in Open vSwitch that allows ICMPv6 Neighbor Advertisement packets between virtual machines to bypass OpenFlow rules. This issue may allow a local attacker to create specially crafted packets with a modified or spoofed target IP address field that can redirect ICMPv6 traffic to arbitrary IP addresses. | 7.1 |
High |
||
A flaw was found in OpenShift API, as admission checks do not enforce "custom-host" permissions. This issue could allow an attacker to violate the boundaries, as permissions will not be applied. | 7.5 |
High |
||
A content spoofing flaw was found in OpenShift's OAuth endpoint. This flaw allows a remote, unauthenticated attacker to inject text into a webpage, enabling the obfuscation of a phishing operation. | 5.3 |
Medium |
||
A flaw was found in Open Virtual Network where the service monitor MAC does not properly rate limit. This issue could allow an attacker to cause a denial of service, including on deployments with CoPP enabled and properly configured. | 5.3 |
Medium |
||
A flaw was found in the `/v2/_catalog` endpoint in distribution/distribution, which accepts a parameter to control the maximum number of records returned (query string: `n`). This vulnerability allows a malicious user to submit an unreasonably large value for `n,` causing the allocation of a massive string array, possibly causing a denial of service through excessive use of memory. | 6.5 |
Medium |
||
A flaw was found in openvswitch (OVS). When processing an IP packet with protocol 0, OVS will install the datapath flow without the action modifying the IP header. This issue results (for both kernel and userspace datapath) in installing a datapath flow matching all IP protocols (nw_proto is wildcarded) for this flow, but with an incorrect action, possibly causing incorrect handling of other IP packets with a != 0 IP protocol that matches this dp flow. | 8.2 |
High |
||
runc through 1.1.4 has Incorrect Access Control leading to Escalation of Privileges, related to libcontainer/rootfs_linux.go. To exploit this, an attacker must be able to spawn two containers with custom volume-mount configurations, and be able to run custom images. NOTE: this issue exists because of a CVE-2019-19921 regression. | 7 |
High |
||
A vulnerability was found in OpenShift OSIN. It has been classified as problematic. This affects the function ClientSecretMatches/CheckClientSecret. The manipulation of the argument secret leads to observable timing discrepancy. The name of the patch is 8612686d6dda34ae9ef6b5a974e4b7accb4fea29. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-216987. | 5.9 |
Medium |
||
An incorrect handling of the supplementary groups in the Buildah container engine might lead to the sensitive information disclosure or possible data modification if an attacker has direct access to the affected container where supplementary groups are used to set access permissions and is able to execute a binary code in that container. | 7.1 |
High |
||
An incorrect handling of the supplementary groups in the Podman container engine might lead to the sensitive information disclosure or possible data modification if an attacker has direct access to the affected container where supplementary groups are used to set access permissions and is able to execute a binary code in that container. | 7.1 |
High |
||
An Improper Certificate Validation attack was found in Openshift. A re-encrypt Route with destinationCACertificate explicitly set to the default serviceCA skips internal Service TLS certificate validation. This flaw allows an attacker to exploit an invalid certificate, resulting in a loss of confidentiality. | 6.5 |
Medium |
||
A permissive list of allowed inputs flaw was found in DPDK. This issue allows a remote attacker to cause a denial of service triggered by sending a crafted Vhost header to DPDK. | 8.6 |
High |
||
A flaw was found in dpdk. This flaw allows a malicious vhost-user master to attach an unexpected number of fds as ancillary data to VHOST_USER_GET_INFLIGHT_FD / VHOST_USER_SET_INFLIGHT_FD messages that are not closed by the vhost-user slave. By sending such messages continuously, the vhost-user master exhausts available fd in the vhost-user slave process, leading to a denial of service. | 6.5 |
Medium |
||
A flaw was found in python-oslo-utils. Due to improper parsing, passwords with a double quote ( " ) in them cause incorrect masking in debug logs, causing any part of the password after the double quote to be plaintext. | 4.9 |
Medium |
||
A vulnerability was found in CRI-O that causes memory or disk space exhaustion on the node for anyone with access to the Kube API. The ExecSync request runs commands in a container and logs the output of the command. This output is then read by CRI-O after command execution, and it is read in a manner where the entire file corresponding to the output of the command is read in. Thus, if the output of the command is large it is possible to exhaust the memory or the disk space of the node when CRI-O reads the output of the command. The highest threat from this vulnerability is system availability. | 7.5 |
High |
||
A vulnerability was found in Ignition where ignition configs are accessible from unprivileged containers in VMs running on VMware products. This issue is only relevant in user environments where the Ignition config contains secrets. The highest threat from this vulnerability is to data confidentiality. Possible workaround is to not put secrets in the Ignition config. | 6.5 |
Medium |
||
A privilege escalation flaw was found in Podman. This flaw allows an attacker to publish a malicious image to a public registry. Once this image is downloaded by a potential victim, the vulnerability is triggered after a user runs the 'podman top' command. This action gives the attacker access to the host filesystem, leading to information disclosure or denial of service. | 8.8 |
High |
||
A flaw was found in cri-o, where containers were incorrectly started with non-empty default permissions. A vulnerability was found in Moby (Docker Engine) where containers started incorrectly with non-empty inheritable Linux process capabilities. This flaw allows an attacker with access to programs with inheritable file capabilities to elevate those capabilities to the permitted set when execve(2) runs. | 5.3 |
Medium |
||
A flaw was found in crun where containers were incorrectly started with non-empty default permissions. A vulnerability was found in Moby (Docker Engine) where containers were started incorrectly with non-empty inheritable Linux process capabilities. This flaw allows an attacker with access to programs with inheritable file capabilities to elevate those capabilities to the permitted set when execve(2) runs. | 7.5 |
High |
||
A flaw was found in Podman, where containers were started incorrectly with non-empty default permissions. A vulnerability was found in Moby (Docker Engine), where containers were started incorrectly with non-empty inheritable Linux process capabilities. This flaw allows an attacker with access to programs with inheritable file capabilities to elevate those capabilities to the permitted set when execve(2) runs. | 7.5 |
High |
||
It was found in OpenShift Container Platform 4 that ignition config, served by the Machine Config Server, can be accessed externally from clusters without authentication. The MCS endpoint (port 22623) provides ignition configuration used for bootstrapping Nodes and can include some sensitive data, e.g. registry pull secrets. There are two scenarios where this data can be accessed. The first is on Baremetal, OpenStack, Ovirt, Vsphere and KubeVirt deployments which do not have a separate internal API endpoint and allow access from outside the cluster to port 22623 from the standard OpenShift API Virtual IP address. The second is on cloud deployments when using unsupported network plugins, which do not create iptables rules that prevent to port 22623. In this scenario, the ignition config is exposed to all pods within the cluster and cannot be accessed externally. | 3.7 |
Low |
||
A flaw was found in the way HAProxy processed HTTP responses containing the "Set-Cookie2" header. This flaw could allow an attacker to send crafted HTTP response packets which lead to an infinite loop, eventually resulting in a denial of service condition. The highest threat from this vulnerability is availability. | 7.5 |
High |
||
An incorrect sysctls validation vulnerability was found in CRI-O 1.18 and earlier. The sysctls from the list of "safe" sysctls specified for the cluster will be applied to the host if an attacker is able to create a pod with a hostIPC and hostNetwork kernel namespace. | 4.2 |
Medium |
||
A flaw was found in noobaa-core in versions before 5.7.0. This flaw results in the name of an arbitrarily URL being copied into an HTML document as plain text between tags, including potentially a payload script. The input was echoed unmodified in the application response, resulting in arbitrary JavaScript being injected into an application's response. The highest threat to the system is for confidentiality, availability, and integrity. | 7.1 |
High |
||
A flaw was found in NetworkManager in versions before 1.30.0. Setting match.path and activating a profile crashes NetworkManager. The highest threat from this vulnerability is to system availability. | 5.5 |
Medium |
||
A Zip Slip vulnerability was found in the oc binary in openshift-clients where an arbitrary file write is achieved by using a specially crafted raw container image (.tar file) which contains symbolic links. The vulnerability is limited to the command `oc image extract`. If a symbolic link is first created pointing within the tarball, this allows further symbolic links to bypass the existing path check. This flaw allows the tarball to create links outside the tarball's parent directory, allowing for executables or configuration files to be overwritten, resulting in arbitrary code execution. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. Versions up to and including openshift-clients-4.7.0-202104250659.p0.git.95881af are affected. | 7.1 |
High |
||
A deadlock vulnerability was found in 'github.com/containers/storage' in versions before 1.28.1. When a container image is processed, each layer is unpacked using `tar`. If one of those layers is not a valid `tar` archive this causes an error leading to an unexpected situation where the code indefinitely waits for the tar unpacked stream, which never finishes. An attacker could use this vulnerability to craft a malicious image, which when downloaded and stored by an application using containers/storage, would then cause a deadlock leading to a Denial of Service (DoS). | 6.5 |
Medium |
||
An insecure modification vulnerability in the /etc/passwd file was found in the operator-framework/hive as shipped in Red Hat Openshift 4. An attacker with access to the container could use this flaw to modify /etc/passwd and escalate their privileges. | 7 |
High |
||
An insecure modification vulnerability in the /etc/passwd file was found in the operator-framework/presto as shipped in Red Hat Openshift 4. An attacker with access to the container could use this flaw to modify /etc/passwd and escalate their privileges. | 7 |
High |
||
An infinite loop in SMLLexer in Pygments versions 1.5 to 2.7.3 may lead to denial of service when performing syntax highlighting of a Standard ML (SML) source file, as demonstrated by input that only contains the "exception" keyword. | 7.5 |
High |
||
A flaw was discovered in OpenShift Container Platform 4 where, by default, users with access to create pods also have the ability to schedule workloads on master nodes. Pods with permission to access the host network, running on master nodes, can retrieve security credentials for the master AWS IAM role, allowing management access to AWS resources. With access to the security credentials, the user then has access to the entire infrastructure. Impact to data and system availability is high. | 7.2 |
High |
||
A flaw was found in atomic-openshift of openshift-4.2 where the basic-user RABC role in OpenShift Container Platform doesn't sufficiently protect the GlusterFS StorageClass against leaking of the restuserkey. An attacker with basic-user permissions is able to obtain the value of restuserkey, and use it to authenticate to the GlusterFS REST service, gaining access to read, and modify files. | 6.3 |
Medium |
||
A flaw was found in multiple versions of OpenvSwitch. Specially crafted LLDP packets can cause memory to be lost when allocating data to handle specific optional TLVs, potentially causing a denial of service. The highest threat from this vulnerability is to system availability. | 7.5 |
High |
||
A signature verification vulnerability exists in crewjam/saml. This flaw allows an attacker to bypass SAML Authentication. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability. | 9.8 |
Critical |
||
User credentials can be manipulated and stolen by Native CephFS consumers of OpenStack Manila, resulting in potential privilege escalation. An Open Stack Manila user can request access to a share to an arbitrary cephx user, including existing users. The access key is retrieved via the interface drivers. Then, all users of the requesting OpenStack project can view the access key. This enables the attacker to target any resource that the user has access to. This can be done to even "admin" users, compromising the ceph administrator. This flaw affects Ceph versions prior to 14.2.16, 15.x prior to 15.2.8, and 16.x prior to 16.2.0. | 7.1 |
High |
||
The elasticsearch-operator does not validate the namespace where kibana logging resource is created and due to that it is possible to replace the original openshift-logging console link (kibana console) to different one, created based on the new CR for the new kibana resource. This could lead to an arbitrary URL redirection or the openshift-logging console link damage. This flaw affects elasticsearch-operator-container versions before 4.7. | 6.1 |
Medium |
||
An information-disclosure flaw was found in the way Heketi before 10.1.0 logs sensitive information. This flaw allows an attacker with local access to the Heketi server to read potentially sensitive information such as gluster-block passwords. | 5.5 |
Medium |
||
A flaw was found in the Cephx authentication protocol in versions before 15.2.6 and before 14.2.14, where it does not verify Ceph clients correctly and is then vulnerable to replay attacks in Nautilus. This flaw allows an attacker with access to the Ceph cluster network to authenticate with the Ceph service via a packet sniffer and perform actions allowed by the Ceph service. This issue is a reintroduction of CVE-2018-1128, affecting the msgr2 protocol. The msgr 2 protocol is used for all communication except older clients that do not support the msgr2 protocol. The msgr1 protocol is not affected. The highest threat from this vulnerability is to confidentiality, integrity, and system availability. | 8.8 |
High |
||
Integer overflows were discovered in the functions grub_cmd_initrd and grub_initrd_init in the efilinux component of GRUB2, as shipped in Debian, Red Hat, and Ubuntu (the functionality is not included in GRUB2 upstream), leading to a heap-based buffer overflow. These could be triggered by an extremely large number of arguments to the initrd command on 32-bit architectures, or a crafted filesystem with very large files on any architecture. An attacker could use this to execute arbitrary code and bypass UEFI Secure Boot restrictions. This issue affects GRUB2 version 2.04 and prior versions. | 6.4 |
Medium |
||
GRUB2 contains a race condition in grub_script_function_create() leading to a use-after-free vulnerability which can be triggered by redefining a function whilst the same function is already executing, leading to arbitrary code execution and secure boot restriction bypass. This issue affects GRUB2 version 2.04 and prior versions. | 6.4 |
Medium |
||
GRUB2 fails to validate kernel signature when booted directly without shim, allowing secure boot to be bypassed. This only affects systems where the kernel signing certificate has been imported directly into the secure boot database and the GRUB image is booted directly without the use of shim. This issue affects GRUB2 version 2.04 and prior versions. | 6.4 |
Medium |
||
A flaw was found in the OpenShift API Server, where it failed to sufficiently protect OAuthTokens by leaking them into the logs when an API Server panic occurred. This flaw allows an attacker with the ability to cause an API Server error to read the logs, and use the leaked OAuthToken to log into the API Server with the leaked token. | 7.5 |
High |
||
Kibana versions before 6.8.9 and 7.7.0 contain a prototype pollution flaw in TSVB. An authenticated attacker with privileges to create TSVB visualizations could insert data that would cause Kibana to execute arbitrary code. This could possibly lead to an attacker executing code with the permissions of the Kibana process on the host system. | 7.2 |
High |
||
A vulnerability was found in all versions of containernetworking/plugins before version 0.8.6, that allows malicious containers in Kubernetes clusters to perform man-in-the-middle (MitM) attacks. A malicious container can exploit this flaw by sending rogue IPv6 router advertisements to the host or other containers, to redirect traffic to the malicious container. | 6 |
Medium |
||
A flaw was found in OpenShift Container Platform version 4.1 and later. Sensitive information was found to be logged by the image registry operator allowing an attacker able to gain access to those logs, to read and write to the storage backing the internal image registry. The highest threat from this vulnerability is to data integrity. | 8.2 |
High |
||
In hpack_dht_insert in hpack-tbl.c in the HPACK decoder in HAProxy 1.8 through 2.x before 2.1.4, a remote attacker can write arbitrary bytes around a certain location on the heap via a crafted HTTP/2 request, possibly causing remote code execution. | 8.8 |
High |
||
A heap use-after-free vulnerability was found in systemd before version v245-rc1, where asynchronous Polkit queries are performed while handling dbus messages. A local unprivileged attacker can abuse this flaw to crash systemd services or potentially execute code and elevate their privileges, by sending specially crafted dbus messages. | 7.8 |
High |
||
OpenShift Container Platform before version 4.1.3 writes OAuth tokens in plaintext to the audit logs for the Kubernetes API server and OpenShift API server. A user with sufficient privileges could recover OAuth tokens from these audit logs and use them to access other resources. | 2.3 |
Low |
||
It was found that OpenShift Container Platform versions 3.6.x - 4.6.0 does not perform SSH Host Key checking when using ssh key authentication during builds. An attacker, with the ability to redirect network traffic, could use this to alter the resulting build output. | 5.9 |
Medium |