CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier. Node.js 8.0.0 introduced a dedicated server.keepAliveTimeout which defaults to 5 seconds. The behavior in Node.js 6.16.0 and earlier is a potential Denial of Service (DoS) attack vector. Node.js 6.17.0 introduces server.keepAliveTimeout and the 5-second default. | 7.5 |
High |
||
Simultaneous Multi-threading (SMT) in processors can enable local users to exploit software vulnerable to timing attacks via a side-channel timing attack on 'port contention'. | 4.7 |
Medium |
||
In all versions of Node.js prior to 6.14.4, 8.11.4 and 10.9.0 when used with UCS-2 encoding (recognized by Node.js under the names `'ucs2'`, `'ucs-2'`, `'utf16le'` and `'utf-16le'`), `Buffer#write()` can be abused to write outside of the bounds of a single `Buffer`. Writes that start from the second-to-last position of a buffer cause a miscalculation of the maximum length of the input bytes to be written. | 7.5 |
High |
||
The `'path'` module in the Node.js 4.x release line contains a potential regular expression denial of service (ReDoS) vector. The code in question was replaced in Node.js 6.x and later so this vulnerability only impacts all versions of Node.js 4.x. The regular expression, `splitPathRe`, used within the `'path'` module for the various path parsing functions, including `path.dirname()`, `path.extname()` and `path.parse()` was structured in such a way as to allow an attacker to craft a string, that when passed through one of these functions, could take a significant amount of time to evaluate, potentially leading to a full denial of service. | 7.5 |
High |
||
The HTTP parser in all current versions of Node.js ignores spaces in the `Content-Length` header, allowing input such as `Content-Length: 1 2` to be interpreted as having a value of `12`. The HTTP specification does not allow for spaces in the `Content-Length` value and the Node.js HTTP parser has been brought into line on this particular difference. The security risk of this flaw to Node.js users is considered to be VERY LOW as it is difficult, and may be impossible, to craft an attack that makes use of this flaw in a way that could not already be achieved by supplying an incorrect value for `Content-Length`. Vulnerabilities may exist in user-code that make incorrect assumptions about the potential accuracy of this value compared to the actual length of the data supplied. Node.js users crafting lower-level HTTP utilities are advised to re-check the length of any input supplied after parsing is complete. | 5.3 |
Medium |
||
Node.js was affected by OpenSSL vulnerability CVE-2017-3737 in regards to the use of SSL_read() due to TLS handshake failure. The result was that an active network attacker could send application data to Node.js using the TLS or HTTP2 modules in a way that bypassed TLS authentication and encryption. | 9.1 |
Critical |
||
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository. | 5.9 |
Medium |
||
Node.js v4.0 through v4.8.3, all versions of v5.x, v6.0 through v6.11.0, v7.0 through v7.10.0, and v8.0 through v8.1.3 was susceptible to hash flooding remote DoS attacks as the HashTable seed was constant across a given released version of Node.js. This was a result of building with V8 snapshots enabled by default which caused the initially randomized seed to be overwritten on startup. | 7.5 |
High |
||
The c-ares function `ares_parse_naptr_reply()`, which is used for parsing NAPTR responses, could be triggered to read memory outside of the given input buffer if the passed in DNS response packet was crafted in a particular way. | 7.5 |
High |
||
inftrees.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic. | 8.8 |
High |
||
inffast.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic. | 9.8 |
Critical |
||
The inflateMark function in inflate.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving left shifts of negative integers. | 8.8 |
High |
||
The crc32_big function in crc32.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact via vectors involving big-endian CRC calculation. | 9.8 |
Critical |