CVE-2017-11120 : Detail

CVE-2017-11120

9.8
/
Critical
Overflow
1.12%V3
Network
2017-09-27
15h00 +00:00
2017-10-22
22h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

On Broadcom BCM4355C0 Wi-Fi chips 9.44.78.27.0.1.56 and other chips, an attacker can craft a malformed RRM neighbor report frame to trigger an internal buffer overflow in the Wi-Fi firmware, aka B-V2017061204.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 9.8 CRITICAL CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 10 AV:N/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 42784

Publication date : 2017-09-24 22h00 +00:00
Author : Google Security Research
EDB Verified : Yes

Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1289 The exploit gains code execution on the Wi-Fi firmware on the iPhone 7. The exploit has been tested against the Wi-Fi firmware as present on iOS 10.2 (14C92), but should work on all versions of iOS up to 10.3.3 (included). However, some symbols might need to be adjusted for different versions of iOS, see "exploit/symbols.py" for more information. Upon successful execution of the exploit, a backdoor is inserted into the firmware, allowing remote read/write commands to be issued to the firmware via crafted action frames (thus allowing easy remote control over the Wi-Fi chip). The attached archive contains the following directories: -hostapd-2.6 - A modified version of hostapd utilised in the exploit. This version of hostapd is configured to support 802.11k RRM, and in particular Neighbor Reports. Moreover, this version of hostapd is instrumented to add various commands, allowing injection and reception of crafted action frames used throughout the exploit. -exploit - The exploit itself. To run the exploit, you must execute the following steps: -Connect (and enable) a SoftMAC Wi-Fi dongle to your machine (such as the TL-WN722N) -Compile the provided version of hostapd -Modify the "interface" setting under "hostapd-2.6/hostapd/hostapd.conf" to match your interface's name -Configure the following settings under "exploit/conf.py": -HOSTAPD_DIR - The directory of the hostapd binary compiled above -TARGET_MAC - The MAC address of the device being exploited -AP_MAC - The MAC address of your wireless dongle -INTERFACE - The name of the wireless dongle's interface -Assemble the backdoor shellcode by running "exploit/assemble_backdoor.sh" -Run hostapd with the configuration file provided above, broadcasting a Wi-Fi network ("test80211k") -Connect the target device to the network -Run "exploit/attack.py" Following the steps above should result in installation of a simple backdoor allowing read/write access to the firmware. You can interact with the backdoor to gain R/W access to the firmware by calling the "read_dword" and "write_dword" functions, respectively. Proof of Concept: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/42784.zip

Products Mentioned

Configuraton 0

Broadcom>>Bcm4355c0_firmware >> Version 9.44.78.27.0.1.56

Broadcom>>Bcm4355c0 >> Version -

Configuraton 0

Apple>>Iphone_os >> Version To (excluding) 11.0

Apple>>Tvos >> Version To (excluding) 11.0

References

http://www.securityfocus.com/bid/100984
Tags : vdb-entry, x_refsource_BID
https://www.exploit-db.com/exploits/42784/
Tags : exploit, x_refsource_EXPLOIT-DB
https://support.apple.com/HT208113
Tags : x_refsource_CONFIRM
https://support.apple.com/HT208112
Tags : x_refsource_CONFIRM