CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
A malicious attacker in x86 can misconfigure the Trusted Memory Regions (TMRs), which may allow the attacker to set an arbitrary address range for the TMR, potentially leading to a loss of integrity and availability. | 6 |
Medium |
||
Improper Access Control in the AMD SPI protection feature may allow a user with Ring0 (kernel mode) privileged access to bypass protections potentially resulting in loss of integrity and availability. | 6 |
Medium |
||
A GPU kernel can read sensitive data from another GPU kernel (even from another user or app) through an optimized GPU memory region called _local memory_ on various architectures. | 6.5 |
Medium |
||
Improper input validation in the SMM Supervisor may allow an attacker with a compromised SMI handler to gain Ring0 access potentially leading to arbitrary code execution. | 9.8 |
Critical |
||
A race condition in System Management Mode (SMM) code may allow an attacker using a compromised user space to leverage CVE-2018-8897 potentially resulting in privilege escalation. | 8.1 |
High |
||
Insufficient protections in System Management Mode (SMM) code may allow an attacker to potentially enable escalation of privilege via local access. | 7.8 |
High |
||
Insufficient protections in System Management Mode (SMM) code may allow an attacker to potentially enable escalation of privilege via local access. | 7.8 |
High |
||
Insufficient validation of SPI flash addresses in the ASP (AMD Secure Processor) bootloader may allow an attacker to read data in memory mapped beyond SPI flash resulting in a potential loss of availability and integrity. | 6.1 |
Medium |
||
Improper input validation in the AMD RadeonTM Graphics display driver may allow an attacker to corrupt the display potentially resulting in denial of service. | 7.5 |
High |
||
Improper signature verification of RadeonTM RX Vega M Graphics driver for Windows may allow an attacker with admin privileges to launch RadeonInstaller.exe without validating the file signature potentially leading to arbitrary code execution. | 6.7 |
Medium |
||
Improper signature verification of RadeonTM RX Vega M Graphics driver for Windows may allow an attacker with admin privileges to launch AMDSoftwareInstaller.exe without validating the file signature potentially leading to arbitrary code execution. | 6.7 |
Medium |
||
Insufficient bounds checking in the ASP (AMD Secure Processor) may allow an attacker to access memory outside the bounds of what is permissible to a TA (Trusted Application) resulting in a potential denial of service. | 5.5 |
Medium |
||
A stack buffer overflow vulnerability discovered in AsfSecureBootDxe in Insyde InsydeH2O with kernel 5.0 through 5.5 allows attackers to run arbitrary code execution during the DXE phase. | 9.8 |
Critical |
||
Insufficient input validation in CpmDisplayFeatureSmm may allow an attacker to corrupt SMM memory by overwriting an arbitrary bit in an attacker-controlled pointer potentially leading to arbitrary code execution in SMM. | 7.8 |
High |
||
An attacker with specialized hardware and physical access to an impacted device may be able to perform a voltage fault injection attack resulting in compromise of the ASP secure boot potentially leading to arbitrary code execution. | 6.8 |
Medium |
||
A side channel vulnerability on some of the AMD CPUs may allow an attacker to influence the return address prediction. This may result in speculative execution at an attacker-controlled address, potentially leading to information disclosure. | 4.7 |
Medium |
||
A potential power side-channel vulnerability in AMD processors may allow an authenticated attacker to monitor the CPU power consumption as the data in a cache line changes over time potentially resulting in a leak of sensitive information. | 4.7 |
Medium |
||
Certain size values in firmware binary headers could trigger out of bounds reads during signature validation, leading to denial of service or potentially limited leakage of information about out-of-bounds memory contents. | 8.2 |
High |
||
Insufficient bounds checking in ASP may allow an attacker to issue a system call from a compromised ABL which may cause arbitrary memory values to be initialized to zero, potentially leading to a loss of integrity. | 5.5 |
Medium |
||
Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges. | 8.8 |
High |
||
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges. | 8.8 |
High |
||
Failure to validate the integer operand in ASP (AMD Secure Processor) bootloader may allow an attacker to introduce an integer overflow in the L2 directory table in SPI flash resulting in a potential denial of service. | 5.5 |
Medium |
||
Failure to validate the communication buffer and communication service in the BIOS may allow an attacker to tamper with the buffer resulting in potential SMM (System Management Mode) arbitrary code execution. | 7.8 |
High |
||
Insufficient verification of missing size check in 'LoadModule' may lead to an out-of-bounds write potentially allowing an attacker with privileges to gain code execution of the OS/kernel by loading a malicious TA. | 7.8 |
High |
||
Improper parameters handling in AMD Secure Processor (ASP) drivers may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Insufficient memory cleanup in the AMD Secure Processor (ASP) Trusted Execution Environment (TEE) may allow an authenticated attacker with privileges to generate a valid signed TA and potentially poison the contents of the process memory with attacker controlled data resulting in a loss of confidentiality. | 5.5 |
Medium |
||
Insufficient verification of multiple header signatures while loading a Trusted Application (TA) may allow an attacker with privileges to gain code execution in that TA or the OS/kernel. | 7.8 |
High |
||
Improper parameters handling in the AMD Secure Processor (ASP) kernel may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. | 5.6 |
Medium |
||
A malformed SMI (System Management Interface) command may allow an attacker to establish a corrupted SMI Trigger Info data structure, potentially leading to out-of-bounds memory reads and writes when triggering an SMI resulting in a potential loss of resources. | 7.8 |
High |
||
An attacker with root account privileges can load any legitimately signed firmware image into the Audio Co-Processor (ACP,) irrespective of the respective signing key being declared as usable for authenticating an ACP firmware image, potentially resulting in a denial of service. | 4.4 |
Medium |
||
A bug in AMD CPU’s core logic may allow for an attacker, using specific code from an unprivileged VM, to trigger a CPU core hang resulting in a potential denial of service. AMD believes the specific code includes a specific x86 instruction sequence that would not be generated by compilers. | 5.5 |
Medium |
||
Insufficient bound checks in System Management Unit (SMU) PCIe Hot Plug table may result in access/updates from/to invalid address space that could result in denial of service. | 5.5 |
Medium |
||
A malicious or compromised UApp or ABL may coerce the bootloader into corrupting arbitrary memory potentially leading to loss of integrity of data. | 6.2 |
Medium |