CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
Insufficient DRAM address validation in System Management Unit (SMU) may allow an attacker to read/write from/to an invalid DRAM address, potentially resulting in denial-of-service. | 7.5 |
High |
||
Insufficient DRAM address validation in System Management Unit (SMU) may allow an attacker to read/write from/to an invalid DRAM address, potentially resulting in denial-of-service. | 7.5 |
High |
||
An attacker with specialized hardware and physical access to an impacted device may be able to perform a voltage fault injection attack resulting in compromise of the ASP secure boot potentially leading to arbitrary code execution. | 6.8 |
Medium |
||
An issue in “Zen 2” CPUs, under specific microarchitectural circumstances, may allow an attacker to potentially access sensitive information. | 5.5 |
Medium |
||
A compromised or malicious ABL or UApp could send a SHA256 system call to the bootloader, which may result in exposure of ASP memory to userspace, potentially leading to information disclosure. | 5.5 |
Medium |
||
A TOCTOU in ASP bootloader may allow an attacker to tamper with the SPI ROM following data read to memory potentially resulting in S3 data corruption and information disclosure. | 7.4 |
High |
||
Insufficient bounds checking in ASP may allow an attacker to issue a system call from a compromised ABL which may cause arbitrary memory values to be initialized to zero, potentially leading to a loss of integrity. | 5.5 |
Medium |
||
Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges. | 8.8 |
High |
||
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges. | 8.8 |
High |
||
When SMT is enabled, certain AMD processors may speculatively execute instructions using a target from the sibling thread after an SMT mode switch potentially resulting in information disclosure. | 4.7 |
Medium |
||
Failure to validate the integer operand in ASP (AMD Secure Processor) bootloader may allow an attacker to introduce an integer overflow in the L2 directory table in SPI flash resulting in a potential denial of service. | 5.5 |
Medium |
||
IBPB may not prevent return branch predictions from being specified by pre-IBPB branch targets leading to a potential information disclosure. | 5.5 |
Medium |
||
Insufficient verification of missing size check in 'LoadModule' may lead to an out-of-bounds write potentially allowing an attacker with privileges to gain code execution of the OS/kernel by loading a malicious TA. | 7.8 |
High |
||
Improper parameters handling in AMD Secure Processor (ASP) drivers may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Improper parameters handling in the AMD Secure Processor (ASP) kernel may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. | 5.6 |
Medium |
||
Aliases in the branch predictor may cause some AMD processors to predict the wrong branch type potentially leading to information disclosure. | 6.5 |
Medium |
||
Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions. | 6.5 |
Medium |
||
A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure. | 6.5 |
Medium |