CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
Improper bounds checking in APCB firmware may allow an attacker to perform an out of bounds write, corrupting the APCB entry, potentially leading to arbitrary code execution. | 8.2 |
High |
||
A malicious attacker in x86 can misconfigure the Trusted Memory Regions (TMRs), which may allow the attacker to set an arbitrary address range for the TMR, potentially leading to a loss of integrity and availability. | 6 |
Medium |
||
Improper Access Control in the AMD SPI protection feature may allow a user with Ring0 (kernel mode) privileged access to bypass protections potentially resulting in loss of integrity and availability. | 6 |
Medium |
||
TOCTOU in the ASP Bootloader may allow an attacker with physical access to tamper with SPI ROM records after memory content verification, potentially leading to loss of confidentiality or a denial of service. | 5.7 |
Medium |
||
Insufficient input validation in CpmDisplayFeatureSmm may allow an attacker to corrupt SMM memory by overwriting an arbitrary bit in an attacker-controlled pointer potentially leading to arbitrary code execution in SMM. | 7.8 |
High |
||
A compromised or malicious ABL or UApp could send a SHA256 system call to the bootloader, which may result in exposure of ASP memory to userspace, potentially leading to information disclosure. | 5.5 |
Medium |
||
Insufficient bounds checking in ASP may allow an attacker to issue a system call from a compromised ABL which may cause arbitrary memory values to be initialized to zero, potentially leading to a loss of integrity. | 5.5 |
Medium |
||
Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges. | 8.8 |
High |
||
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges. | 8.8 |
High |
||
When SMT is enabled, certain AMD processors may speculatively execute instructions using a target from the sibling thread after an SMT mode switch potentially resulting in information disclosure. | 4.7 |
Medium |
||
Failure to validate the integer operand in ASP (AMD Secure Processor) bootloader may allow an attacker to introduce an integer overflow in the L2 directory table in SPI flash resulting in a potential denial of service. | 5.5 |
Medium |
||
IBPB may not prevent return branch predictions from being specified by pre-IBPB branch targets leading to a potential information disclosure. | 5.5 |
Medium |
||
Insufficient verification of missing size check in 'LoadModule' may lead to an out-of-bounds write potentially allowing an attacker with privileges to gain code execution of the OS/kernel by loading a malicious TA. | 7.8 |
High |
||
Improper parameters handling in AMD Secure Processor (ASP) drivers may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Insufficient memory cleanup in the AMD Secure Processor (ASP) Trusted Execution Environment (TEE) may allow an authenticated attacker with privileges to generate a valid signed TA and potentially poison the contents of the process memory with attacker controlled data resulting in a loss of confidentiality. | 5.5 |
Medium |
||
Improper parameters handling in the AMD Secure Processor (ASP) kernel may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity. | 7.8 |
High |
||
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. | 5.6 |
Medium |
||
A malformed SMI (System Management Interface) command may allow an attacker to establish a corrupted SMI Trigger Info data structure, potentially leading to out-of-bounds memory reads and writes when triggering an SMI resulting in a potential loss of resources. | 7.8 |
High |
||
An attacker with root account privileges can load any legitimately signed firmware image into the Audio Co-Processor (ACP,) irrespective of the respective signing key being declared as usable for authenticating an ACP firmware image, potentially resulting in a denial of service. | 4.4 |
Medium |
||
Aliases in the branch predictor may cause some AMD processors to predict the wrong branch type potentially leading to information disclosure. | 6.5 |
Medium |
||
Mis-trained branch predictions for return instructions may allow arbitrary speculative code execution under certain microarchitecture-dependent conditions. | 6.5 |
Medium |
||
A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure. | 6.5 |
Medium |
||
A malicious or compromised UApp or ABL may coerce the bootloader into corrupting arbitrary memory potentially leading to loss of integrity of data. | 6.2 |
Medium |