CVE ID | Published | Description | Score | Severity |
---|---|---|---|---|
In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0. | 5.5 |
Medium |
||
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment. | 5.3 |
Medium |
||
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called. | 7 |
High |
||
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.24.0 or newer, enabling a maliciously uploaded pmdarima model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.9.0 or newer, enabling a maliciously uploaded PyFunc model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
High |
||
An attacker is able to arbitrarily create an account in MLflow bypassing any authentication requirment. | 9.8 |
Critical |