CVE-2016-7083 : Detail

CVE-2016-7083

7.8
/
High
Overflow
0.12%V3
Local
2016-12-29
08h02 +00:00
2017-09-02
07h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

VMware Workstation Pro 12.x before 12.5.0 and VMware Workstation Player 12.x before 12.5.0 on Windows, when Cortado ThinPrint virtual printing is enabled, allow guest OS users to execute arbitrary code on the host OS or cause a denial of service (host OS memory corruption) via TrueType fonts embedded in EMFSPOOL.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 7.8 HIGH CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

High

A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Changed

An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 5.9 AV:L/AC:M/Au:N/C:P/I:P/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 40398

Publication date : 2016-09-18 22h00 +00:00
Author : Google Security Research
EDB Verified : Yes

Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=849 As already discussed in a number of reports in this tracker (#285, #286, #287, #288, #289, #292), VMware Workstation (current version 12.1.1 build-3770994) ships with a feature called "Virtual Printers", which enables the virtualized operating systems to access printers installed on the Host. Inside the VM, the communication takes place through a COM1 device, and the incoming data is handled by a dedicated "vprintproxy.exe" process on the Host, as launched by the "vmware-vmx.exe" service. Administrative privileges are not required to access COM1 in the guest, at least on Windows. The vprintproxy.exe is a significant attack surface for potential VM escapes. Due to its nature, the application implements support for a variety of complex protocols and file formats, such as the printing protocol, EMFSPOOL format, and further embedded EMFs, fonts, images etc. This report addresses a bug in the handling of TrueType fonts embedded in EMFSPOOL, as implemented in the TPView.DLL library extensively used by vprintproxy.exe. The version of the TPView.DLL file referenced in this report is 9.4.1045.1 (md5sum b6211e8b5c2883fa16231b0a6bf014f3). TrueType fonts can be embedded in EMFSPOOL files via EMRI_ENGINE_FONT records. When such a record is encountered while processing the printing request data, some complex logic is executed to load the font into the program's internal structures. For reasons which are not fully clear to me, one of the operations is to copy the contents of the CMAP table into the NAME table in memory - or, if the latter is larger than the former, create a completely new NAME table with CMAP's data. This is generally implemented in a function located at address 0x1005C230, and the high-level logic is as follows: --- cut --- CMAP = FindCmapTableHeader(); CMAP_size = ExtractSize(CMAP); CMAP_body = ExtractBody(CMAP); NAME = FindNameTableHeader(); if (NAME) { NAME_size = ExtractSize(NAME); NAME_body = ExtractBody(NAME); SetTableSize(NAME, CMAP_size); memset(NAME_body, 0, NAME_size); if (CMAP_size > NAME_size) { SetTableOffset(NAME, font_size); font_data = realloc(font_size + CMAP_size); memset(&font_data[font_size], 0, CMAP_size); memcpy(&font_data[font_size], CMAP_body, CMAP_size); } else { memcpy(NAME_body, CMAP_body, CMAP_size); } } --- cut --- As you can see, the function doesn't perform any bounds checking of the values (offsets, sizes) loaded from table headers. Some of the fields have already been verified before and are guaranteed to be valid at this point of execution, but some of them (such as CMAP_body or NAME_size) are still fully controlled. While controlling the pointer to the CMAP section data (relative to the start of the font buffer) may be useful, being able to cheat about the NAME table size enables an attacker to cause a much more dangerous memory corruption on the heap. For example, if we set the NAME size to an enormous value (e.g. 0xAAAAAAAA), we will encounter an immediate crash in the memset() function, as shown below: --- cut --- (22f0.26ac): Access violation - code c0000005 (first chance) First chance exceptions are reported before any exception handling. This exception may be expected and handled. *** ERROR: Symbol file could not be found. Defaulted to export symbols for C:\Program Files (x86)\Common Files\ThinPrint\TPView.dll - eax=01555540 ebx=00000000 ecx=215cefc0 edx=00000026 esi=215b87d4 edi=aaaaaaaa eip=68102056 esp=2247f298 ebp=2247f2e8 iopl=0 nv up ei pl nz na po nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010202 TPView!TPRenderW+0x1547f6: 68102056 660f7f4140 movdqa xmmword ptr [ecx+40h],xmm0 ds:002b:215cf000=???????????????????????????????? --- cut --- If the NAME table size is increased by a smaller degree, such that the memset() call doesn't hit unmapped page boundary, the code may successfully finish the call and proceed to copying the contents of the CMAP section into the small NAME memory area, which would finally result in a typical heap-based buffer overflow condition with controlled length and data. Attached is a Proof of Concept Python script, which connects to the COM1 serial port, and sends an EMFSPOOL structure containing a font file with the NAME table length set to 0xAAAAAAAA. When launched in a guest system, it should trigger the crash shown above in the vprintproxy.exe process on the host. The script is a slightly reworked version of Kostya's original exploit. Proof of Concept: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/40398.zip

Products Mentioned

Configuraton 0

Vmware>>Workstation_player >> Version 12.0.0

Vmware>>Workstation_player >> Version 12.0.1

Vmware>>Workstation_player >> Version 12.1.0

Vmware>>Workstation_player >> Version 12.1.1

Vmware>>Workstation_pro >> Version 12.0.0

Vmware>>Workstation_pro >> Version 12.0.1

Vmware>>Workstation_pro >> Version 12.1.0

Vmware>>Workstation_pro >> Version 12.1.1

Microsoft>>Windows >> Version *

References

http://www.securitytracker.com/id/1036805
Tags : vdb-entry, x_refsource_SECTRACK
https://www.exploit-db.com/exploits/40398/
Tags : exploit, x_refsource_EXPLOIT-DB
http://www.securityfocus.com/bid/92934
Tags : vdb-entry, x_refsource_BID