CVE-2021-42017 : Detail

CVE-2021-42017

5.9
/
Medium
Authorization problems
A07-Identif. and Authent. Fail
0.04%V3
Network
2022-03-08
10h31 +00:00
2023-12-12
11h25 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i801, RUGGEDCOM i802, RUGGEDCOM i803, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM RMC30, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RP110, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600T, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS401, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000H, RUGGEDCOM RS8000T, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900L, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS969, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSL910, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. A new variant of the POODLE attack has left a third-party component vulnerable due to the implementation flaws of the CBC encryption mode in TLS 1.0 to 1.2. If an attacker were to exploit this, they could act as a man-in-the-middle and eavesdrop on encrypted communications.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-358 Improperly Implemented Security Check for Standard
The product does not implement or incorrectly implements one or more security-relevant checks as specified by the design of a standardized algorithm, protocol, or technique.
CWE-295 Improper Certificate Validation
The product does not validate, or incorrectly validates, a certificate.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.9 MEDIUM CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N/E:P/RL:O/RC:C

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

High

successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Exploit Code Maturity

This metric measures the likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active, “in-the-wild” exploitation.

Proof-of-Concept

Proof-of-concept exploit code is available, or an attack demonstration is not practical for most systems. The code or technique is not functional in all situations and may require substantial modification by a skilled attacker.

Remediation Level

The Remediation Level of a vulnerability is an important factor for prioritization.

Official fix

A complete vendor solution is available. Either the vendor has issued an official patch, or an upgrade is available.

Report Confidence

This metric measures the degree of confidence in the existence of the vulnerability and the credibility of the known technical details.

Confirmed

Detailed reports exist, or functional reproduction is possible (functional exploits may provide this). Source code is available to independently verify the assertions of the research, or the author or vendor of the affected code has confirmed the presence of the vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

V3.1 5.9 MEDIUM CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

High

successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]
V2 4.3 AV:N/AC:M/Au:N/C:P/I:N/A:N [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Siemens>>Ruggedcom_ros >> Version *

Siemens>>Ruggedcom_i800 >> Version -

Siemens>>Ruggedcom_i801 >> Version -

Siemens>>Ruggedcom_i802 >> Version -

Siemens>>Ruggedcom_i803 >> Version -

Siemens>>Ruggedcom_m2100 >> Version -

Siemens>>Ruggedcom_m2200 >> Version -

Siemens>>Ruggedcom_m969 >> Version -

Siemens>>Ruggedcom_rmc >> Version -

Siemens>>Ruggedcom_rmc20 >> Version -

Siemens>>Ruggedcom_rmc30 >> Version -

Siemens>>Ruggedcom_rmc40 >> Version -

Siemens>>Ruggedcom_rmc41 >> Version -

Siemens>>Ruggedcom_rp110 >> Version -

Siemens>>Ruggedcom_rs400 >> Version -

Siemens>>Ruggedcom_rs401 >> Version -

Siemens>>Ruggedcom_rs416 >> Version -

Siemens>>Ruggedcom_rs8000 >> Version -

Siemens>>Ruggedcom_rs8000a >> Version -

Siemens>>Ruggedcom_rs8000h >> Version -

Siemens>>Ruggedcom_rs8000t >> Version -

Siemens>>Ruggedcom_rs900gp >> Version -

Siemens>>Ruggedcom_rs900l >> Version -

Siemens>>Ruggedcom_rs900w >> Version -

Siemens>>Ruggedcom_rs910 >> Version -

Siemens>>Ruggedcom_rs910l >> Version -

Siemens>>Ruggedcom_rs910w >> Version -

Siemens>>Ruggedcom_rs920l >> Version -

Siemens>>Ruggedcom_rs920w >> Version -

Siemens>>Ruggedcom_rs930l >> Version -

Siemens>>Ruggedcom_rs930w >> Version -

Siemens>>Ruggedcom_rs940g >> Version -

Siemens>>Ruggedcom_rs969 >> Version -

Siemens>>Ruggedcom_rsg2100p >> Version -

Siemens>>Ruggedcom_rsg2200 >> Version -

Configuraton 0

Siemens>>Ruggedcom_ros >> Version To (excluding) 5.6.0

Siemens>>Ruggedcom_rmc8388 >> Version -

Siemens>>Ruggedcom_rs416v2 >> Version -

Siemens>>Ruggedcom_rs900 >> Version -

Siemens>>Ruggedcom_rs900g >> Version -

Siemens>>Ruggedcom_rsg2100 >> Version -

Siemens>>Ruggedcom_rsg2288 >> Version -

Siemens>>Ruggedcom_rsg2300 >> Version -

Siemens>>Ruggedcom_rsg2300p >> Version -

Siemens>>Ruggedcom_rsg2488 >> Version -

Siemens>>Ruggedcom_rsg907r >> Version -

Siemens>>Ruggedcom_rsg908c >> Version -

Siemens>>Ruggedcom_rsg909r >> Version -

Siemens>>Ruggedcom_rsg910c >> Version -

Siemens>>Ruggedcom_rsg920p >> Version -

Siemens>>Ruggedcom_rsl910 >> Version -

Siemens>>Ruggedcom_rst2228 >> Version -

Siemens>>Ruggedcom_rst2228p >> Version -

Siemens>>Ruggedcom_rst916c >> Version -

Siemens>>Ruggedcom_rst916p >> Version -

References