/mnt/testdir/file$i done # Create our test directory "dira", inode number 1458, which gets all # its items in leaf 7. # # The BTRFS_DIR_ITEM_KEY item for inode 257 ("testdir") that points to # the entry named "dira" is in leaf 2, while the BTRFS_DIR_INDEX_KEY # item that points to that entry is in leaf 3. # # For this particular filesystem node size (64K), file count and file # names, we endup with the directory entry items from inode 257 in # leaves 2 and 3, as previously mentioned - what matters for triggering # the bug exercised by this test case is that those items are not placed # in leaf 1, they must be placed in a leaf different from the one # containing the inode item for inode 257. # # The corresponding BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items for # the parent inode (257) are the following: # # item 460 key (257 DIR_ITEM 3724298081) itemoff 48344 itemsize 34 # location key (1458 INODE_ITEM 0) type DIR # transid 6 data_len 0 name_len 4 # name: dira # # and: # # item 771 key (257 DIR_INDEX 1202) itemoff 36673 itemsize 34 # location key (1458 INODE_ITEM 0) type DIR # transid 6 data_len 0 name_len 4 # name: dira $ mkdir /mnt/testdir/dira # Make sure everything done so far is durably persisted. $ sync # Now do a change to inode 257 ("testdir") that does not result in # COWing leaves 2 and 3 - the leaves that contain the directory items # pointing to inode 1458 (directory "dira"). # # Changing permissions, the owner/group, updating or adding a xattr, # etc, will not change (COW) leaves 2 and 3. So for the sake of # simplicity change the permissions of inode 257, which results in # updating its inode item and therefore change (COW) only leaf 1. $ chmod 700 /mnt/testdir # Now fsync directory inode 257. # # Since only the first leaf was changed/COWed, we log the inode item of # inode 257 and only the dentries found in the first leaf, all have a # key type of BTRFS_DIR_ITEM_KEY, and no keys of type # BTRFS_DIR_INDEX_KEY, because they sort after the former type and none # exist in the first leaf. # # We also log 3 items that represent ranges for dir items and dir # indexes for which the log is authoritative: # # 1) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is # authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset # in the range [0, 2285968570] (the offset here is th ---truncated---">

CVE-2021-47072 : Detail

CVE-2021-47072

5.5
/
Medium
0.04%V3
Local
2024-03-01
21h15 +00:00
2024-12-19
07h34 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

btrfs: fix removed dentries still existing after log is synced

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix removed dentries still existing after log is synced When we move one inode from one directory to another and both the inode and its previous parent directory were logged before, we are not supposed to have the dentry for the old parent if we have a power failure after the log is synced. Only the new dentry is supposed to exist. Generally this works correctly, however there is a scenario where this is not currently working, because the old parent of the file/directory that was moved is not authoritative for a range that includes the dir index and dir item keys of the old dentry. This case is better explained with the following example and reproducer: # The test requires a very specific layout of keys and items in the # fs/subvolume btree to trigger the bug. So we want to make sure that # on whatever platform we are, we have the same leaf/node size. # # Currently in btrfs the node/leaf size can not be smaller than the page # size (but it can be greater than the page size). So use the largest # supported node/leaf size (64K). $ mkfs.btrfs -f -n 65536 /dev/sdc $ mount /dev/sdc /mnt # "testdir" is inode 257. $ mkdir /mnt/testdir $ chmod 755 /mnt/testdir # Create several empty files to have the directory "testdir" with its # items spread over several leaves (7 in this case). $ for ((i = 1; i <= 1200; i++)); do echo -n > /mnt/testdir/file$i done # Create our test directory "dira", inode number 1458, which gets all # its items in leaf 7. # # The BTRFS_DIR_ITEM_KEY item for inode 257 ("testdir") that points to # the entry named "dira" is in leaf 2, while the BTRFS_DIR_INDEX_KEY # item that points to that entry is in leaf 3. # # For this particular filesystem node size (64K), file count and file # names, we endup with the directory entry items from inode 257 in # leaves 2 and 3, as previously mentioned - what matters for triggering # the bug exercised by this test case is that those items are not placed # in leaf 1, they must be placed in a leaf different from the one # containing the inode item for inode 257. # # The corresponding BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items for # the parent inode (257) are the following: # # item 460 key (257 DIR_ITEM 3724298081) itemoff 48344 itemsize 34 # location key (1458 INODE_ITEM 0) type DIR # transid 6 data_len 0 name_len 4 # name: dira # # and: # # item 771 key (257 DIR_INDEX 1202) itemoff 36673 itemsize 34 # location key (1458 INODE_ITEM 0) type DIR # transid 6 data_len 0 name_len 4 # name: dira $ mkdir /mnt/testdir/dira # Make sure everything done so far is durably persisted. $ sync # Now do a change to inode 257 ("testdir") that does not result in # COWing leaves 2 and 3 - the leaves that contain the directory items # pointing to inode 1458 (directory "dira"). # # Changing permissions, the owner/group, updating or adding a xattr, # etc, will not change (COW) leaves 2 and 3. So for the sake of # simplicity change the permissions of inode 257, which results in # updating its inode item and therefore change (COW) only leaf 1. $ chmod 700 /mnt/testdir # Now fsync directory inode 257. # # Since only the first leaf was changed/COWed, we log the inode item of # inode 257 and only the dentries found in the first leaf, all have a # key type of BTRFS_DIR_ITEM_KEY, and no keys of type # BTRFS_DIR_INDEX_KEY, because they sort after the former type and none # exist in the first leaf. # # We also log 3 items that represent ranges for dir items and dir # indexes for which the log is authoritative: # # 1) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is # authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset # in the range [0, 2285968570] (the offset here is th ---truncated---

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE Other No informations.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 5.12 To (excluding) 5.12.7

Linux>>Linux_kernel >> Version 5.13

Linux>>Linux_kernel >> Version 5.13

References