CVE-2021-47146 : Detail

CVE-2021-47146

5.5
/
Medium
0.04%V3
Local
2024-03-25
09h07 +00:00
2024-12-19
07h36 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

mld: fix panic in mld_newpack()

In the Linux kernel, the following vulnerability has been resolved: mld: fix panic in mld_newpack() mld_newpack() doesn't allow to allocate high order page, only order-0 allocation is allowed. If headroom size is too large, a kernel panic could occur in skb_put(). Test commands: ip netns del A ip netns del B ip netns add A ip netns add B ip link add veth0 type veth peer name veth1 ip link set veth0 netns A ip link set veth1 netns B ip netns exec A ip link set lo up ip netns exec A ip link set veth0 up ip netns exec A ip -6 a a 2001:db8:0::1/64 dev veth0 ip netns exec B ip link set lo up ip netns exec B ip link set veth1 up ip netns exec B ip -6 a a 2001:db8:0::2/64 dev veth1 for i in {1..99} do let A=$i-1 ip netns exec A ip link add ip6gre$i type ip6gre \ local 2001:db8:$A::1 remote 2001:db8:$A::2 encaplimit 100 ip netns exec A ip -6 a a 2001:db8:$i::1/64 dev ip6gre$i ip netns exec A ip link set ip6gre$i up ip netns exec B ip link add ip6gre$i type ip6gre \ local 2001:db8:$A::2 remote 2001:db8:$A::1 encaplimit 100 ip netns exec B ip -6 a a 2001:db8:$i::2/64 dev ip6gre$i ip netns exec B ip link set ip6gre$i up done Splat looks like: kernel BUG at net/core/skbuff.c:110! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI CPU: 0 PID: 7 Comm: kworker/0:1 Not tainted 5.12.0+ #891 Workqueue: ipv6_addrconf addrconf_dad_work RIP: 0010:skb_panic+0x15d/0x15f Code: 92 fe 4c 8b 4c 24 10 53 8b 4d 70 45 89 e0 48 c7 c7 00 ae 79 83 41 57 41 56 41 55 48 8b 54 24 a6 26 f9 ff <0f> 0b 48 8b 6c 24 20 89 34 24 e8 4a 4e 92 fe 8b 34 24 48 c7 c1 20 RSP: 0018:ffff88810091f820 EFLAGS: 00010282 RAX: 0000000000000089 RBX: ffff8881086e9000 RCX: 0000000000000000 RDX: 0000000000000089 RSI: 0000000000000008 RDI: ffffed1020123efb RBP: ffff888005f6eac0 R08: ffffed1022fc0031 R09: ffffed1022fc0031 R10: ffff888117e00187 R11: ffffed1022fc0030 R12: 0000000000000028 R13: ffff888008284eb0 R14: 0000000000000ed8 R15: 0000000000000ec0 FS: 0000000000000000(0000) GS:ffff888117c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8b801c5640 CR3: 0000000033c2c006 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? ip6_mc_hdr.isra.26.constprop.46+0x12a/0x600 ? ip6_mc_hdr.isra.26.constprop.46+0x12a/0x600 skb_put.cold.104+0x22/0x22 ip6_mc_hdr.isra.26.constprop.46+0x12a/0x600 ? rcu_read_lock_sched_held+0x91/0xc0 mld_newpack+0x398/0x8f0 ? ip6_mc_hdr.isra.26.constprop.46+0x600/0x600 ? lock_contended+0xc40/0xc40 add_grhead.isra.33+0x280/0x380 add_grec+0x5ca/0xff0 ? mld_sendpack+0xf40/0xf40 ? lock_downgrade+0x690/0x690 mld_send_initial_cr.part.34+0xb9/0x180 ipv6_mc_dad_complete+0x15d/0x1b0 addrconf_dad_completed+0x8d2/0xbb0 ? lock_downgrade+0x690/0x690 ? addrconf_rs_timer+0x660/0x660 ? addrconf_dad_work+0x73c/0x10e0 addrconf_dad_work+0x73c/0x10e0 Allowing high order page allocation could fix this problem.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE Other No informations.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 2.6.35 To (excluding) 4.4.271

Linux>>Linux_kernel >> Version From (including) 4.5 To (excluding) 4.9.271

Linux>>Linux_kernel >> Version From (including) 4.10 To (excluding) 4.14.235

Linux>>Linux_kernel >> Version From (including) 4.15 To (excluding) 4.19.193

Linux>>Linux_kernel >> Version From (including) 4.20 To (excluding) 5.4.124

Linux>>Linux_kernel >> Version From (including) 5.5 To (excluding) 5.10.42

Linux>>Linux_kernel >> Version From (including) 5.11 To (excluding) 5.12.9

Linux>>Linux_kernel >> Version 5.13

Linux>>Linux_kernel >> Version 5.13

Linux>>Linux_kernel >> Version 5.13

References