magic != lock)
WARNING: CPU: 0 PID: 410 at kernel/locking/mutex.c:587 __mutex_lock+0x773/0xd40
Modules linked in: crct10dif_pclmul crc32_pclmul crc32c_intel polyval_clmulni polyval_generic ice(+) nvme nvme_c>
CPU: 0 PID: 410 Comm: kworker/0:4 Not tainted 6.8.0-rc5+ #3
Hardware name: HPE ProLiant DL110 Gen10 Plus/ProLiant DL110 Gen10 Plus, BIOS U56 10/19/2023
Workqueue: events work_for_cpu_fn
RIP: 0010:__mutex_lock+0x773/0xd40
Code: c0 0f 84 1d f9 ff ff 44 8b 35 0d 9c 69 01 45 85 f6 0f 85 0d f9 ff ff 48 c7 c6 12 a2 a9 85 48 c7 c7 12 f1 a>
RSP: 0018:ff7eb1a3417a7ae0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: ffffffff85ac2bff RDI: 00000000ffffffff
RBP: ff7eb1a3417a7b80 R08: 0000000000000000 R09: 00000000ffffbfff
R10: ff7eb1a3417a7978 R11: ff32b80f7fd2e568 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: ff32b7f02c50e0d8
FS: 0000000000000000(0000) GS:ff32b80efe800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055b5852cc000 CR3: 000000003c43a004 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. This metric reflects the context by which vulnerability exploitation is possible. Network The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Low Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. None The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Unchanged An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. None There is no loss of integrity within the impacted component. This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. High There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. Linux>>Linux_kernel >> Version From (including) 6.7 To (excluding) 6.7.10 Linux>>Linux_kernel >> Version 6.8 Linux>>Linux_kernel >> Version 6.8 Linux>>Linux_kernel >> Version 6.8 Linux>>Linux_kernel >> Version 6.8 Linux>>Linux_kernel >> Version 6.8 Linux>>Linux_kernel >> Version 6.8CVE-2024-26854
CVE Descriptions
ice: fix uninitialized dplls mutex usage
In the Linux kernel, the following vulnerability has been resolved:
ice: fix uninitialized dplls mutex usage
The pf->dplls.lock mutex is initialized too late, after its first use.
Move it to the top of ice_dpll_init.
Note that the "err_exit" error path destroys the mutex. And the mutex is
the last thing destroyed in ice_dpll_deinit.
This fixes the following warning with CONFIG_DEBUG_MUTEXES:
ice 0000:10:00.0: The DDP package was successfully loaded: ICE OS Default Package version 1.3.36.0
ice 0000:10:00.0: 252.048 Gb/s available PCIe bandwidth (16.0 GT/s PCIe x16 link)
ice 0000:10:00.0: PTP init successful
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(lock->magic != lock)
WARNING: CPU: 0 PID: 410 at kernel/locking/mutex.c:587 __mutex_lock+0x773/0xd40
Modules linked in: crct10dif_pclmul crc32_pclmul crc32c_intel polyval_clmulni polyval_generic ice(+) nvme nvme_c>
CPU: 0 PID: 410 Comm: kworker/0:4 Not tainted 6.8.0-rc5+ #3
Hardware name: HPE ProLiant DL110 Gen10 Plus/ProLiant DL110 Gen10 Plus, BIOS U56 10/19/2023
Workqueue: events work_for_cpu_fn
RIP: 0010:__mutex_lock+0x773/0xd40
Code: c0 0f 84 1d f9 ff ff 44 8b 35 0d 9c 69 01 45 85 f6 0f 85 0d f9 ff ff 48 c7 c6 12 a2 a9 85 48 c7 c7 12 f1 a>
RSP: 0018:ff7eb1a3417a7ae0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000002 RSI: ffffffff85ac2bff RDI: 00000000ffffffff
RBP: ff7eb1a3417a7b80 R08: 0000000000000000 R09: 00000000ffffbfff
R10: ff7eb1a3417a7978 R11: ff32b80f7fd2e568 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: ff32b7f02c50e0d8
FS: 0000000000000000(0000) GS:ff32b80efe800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055b5852cc000 CR3: 000000003c43a004 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
CVE Informations
Related Weaknesses
Weakness Name
Source
NULL Pointer Dereference
The product dereferences a pointer that it expects to be valid but is NULL.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V3.1
7.5
HIGH
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Base: Exploitabilty Metrics
Base: Scope Metrics
Base: Impact Metrics
Temporal Metrics
Environmental Metrics
134c704f-9b21-4f2e-91b3-4a467353bcc0
EPSS
EPSS Score
EPSS Percentile
Products Mentioned
Configuraton 0
References