req` and `tpg`. However, for
a `VIRTIO_SCSI_T_AN_*` request, tpg is not required, so `vc.target` is
set to NULL in this branch. Later, in vhost_scsi_get_req(),
`vc->target` is dereferenced without being checked, leading to a null
pointer dereference bug. This bug can be triggered from guest.
When this bug occurs, the vhost_worker process is killed while holding
`vq->mutex` and the corresponding tpg will remain occupied
indefinitely.
Below is the KASAN report:
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 840 Comm: poc Not tainted 6.10.0+ #1
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS
1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:vhost_scsi_get_req+0x165/0x3a0
Code: 00 fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 2b 02 00 00
48 b8 00 00 00 00 00 fc ff df 4d 8b 65 30 4c 89 e2 48 c1 ea 03 <0f> b6
04 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 be 01 00 00
RSP: 0018:ffff888017affb50 EFLAGS: 00010246
RAX: dffffc0000000000 RBX: ffff88801b000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888017affcb8
RBP: ffff888017affb80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff888017affc88 R14: ffff888017affd1c R15: ffff888017993000
FS: 000055556e076500(0000) GS:ffff88806b100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200027c0 CR3: 0000000010ed0004 CR4: 0000000000370ef0
Call Trace:
Weakness Name | Source | |
---|---|---|
NULL Pointer Dereference The product dereferences a pointer that it expects to be valid but is NULL. |
Metrics | Score | Severity | CVSS Vector | Source |
---|---|---|---|---|
V3.1 | 5.5 | MEDIUM |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
More informations
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. Local The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Low Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. Low The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Unchanged An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. None There is no loss of integrity within the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. High There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. |
[email protected] |
Linux>>Linux_kernel >> Version From (including) 4.20 To (excluding) 5.10.227
Linux>>Linux_kernel >> Version From (including) 5.11 To (excluding) 5.15.168
Linux>>Linux_kernel >> Version From (including) 5.16 To (excluding) 6.1.113
Linux>>Linux_kernel >> Version From (including) 6.2 To (excluding) 6.6.55
Linux>>Linux_kernel >> Version From (including) 6.7 To (excluding) 6.10.14
Linux>>Linux_kernel >> Version From (including) 6.11 To (excluding) 6.11.3
Linux>>Linux_kernel >> Version 6.12
Linux>>Linux_kernel >> Version 6.12