CVE-2024-50110 : Detail

CVE-2024-50110

5.5
/
Medium
0.05%V3
Local
2024-11-05
17h10 +00:00
2024-12-19
09h33 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

xfrm: fix one more kernel-infoleak in algo dumping

In the Linux kernel, the following vulnerability has been resolved: xfrm: fix one more kernel-infoleak in algo dumping During fuzz testing, the following issue was discovered: BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x598/0x2a30 _copy_to_iter+0x598/0x2a30 __skb_datagram_iter+0x168/0x1060 skb_copy_datagram_iter+0x5b/0x220 netlink_recvmsg+0x362/0x1700 sock_recvmsg+0x2dc/0x390 __sys_recvfrom+0x381/0x6d0 __x64_sys_recvfrom+0x130/0x200 x64_sys_call+0x32c8/0x3cc0 do_syscall_64+0xd8/0x1c0 entry_SYSCALL_64_after_hwframe+0x79/0x81 Uninit was stored to memory at: copy_to_user_state_extra+0xcc1/0x1e00 dump_one_state+0x28c/0x5f0 xfrm_state_walk+0x548/0x11e0 xfrm_dump_sa+0x1e0/0x840 netlink_dump+0x943/0x1c40 __netlink_dump_start+0x746/0xdb0 xfrm_user_rcv_msg+0x429/0xc00 netlink_rcv_skb+0x613/0x780 xfrm_netlink_rcv+0x77/0xc0 netlink_unicast+0xe90/0x1280 netlink_sendmsg+0x126d/0x1490 __sock_sendmsg+0x332/0x3d0 ____sys_sendmsg+0x863/0xc30 ___sys_sendmsg+0x285/0x3e0 __x64_sys_sendmsg+0x2d6/0x560 x64_sys_call+0x1316/0x3cc0 do_syscall_64+0xd8/0x1c0 entry_SYSCALL_64_after_hwframe+0x79/0x81 Uninit was created at: __kmalloc+0x571/0xd30 attach_auth+0x106/0x3e0 xfrm_add_sa+0x2aa0/0x4230 xfrm_user_rcv_msg+0x832/0xc00 netlink_rcv_skb+0x613/0x780 xfrm_netlink_rcv+0x77/0xc0 netlink_unicast+0xe90/0x1280 netlink_sendmsg+0x126d/0x1490 __sock_sendmsg+0x332/0x3d0 ____sys_sendmsg+0x863/0xc30 ___sys_sendmsg+0x285/0x3e0 __x64_sys_sendmsg+0x2d6/0x560 x64_sys_call+0x1316/0x3cc0 do_syscall_64+0xd8/0x1c0 entry_SYSCALL_64_after_hwframe+0x79/0x81 Bytes 328-379 of 732 are uninitialized Memory access of size 732 starts at ffff88800e18e000 Data copied to user address 00007ff30f48aff0 CPU: 2 PID: 18167 Comm: syz-executor.0 Not tainted 6.8.11 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Fixes copying of xfrm algorithms where some random data of the structure fields can end up in userspace. Padding in structures may be filled with random (possibly sensitve) data and should never be given directly to user-space. A similar issue was resolved in the commit 8222d5910dae ("xfrm: Zero padding when dumping algos and encap") Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-908 Use of Uninitialized Resource
The product uses or accesses a resource that has not been initialized.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 5.11 To (excluding) 5.15.170

Linux>>Linux_kernel >> Version From (including) 5.16 To (excluding) 6.1.115

Linux>>Linux_kernel >> Version From (including) 6.2 To (excluding) 6.6.59

Linux>>Linux_kernel >> Version From (including) 6.7 To (excluding) 6.11.6

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

References