CVE-2024-50256 : Detail

CVE-2024-50256

5.5
/
Medium
0.04%V3
Local
2024-11-09
10h15 +00:00
2024-12-19
09h36 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

netfilter: nf_reject_ipv6: fix potential crash in nf_send_reset6()

In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_reject_ipv6: fix potential crash in nf_send_reset6() I got a syzbot report without a repro [1] crashing in nf_send_reset6() I think the issue is that dev->hard_header_len is zero, and we attempt later to push an Ethernet header. Use LL_MAX_HEADER, as other functions in net/ipv6/netfilter/nf_reject_ipv6.c. [1] skbuff: skb_under_panic: text:ffffffff89b1d008 len:74 put:14 head:ffff88803123aa00 data:ffff88803123a9f2 tail:0x3c end:0x140 dev:syz_tun kernel BUG at net/core/skbuff.c:206 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 7373 Comm: syz.1.568 Not tainted 6.12.0-rc2-syzkaller-00631-g6d858708d465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:skb_panic net/core/skbuff.c:206 [inline] RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216 Code: 0d 8d 48 c7 c6 60 a6 29 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 ba 30 38 02 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 RSP: 0018:ffffc900045269b0 EFLAGS: 00010282 RAX: 0000000000000088 RBX: dffffc0000000000 RCX: cd66dacdc5d8e800 RDX: 0000000000000000 RSI: 0000000000000200 RDI: 0000000000000000 RBP: ffff88802d39a3d0 R08: ffffffff8174afec R09: 1ffff920008a4ccc R10: dffffc0000000000 R11: fffff520008a4ccd R12: 0000000000000140 R13: ffff88803123aa00 R14: ffff88803123a9f2 R15: 000000000000003c FS: 00007fdbee5ff6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000005d322000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: skb_push+0xe5/0x100 net/core/skbuff.c:2636 eth_header+0x38/0x1f0 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3208 [inline] nf_send_reset6+0xce6/0x1270 net/ipv6/netfilter/nf_reject_ipv6.c:358 nft_reject_inet_eval+0x3b9/0x690 net/netfilter/nft_reject_inet.c:48 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_inet+0x418/0x6b0 net/netfilter/nft_chain_filter.c:161 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] br_nf_pre_routing_ipv6+0x63e/0x770 net/bridge/br_netfilter_ipv6.c:184 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_bridge_pre net/bridge/br_input.c:277 [inline] br_handle_frame+0x9fd/0x1530 net/bridge/br_input.c:424 __netif_receive_skb_core+0x13e8/0x4570 net/core/dev.c:5562 __netif_receive_skb_one_core net/core/dev.c:5666 [inline] __netif_receive_skb+0x12f/0x650 net/core/dev.c:5781 netif_receive_skb_internal net/core/dev.c:5867 [inline] netif_receive_skb+0x1e8/0x890 net/core/dev.c:5926 tun_rx_batched+0x1b7/0x8f0 drivers/net/tun.c:1550 tun_get_user+0x3056/0x47e0 drivers/net/tun.c:2007 tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2053 new_sync_write fs/read_write.c:590 [inline] vfs_write+0xa6d/0xc90 fs/read_write.c:683 ksys_write+0x183/0x2b0 fs/read_write.c:736 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fdbeeb7d1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 c9 8d 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 1c 8e 02 00 48 RSP: 002b:00007fdbee5ff000 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fdbeed36058 RCX: 00007fdbeeb7d1ff RDX: 000000000000008e RSI: 0000000020000040 RDI: 00000000000000c8 RBP: 00007fdbeebf12be R08: 0000000 ---truncated---

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE Other No informations.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 3.18 To (excluding) 6.1.116

Linux>>Linux_kernel >> Version From (including) 6.2 To (excluding) 6.6.60

Linux>>Linux_kernel >> Version From (including) 6.7 To (excluding) 6.11.7

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

Linux>>Linux_kernel >> Version 6.12

References