CVE-2024-56587 : Detail

CVE-2024-56587

5.5
/
Medium
Memory Corruption
0.04%V3
Local
2024-12-27
14h50 +00:00
2025-01-20
06h23 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

leds: class: Protect brightness_show() with led_cdev->led_access mutex

In the Linux kernel, the following vulnerability has been resolved: leds: class: Protect brightness_show() with led_cdev->led_access mutex There is NULL pointer issue observed if from Process A where hid device being added which results in adding a led_cdev addition and later a another call to access of led_cdev attribute from Process B can result in NULL pointer issue. Use mutex led_cdev->led_access to protect access to led->cdev and its attribute inside brightness_show() and max_brightness_show() and also update the comment for mutex that it should be used to protect the led class device fields. Process A Process B kthread+0x114 worker_thread+0x244 process_scheduled_works+0x248 uhid_device_add_worker+0x24 hid_add_device+0x120 device_add+0x268 bus_probe_device+0x94 device_initial_probe+0x14 __device_attach+0xfc bus_for_each_drv+0x10c __device_attach_driver+0x14c driver_probe_device+0x3c __driver_probe_device+0xa0 really_probe+0x190 hid_device_probe+0x130 ps_probe+0x990 ps_led_register+0x94 devm_led_classdev_register_ext+0x58 led_classdev_register_ext+0x1f8 device_create_with_groups+0x48 device_create_groups_vargs+0xc8 device_add+0x244 kobject_uevent+0x14 kobject_uevent_env[jt]+0x224 mutex_unlock[jt]+0xc4 __mutex_unlock_slowpath+0xd4 wake_up_q+0x70 try_to_wake_up[jt]+0x48c preempt_schedule_common+0x28 __schedule+0x628 __switch_to+0x174 el0t_64_sync+0x1a8/0x1ac el0t_64_sync_handler+0x68/0xbc el0_svc+0x38/0x68 do_el0_svc+0x1c/0x28 el0_svc_common+0x80/0xe0 invoke_syscall+0x58/0x114 __arm64_sys_read+0x1c/0x2c ksys_read+0x78/0xe8 vfs_read+0x1e0/0x2c8 kernfs_fop_read_iter+0x68/0x1b4 seq_read_iter+0x158/0x4ec kernfs_seq_show+0x44/0x54 sysfs_kf_seq_show+0xb4/0x130 dev_attr_show+0x38/0x74 brightness_show+0x20/0x4c dualshock4_led_get_brightness+0xc/0x74 [ 3313.874295][ T4013] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000060 [ 3313.874301][ T4013] Mem abort info: [ 3313.874303][ T4013] ESR = 0x0000000096000006 [ 3313.874305][ T4013] EC = 0x25: DABT (current EL), IL = 32 bits [ 3313.874307][ T4013] SET = 0, FnV = 0 [ 3313.874309][ T4013] EA = 0, S1PTW = 0 [ 3313.874311][ T4013] FSC = 0x06: level 2 translation fault [ 3313.874313][ T4013] Data abort info: [ 3313.874314][ T4013] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000 [ 3313.874316][ T4013] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 3313.874318][ T4013] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 3313.874320][ T4013] user pgtable: 4k pages, 39-bit VAs, pgdp=00000008f2b0a000 .. [ 3313.874332][ T4013] Dumping ftrace buffer: [ 3313.874334][ T4013] (ftrace buffer empty) .. .. [ dd3313.874639][ T4013] CPU: 6 PID: 4013 Comm: InputReader [ 3313.874648][ T4013] pc : dualshock4_led_get_brightness+0xc/0x74 [ 3313.874653][ T4013] lr : led_update_brightness+0x38/0x60 [ 3313.874656][ T4013] sp : ffffffc0b910bbd0 .. .. [ 3313.874685][ T4013] Call trace: [ 3313.874687][ T4013] dualshock4_led_get_brightness+0xc/0x74 [ 3313.874690][ T4013] brightness_show+0x20/0x4c [ 3313.874692][ T4013] dev_attr_show+0x38/0x74 [ 3313.874696][ T4013] sysfs_kf_seq_show+0xb4/0x130 [ 3313.874700][ T4013] kernfs_seq_show+0x44/0x54 [ 3313.874703][ T4013] seq_read_iter+0x158/0x4ec [ 3313.874705][ T4013] kernfs_fop_read_iter+0x68/0x1b4 [ 3313.874708][ T4013] vfs_read+0x1e0/0x2c8 [ 3313.874711][ T4013] ksys_read+0x78/0xe8 [ 3313.874714][ T4013] __arm64_sys_read+0x1c/0x2c [ 3313.874718][ T4013] invoke_syscall+0x58/0x114 [ 3313.874721][ T4013] el0_svc_common+0x80/0xe0 [ 3313.874724][ T4013] do_el0_svc+0x1c/0x28 [ 3313.874727][ T4013] el0_svc+0x38/0x68 [ 3313.874730][ T4013] el0t_64_sync_handler+0x68/0xbc [ 3313.874732][ T4013] el0t_64_sync+0x1a8/0x1ac

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-476 NULL Pointer Dereference
The product dereferences a pointer that it expects to be valid but is NULL.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version To (excluding) 5.4.287

Linux>>Linux_kernel >> Version From (including) 5.5 To (excluding) 5.10.231

Linux>>Linux_kernel >> Version From (including) 5.11 To (excluding) 5.15.174

Linux>>Linux_kernel >> Version From (including) 5.16 To (excluding) 6.1.120

Linux>>Linux_kernel >> Version From (including) 6.2 To (excluding) 6.6.66

Linux>>Linux_kernel >> Version From (including) 6.7 To (excluding) 6.12.5

References