CVE-2020-2004 : Detail

CVE-2020-2004

6.8
/
Medium
A09-Security Log./Monit. Failures
0.04%V3
Local
2020-05-13
19h07 +00:00
2024-09-17
01h30 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

GlobalProtect App: Passwords may be logged in clear text while collecting troubleshooting logs

Under certain circumstances a user's password may be logged in cleartext in the PanGPS.log diagnostic file when logs are collected for troubleshooting on GlobalProtect app (also known as GlobalProtect Agent) for MacOS and Windows. For this issue to occur all of these conditions must be true: (1) 'Save User Credential' option should be set to 'Yes' in the GlobalProtect Portal's Agent configuration, (2) the GlobalProtect user manually selects a gateway, (3) and the logging level is set to 'Dump' while collecting troubleshooting logs. This issue does not affect GlobalProtect app on other platforms (for example iOS/Android/Linux). This issue affects GlobalProtect app 5.0 versions earlier than 5.0.9, GlobalProtect app 5.1 versions earlier than 5.1.2 on Windows or MacOS. Since becoming aware of the issue, Palo Alto Networks has safely deleted all the known GlobalProtectLogs zip files sent by customers with the credentials. We now filter and remove these credentials from all files sent to Customer Support. The GlobalProtectLogs zip files uploaded to Palo Alto Networks systems were only accessible by authorized personnel with valid Palo Alto Networks credentials. We do not have any evidence of malicious access or use of these credentials.

CVE Solutions

This issue is fixed in GlobalProtect app 5.0.9; GlobalProtect app 5.1.2; and all later GlobalProtect app versions. GlobalProtect app 4.1 is now End-of-life as of March 1, 2020 and is no longer covered by our Product Security Assurance policies.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-534 DEPRECATED: Information Exposure Through Debug Log Files
This entry has been deprecated because its abstraction was too low-level. See CWE-532.
CWE-532 Insertion of Sensitive Information into Log File
The product writes sensitive information to a log file.

Metrics

Metrics Score Severity CVSS Vector Source
V3.1 6.8 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:L

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

Low

Performance is reduced or there are interruptions in resource availability. Even if repeated exploitation of the vulnerability is possible, the attacker does not have the ability to completely deny service to legitimate users. The resources in the impacted component are either partially available all of the time, or fully available only some of the time, but overall there is no direct, serious consequence to the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

V3.1 5.5 MEDIUM CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]
V2 1.7 AV:L/AC:L/Au:S/C:P/I:N/A:N [email protected]

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

Products Mentioned

Configuraton 0

Paloaltonetworks>>Globalprotect >> Version From (including) 5.0.0 To (excluding) 5.0.9

Paloaltonetworks>>Globalprotect >> Version From (including) 5.0.0 To (excluding) 5.0.9

Paloaltonetworks>>Globalprotect >> Version From (including) 5.1.0 To (excluding) 5.1.2

Paloaltonetworks>>Globalprotect >> Version From (including) 5.1.0 To (excluding) 5.1.2

References