CWE-114 Detail

CWE-114

Process Control
Incomplete
2006-07-19
00h00 +00:00
2023-06-29
00h00 +00:00
Notifications for a CWE
Stay informed of any changes for a specific CWE.
Notifications manage

Name: Process Control

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an application to execute malicious commands (and payloads) on behalf of an attacker.

CWE Description

Process control vulnerabilities take two forms:
  • An attacker can change the command that the program executes: the attacker explicitly controls what the command is.
  • An attacker can change the environment in which the command executes: the attacker implicitly controls what the command means.

Process control vulnerabilities of the first type occur when either data enters the application from an untrusted source and the data is used as part of a string representing a command that is executed by the application. By executing the command, the application gives an attacker a privilege or capability that the attacker would not otherwise have.

General Informations

Modes Of Introduction

Implementation : REALIZATION: This weakness is caused during implementation of an architectural security tactic.

Applicable Platforms

Language

Class: Not Language-Specific (Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality
Integrity
Availability
Execute Unauthorized Code or Commands

Potential Mitigations

Phases : Architecture and Design
Libraries that are loaded should be well understood and come from a trusted source. The application can execute code contained in the native libraries, which often contain calls that are susceptible to other security problems, such as buffer overflows or command injection. All native libraries should be validated to determine if the application requires the use of the library. It is very difficult to determine what these native libraries actually do, and the potential for malicious code is high. In addition, the potential for an inadvertent mistake in these native libraries is also high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition problems. To help prevent buffer overflow attacks, validate all input to native calls for content and length. If the native library does not come from a trusted source, review the source code of the library. The library should be built from the reviewed source before using it.

Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness : High

Vulnerability Mapping Notes

Justification : This CWE entry is a Class and might have Base-level children that would be more appropriate
Comment : Examine children of this entry to see if there is a better fit

Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-108 Command Line Execution through SQL Injection
An attacker uses standard SQL injection methods to inject data into the command line for execution. This could be done directly through misuse of directives such as MSSQL_xp_cmdshell or indirectly through injection of data into the database that would be interpreted as shell commands. Sometime later, an unscrupulous backend application (or could be part of the functionality of the same application) fetches the injected data stored in the database and uses this data as command line arguments without performing proper validation. The malicious data escapes that data plane by spawning new commands to be executed on the host.
CAPEC-640 Inclusion of Code in Existing Process
The adversary takes advantage of a bug in an application failing to verify the integrity of the running process to execute arbitrary code in the address space of a separate live process. The adversary could use running code in the context of another process to try to access process's memory, system/network resources, etc. The goal of this attack is to evade detection defenses and escalate privileges by masking the malicious code under an existing legitimate process. Examples of approaches include but not limited to: dynamic-link library (DLL) injection, portable executable injection, thread execution hijacking, ptrace system calls, VDSO hijacking, function hooking, reflective code loading, and more.

NotesNotes

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some abstraction problems that should be resolved in future versions.
This entry seems to have close relationships with CWE-426/CWE-427. It seems more attack-oriented.

References

REF-6

Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors
Katrina Tsipenyuk, Brian Chess, Gary McGraw.
https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf

Submission

Name Organization Date Date release Version
7 Pernicious Kingdoms 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Other_Notes, Taxonomy_Mappings
CWE Content Team MITRE 2008-11-24 +00:00 updated Description, Other_Notes
CWE Content Team MITRE 2009-05-27 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2009-07-27 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences
CWE Content Team MITRE 2012-05-11 +00:00 updated Relationships
CWE Content Team MITRE 2013-02-21 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Modes_of_Introduction, Relationships
CWE Content Team MITRE 2020-02-24 +00:00 updated References, Relationships, Type
CWE Content Team MITRE 2020-06-25 +00:00 updated Relationships
CWE Content Team MITRE 2021-03-15 +00:00 updated Maintenance_Notes
CWE Content Team MITRE 2023-01-31 +00:00 updated Description, Maintenance_Notes, Related_Attack_Patterns
CWE Content Team MITRE 2023-04-27 +00:00 updated Detection_Factors, Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes