Integrated circuits and hardware IP software programmable controls and settings are commonly stored in register circuits. These register contents have to be initialized at hardware reset to define default values that are hard coded in the hardware description language (HDL) code of the hardware unit. A common security protection method used to protect register settings from modification by software is to make the settings write-once or "sticky." This allows writing to such registers only once, whereupon they become read-only. This is useful to allow initial boot software to configure systems settings to secure values while blocking runtime software from modifying such hardware settings.
Failure to implement write-once restrictions in hardware design can expose such registers to being re-programmed by software and written multiple times. For example, write-once fields could be implemented to only be write-protected if they have been set to value "1", wherein they would work as "write-1-once" and not "write-once".
Scope | Impact | Likelihood |
---|---|---|
Confidentiality Integrity Availability Access Control | Varies by Context Note: System configuration cannot be programmed in a secure way. |
CAPEC-ID | Attack Pattern Name |
---|---|
CAPEC-680 | Exploitation of Improperly Controlled Registers An adversary exploits missing or incorrectly configured access control within registers to read/write data that is not meant to be obtained or modified by a user. |
Name | Organization | Date | Date release | Version |
---|---|---|---|---|
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi | Intel Corporation | 4.0 |
Name | Organization | Date | Comment |
---|---|---|---|
CWE Content Team | MITRE | updated Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Demonstrative_Examples | |
CWE Content Team | MITRE | updated Relationships | |
CWE Content Team | MITRE | updated Mapping_Notes |