Integrated circuits and hardware engines may provide access to resources (device-configuration, encryption keys, etc.) belonging to trusted firmware or software modules (commonly set by a BIOS or a bootloader). These accesses are typically controlled and limited by the hardware. Hardware design access control is sometimes implemented using a policy. A policy defines which entity or agent may or may not be allowed to perform an action. When a system implements multiple levels of policies, a control policy may allow direct access to a resource as well as changes to the policies themselves.
Resources that include agents in their control policy but not in their write policy could unintentionally allow an untrusted agent to insert itself in the write policy register. Inclusion in the write policy register could allow a malicious or misbehaving agent write access to resources. This action could result in security compromises including leaked information, leaked encryption keys, or modification of device configuration.
Scope | Impact | Likelihood |
---|---|---|
Confidentiality Integrity Availability Access Control | Modify Memory, Read Memory, DoS: Crash, Exit, or Restart, Execute Unauthorized Code or Commands, Gain Privileges or Assume Identity, Bypass Protection Mechanism, Read Files or Directories, Reduce Reliability | High |
CAPEC-ID | Attack Pattern Name |
---|---|
CAPEC-180 | Exploiting Incorrectly Configured Access Control Security Levels An attacker exploits a weakness in the configuration of access controls and is able to bypass the intended protection that these measures guard against and thereby obtain unauthorized access to the system or network. Sensitive functionality should always be protected with access controls. However configuring all but the most trivial access control systems can be very complicated and there are many opportunities for mistakes. If an attacker can learn of incorrectly configured access security settings, they may be able to exploit this in an attack. |
Name | Organization | Date | Date release | Version |
---|---|---|---|---|
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi | Intel Corporation | 4.1 |
Name | Organization | Date | Comment |
---|---|---|---|
CWE Content Team | MITRE | updated Demonstrative_Examples, Description, Modes_of_Introduction, Name, Potential_Mitigations, Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Potential_Mitigations | |
CWE Content Team | MITRE | updated Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Demonstrative_Examples | |
CWE Content Team | MITRE | updated Demonstrative_Examples | |
CWE Content Team | MITRE | updated Relationships | |
CWE Content Team | MITRE | updated Mapping_Notes |