Often, complex inputs are expected to follow a particular syntax, which is either assumed by the input itself, or declared within metadata such as headers. The syntax could be for data exchange formats, markup languages, or even programming languages. When untrusted input is not properly validated for the expected syntax, attackers could cause parsing failures, trigger unexpected errors, or expose latent vulnerabilities that might not be directly exploitable if the input had conformed to the syntax.
Scope | Impact | Likelihood |
---|---|---|
Other | Varies by Context |
References | Description |
---|---|
CVE-2016-4029 | Chain: incorrect validation of intended decimal-based IP address format (CWE-1286) enables parsing of octal or hexadecimal formats (CWE-1389), allowing bypass of an SSRF protection mechanism (CWE-918). |
CVE-2007-5893 | HTTP request with missing protocol version number leads to crash |
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
CAPEC-ID | Attack Pattern Name |
---|---|
CAPEC-66 | SQL Injection This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the application to appropriately validate input. |
CAPEC-676 | NoSQL Injection An adversary targets software that constructs NoSQL statements based on user input or with parameters vulnerable to operator replacement in order to achieve a variety of technical impacts such as escalating privileges, bypassing authentication, and/or executing code. |
Name | Organization | Date | Date release | Version |
---|---|---|---|---|
CWE Content Team | MITRE | 4.1 |
Name | Organization | Date | Comment |
---|---|---|---|
CWE Content Team | MITRE | updated Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Related_Attack_Patterns | |
CWE Content Team | MITRE | updated Observed_Examples | |
CWE Content Team | MITRE | updated Relationships | |
CWE Content Team | MITRE | updated Mapping_Notes |