A bridge allows IP blocks supporting different fabric protocols to be integrated into the system. Fabric end-points or interfaces usually have dedicated signals to transport security attributes. For example, HPROT signals in AHB, AxPROT signals in AXI, and MReqInfo and SRespInfo signals in OCP.
The values on these signals are used to indicate the security attributes of the transaction. These include the immutable hardware identity of the controller initiating the transaction, privilege level, and type of transaction (e.g., read/write, cacheable/non-cacheable, posted/non-posted).
A weakness can arise if the bridge IP block, which translates the signals from the protocol used in the IP block endpoint to the protocol used by the central bus, does not properly translate the security attributes. As a result, the identity of the initiator could be translated from untrusted to trusted or vice-versa. This could result in access-control bypass, privilege escalation, or denial of service.
Scope | Impact | Likelihood |
---|---|---|
Confidentiality Integrity Access Control | Modify Memory, Read Memory, Gain Privileges or Assume Identity, Bypass Protection Mechanism, Execute Unauthorized Code or Commands |
CAPEC-ID | Attack Pattern Name |
---|---|
CAPEC-1 | Accessing Functionality Not Properly Constrained by ACLs In applications, particularly web applications, access to functionality is mitigated by an authorization framework. This framework maps Access Control Lists (ACLs) to elements of the application's functionality; particularly URL's for web apps. In the case that the administrator failed to specify an ACL for a particular element, an attacker may be able to access it with impunity. An attacker with the ability to access functionality not properly constrained by ACLs can obtain sensitive information and possibly compromise the entire application. Such an attacker can access resources that must be available only to users at a higher privilege level, can access management sections of the application, or can run queries for data that they otherwise not supposed to. |
CAPEC-180 | Exploiting Incorrectly Configured Access Control Security Levels An attacker exploits a weakness in the configuration of access controls and is able to bypass the intended protection that these measures guard against and thereby obtain unauthorized access to the system or network. Sensitive functionality should always be protected with access controls. However configuring all but the most trivial access control systems can be very complicated and there are many opportunities for mistakes. If an attacker can learn of incorrectly configured access security settings, they may be able to exploit this in an attack. |
CAPEC-233 | Privilege Escalation An adversary exploits a weakness enabling them to elevate their privilege and perform an action that they are not supposed to be authorized to perform. |
Name | Organization | Date | Date release | Version |
---|---|---|---|---|
Arun Kanuparthi, Hareesh Khattri, Parbati Manna | Intel Corporation | 4.3 |
Name | Organization | Date | Comment |
---|---|---|---|
CWE Content Team | MITRE | updated Demonstrative_Examples | |
CWE Content Team | MITRE | updated Relationships | |
CWE Content Team | MITRE | updated Mapping_Notes |