CWE-135 Detail

CWE-135

Incorrect Calculation of Multi-Byte String Length
Draft
2006-07-19
00h00 +00:00
2024-07-16
00h00 +00:00
Notifications for a CWE
Stay informed of any changes for a specific CWE.
Notifications manage

Name: Incorrect Calculation of Multi-Byte String Length

The product does not correctly calculate the length of strings that can contain wide or multi-byte characters.

General Informations

Modes Of Introduction

Implementation :

There are several ways in which improper string length checking may result in an exploitable condition. All of these, however, involve the introduction of buffer overflow conditions in order to reach an exploitable state.

The first of these issues takes place when the output of a wide or multi-byte character string, string-length function is used as a size for the allocation of memory. While this will result in an output of the number of characters in the string, note that the characters are most likely not a single byte, as they are with standard character strings. So, using the size returned as the size sent to new or malloc and copying the string to this newly allocated memory will result in a buffer overflow.

Another common way these strings are misused involves the mixing of standard string and wide or multi-byte string functions on a single string. Invariably, this mismatched information will result in the creation of a possibly exploitable buffer overflow condition.


Applicable Platforms

Language

Name: C (Undetermined)
Name: C++ (Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Execute Unauthorized Code or Commands

Note: This weakness may lead to a buffer overflow. Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy. This can often be used to subvert any other security service.
Availability
Confidentiality
Read Memory, DoS: Crash, Exit, or Restart, DoS: Resource Consumption (CPU), DoS: Resource Consumption (Memory)

Note: Out of bounds memory access will very likely result in the corruption of relevant memory, and perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.
ConfidentialityRead Memory

Note: In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the sensitive information contains system details, such as the current buffer's position in memory, this knowledge can be used to craft further attacks, possibly with more severe consequences.

Potential Mitigations

Phases : Implementation
Always verify the length of the string unit character.
Phases : Implementation
Use length computing functions (e.g. strlen, wcslen, etc.) appropriately with their equivalent type (e.g.: byte, wchar_t, etc.)

Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness : High

Vulnerability Mapping Notes

Justification : This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comment : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

References

REF-7

Writing Secure Code
Michael Howard, David LeBlanc.
https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223

REF-18

The CLASP Application Security Process
Secure Software, Inc..
https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf

Submission

Name Organization Date Date release Version
CLASP 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Eric Dalci Cigital 2008-07-01 +00:00 updated Potential_Mitigations, Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Applicable_Platforms, Relationships, Other_Notes, Taxonomy_Mappings
CWE Content Team MITRE 2008-11-24 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2009-05-27 +00:00 updated Description
CWE Content Team MITRE 2010-02-16 +00:00 updated Demonstrative_Examples, References
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2011-06-27 +00:00 updated Common_Consequences
CWE Content Team MITRE 2012-05-11 +00:00 updated Common_Consequences, Demonstrative_Examples, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2012-10-30 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-06-23 +00:00 updated Enabling_Factors_for_Exploitation, Other_Notes
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2017-11-08 +00:00 updated Enabling_Factors_for_Exploitation, Modes_of_Introduction, References, Taxonomy_Mappings
CWE Content Team MITRE 2018-03-27 +00:00 updated References
CWE Content Team MITRE 2019-01-03 +00:00 updated Taxonomy_Mappings
CWE Content Team MITRE 2021-03-15 +00:00 updated References
CWE Content Team MITRE 2023-01-31 +00:00 updated Description
CWE Content Team MITRE 2023-04-27 +00:00 updated Detection_Factors, Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes
CWE Content Team MITRE 2024-07-16 +00:00 updated Common_Consequences