Scope | Impact | Likelihood |
---|---|---|
Confidentiality Integrity Availability Other | Execute Unauthorized Code or Commands, Alter Execution Logic |
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
CAPEC-ID | Attack Pattern Name |
---|---|
CAPEC-15 | Command Delimiters An attack of this type exploits a programs' vulnerabilities that allows an attacker's commands to be concatenated onto a legitimate command with the intent of targeting other resources such as the file system or database. The system that uses a filter or denylist input validation, as opposed to allowlist validation is vulnerable to an attacker who predicts delimiters (or combinations of delimiters) not present in the filter or denylist. As with other injection attacks, the attacker uses the command delimiter payload as an entry point to tunnel through the application and activate additional attacks through SQL queries, shell commands, network scanning, and so on. |
CAPEC-6 | Argument Injection An attacker changes the behavior or state of a targeted application through injecting data or command syntax through the targets use of non-validated and non-filtered arguments of exposed services or methods. |
Name | Organization | Date | Date release | Version |
---|---|---|---|---|
PLOVER | Draft 3 |
Name | Organization | Date | Comment |
---|---|---|---|
Eric Dalci | Cigital | updated Potential_Mitigations, Time_of_Introduction | |
CWE Content Team | MITRE | updated Relationships, Other_Notes, Taxonomy_Mappings | |
CWE Content Team | MITRE | updated Description | |
CWE Content Team | MITRE | updated Potential_Mitigations | |
CWE Content Team | MITRE | updated Other_Notes, Relationship_Notes | |
CWE Content Team | MITRE | updated Description, Name | |
CWE Content Team | MITRE | updated Applicable_Platforms, Description, Relationship_Notes | |
CWE Content Team | MITRE | updated Potential_Mitigations | |
CWE Content Team | MITRE | updated Common_Consequences | |
CWE Content Team | MITRE | updated References, Relationships | |
CWE Content Team | MITRE | updated Potential_Mitigations | |
CWE Content Team | MITRE | updated Relationships, Taxonomy_Mappings | |
CWE Content Team | MITRE | updated Potential_Mitigations, Relationships | |
CWE Content Team | MITRE | updated Potential_Mitigations | |
CWE Content Team | MITRE | updated Description, Potential_Mitigations | |
CWE Content Team | MITRE | updated Relationships | |
CWE Content Team | MITRE | updated Mapping_Notes |