CWE-290 Detail

CWE-290

Authentication Bypass by Spoofing
Incomplete
2006-07-19
00h00 +00:00
2023-10-26
00h00 +00:00
Notifications for a CWE
Stay informed of any changes for a specific CWE.
Notifications manage

Name: Authentication Bypass by Spoofing

This attack-focused weakness is caused by incorrectly implemented authentication schemes that are subject to spoofing attacks.

General Informations

Modes Of Introduction

Implementation

Common Consequences

Scope Impact Likelihood
Access ControlBypass Protection Mechanism, Gain Privileges or Assume Identity

Note: This weakness can allow an attacker to access resources which are not otherwise accessible without proper authentication.

Observed Examples

References Description

CVE-2022-30319

S-bus functionality in a home automation product performs access control using an IP allowlist, which can be bypassed by a forged IP address.

CVE-2009-1048

VOIP product allows authentication bypass using 127.0.0.1 in the Host header.

Vulnerability Mapping Notes

Justification : This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comment : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-21 Exploitation of Trusted Identifiers

An adversary guesses, obtains, or "rides" a trusted identifier (e.g. session ID, resource ID, cookie, etc.) to perform authorized actions under the guise of an authenticated user or service.

CAPEC-22 Exploiting Trust in Client
An attack of this type exploits vulnerabilities in client/server communication channel authentication and data integrity. It leverages the implicit trust a server places in the client, or more importantly, that which the server believes is the client. An attacker executes this type of attack by communicating directly with the server where the server believes it is communicating only with a valid client. There are numerous variations of this type of attack.
CAPEC-459 Creating a Rogue Certification Authority Certificate
An adversary exploits a weakness resulting from using a hashing algorithm with weak collision resistance to generate certificate signing requests (CSR) that contain collision blocks in their "to be signed" parts. The adversary submits one CSR to be signed by a trusted certificate authority then uses the signed blob to make a second certificate appear signed by said certificate authority. Due to the hash collision, both certificates, though different, hash to the same value and so the signed blob works just as well in the second certificate. The net effect is that the adversary's second X.509 certificate, which the Certification Authority has never seen, is now signed and validated by that Certification Authority.
CAPEC-461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness
An adversary utilizes a hash function extension/padding weakness, to modify the parameters passed to the web service requesting authentication by generating their own call in order to generate a legitimate signature hash (as described in the notes), without knowledge of the secret token sometimes provided by the web service.
CAPEC-473 Signature Spoof
An attacker generates a message or datablock that causes the recipient to believe that the message or datablock was generated and cryptographically signed by an authoritative or reputable source, misleading a victim or victim operating system into performing malicious actions.
CAPEC-476 Signature Spoofing by Misrepresentation
An attacker exploits a weakness in the parsing or display code of the recipient software to generate a data blob containing a supposedly valid signature, but the signer's identity is falsely represented, which can lead to the attacker manipulating the recipient software or its victim user to perform compromising actions.
CAPEC-59 Session Credential Falsification through Prediction
This attack targets predictable session ID in order to gain privileges. The attacker can predict the session ID used during a transaction to perform spoofing and session hijacking.
CAPEC-60 Reusing Session IDs (aka Session Replay)
This attack targets the reuse of valid session ID to spoof the target system in order to gain privileges. The attacker tries to reuse a stolen session ID used previously during a transaction to perform spoofing and session hijacking. Another name for this type of attack is Session Replay.
CAPEC-667 Bluetooth Impersonation AttackS (BIAS)
An adversary disguises the MAC address of their Bluetooth enabled device to one for which there exists an active and trusted connection and authenticates successfully. The adversary can then perform malicious actions on the target Bluetooth device depending on the target’s capabilities.
CAPEC-94 Adversary in the Middle (AiTM)

An adversary targets the communication between two components (typically client and server), in order to alter or obtain data from transactions. A general approach entails the adversary placing themself within the communication channel between the two components.

NotesNotes

This can be resultant from insufficient verification.

References

REF-62

The Art of Software Security Assessment
Mark Dowd, John McDonald, Justin Schuh.

Submission

Name Organization Date Date release Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Sean Eidemiller Cigital 2008-07-01 +00:00 added/updated demonstrative examples
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Description, Relationships, Relationship_Notes, Taxonomy_Mappings
CWE Content Team MITRE 2009-07-27 +00:00 updated Relationship_Notes
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences
CWE Content Team MITRE 2012-05-11 +00:00 updated Common_Consequences, Demonstrative_Examples, Observed_Examples, References, Related_Attack_Patterns, Relationships
CWE Content Team MITRE 2013-07-17 +00:00 updated Relationships
CWE Content Team MITRE 2014-02-18 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2014-07-30 +00:00 updated Demonstrative_Examples, Relationships
CWE Content Team MITRE 2017-05-03 +00:00 updated Relationships
CWE Content Team MITRE 2017-11-08 +00:00 updated Demonstrative_Examples, Modes_of_Introduction, Relationships
CWE Content Team MITRE 2019-06-20 +00:00 updated Related_Attack_Patterns, Relationships
CWE Content Team MITRE 2020-02-24 +00:00 updated Relationships
CWE Content Team MITRE 2021-07-20 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2021-10-28 +00:00 updated Relationships
CWE Content Team MITRE 2022-10-13 +00:00 updated Relationships
CWE Content Team MITRE 2023-01-31 +00:00 updated Description
CWE Content Team MITRE 2023-04-27 +00:00 updated Modes_of_Introduction, Relationships, Time_of_Introduction
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes
CWE Content Team MITRE 2023-10-26 +00:00 updated Observed_Examples