CWE-353 Detail

CWE-353

Missing Support for Integrity Check
MEDIUM
Draft
2006-07-19 00:00 +00:00
2023-06-29 00:00 +00:00

Alerte pour un CWE

Stay informed of any changes for a specific CWE.
Alert management

Missing Support for Integrity Check

The product uses a transmission protocol that does not include a mechanism for verifying the integrity of the data during transmission, such as a checksum.

Extended Description

If integrity check values or "checksums" are omitted from a protocol, there is no way of determining if data has been corrupted in transmission. The lack of checksum functionality in a protocol removes the first application-level check of data that can be used. The end-to-end philosophy of checks states that integrity checks should be performed at the lowest level that they can be completely implemented. Excluding further sanity checks and input validation performed by applications, the protocol's checksum is the most important level of checksum, since it can be performed more completely than at any previous level and takes into account entire messages, as opposed to single packets.

Informations

Modes Of Introduction

Architecture and Design : OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Implementation

Applicable Platforms

Language

Class: Not Language-Specific (Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity
Other
Other

Note: Data that is parsed and used may be corrupted.
Non-Repudiation
Other
Hide Activities, Other

Note: Without a checksum it is impossible to determine if any changes have been made to the data after it was sent.

Potential Mitigations

Phases : Architecture and Design
Add an appropriately sized checksum to the protocol, ensuring that data received may be simply validated before it is parsed and used.
Phases : Implementation
Ensure that the checksums present in the protocol design are properly implemented and added to each message before it is sent.

Vulnerability Mapping Notes

Rationale : This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-13 Subverting Environment Variable Values
The adversary directly or indirectly modifies environment variables used by or controlling the target software. The adversary's goal is to cause the target software to deviate from its expected operation in a manner that benefits the adversary.
CAPEC-14 Client-side Injection-induced Buffer Overflow
This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service. This hostile service is created to deliver the correct content to the client software. For example, if the client-side application is a browser, the service will host a webpage that the browser loads.
CAPEC-389 Content Spoofing Via Application API Manipulation
An attacker manipulates either egress or ingress data from a client within an application framework in order to change the content of messages. Performing this attack allows the attacker to manipulate content in such a way as to produce messages or content that look authentic but may contain deceptive links, spam-like content, or links to the attackers' code. In general, content-spoofing within an application API can be employed to stage many different types of attacks varied based on the attackers' intent. The techniques require use of specialized software that allow the attacker to use adversary-in-the-middle (CAPEC-94) communications between the web browser and the remote system.
CAPEC-39 Manipulating Opaque Client-based Data Tokens
In circumstances where an application holds important data client-side in tokens (cookies, URLs, data files, and so forth) that data can be manipulated. If client or server-side application components reinterpret that data as authentication tokens or data (such as store item pricing or wallet information) then even opaquely manipulating that data may bear fruit for an Attacker. In this pattern an attacker undermines the assumption that client side tokens have been adequately protected from tampering through use of encryption or obfuscation.
CAPEC-665 Exploitation of Thunderbolt Protection Flaws

An adversary leverages a firmware weakness within the Thunderbolt protocol, on a computing device to manipulate Thunderbolt controller firmware in order to exploit vulnerabilities in the implementation of authorization and verification schemes within Thunderbolt protection mechanisms. Upon gaining physical access to a target device, the adversary conducts high-level firmware manipulation of the victim Thunderbolt controller SPI (Serial Peripheral Interface) flash, through the use of a SPI Programing device and an external Thunderbolt device, typically as the target device is booting up. If successful, this allows the adversary to modify memory, subvert authentication mechanisms, spoof identities and content, and extract data and memory from the target device. Currently 7 major vulnerabilities exist within Thunderbolt protocol with 9 attack vectors as noted in the Execution Flow.

CAPEC-74 Manipulating State

The adversary modifies state information maintained by the target software or causes a state transition in hardware. If successful, the target will use this tainted state and execute in an unintended manner.

State management is an important function within a software application. User state maintained by the application can include usernames, payment information, browsing history as well as application-specific contents such as items in a shopping cart. Manipulating user state can be employed by an adversary to elevate privilege, conduct fraudulent transactions or otherwise modify the flow of the application to derive certain benefits.

If there is a hardware logic error in a finite state machine, the adversary can use this to put the system in an undefined state which could cause a denial of service or exposure of secure data.

CAPEC-75 Manipulating Writeable Configuration Files
Generally these are manually edited files that are not in the preview of the system administrators, any ability on the attackers' behalf to modify these files, for example in a CVS repository, gives unauthorized access directly to the application, the same as authorized users.

References

REF-18

The CLASP Application Security Process
Secure Software, Inc..
https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf

REF-44

24 Deadly Sins of Software Security
Michael Howard, David LeBlanc, John Viega.

Submission

Name Organization Date Date Release Version
CLASP 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
CWE Content Team MITRE 2009-10-29 +00:00 updated Description, Other_Notes
CWE Content Team MITRE 2010-12-13 +00:00 updated Description, Name
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences, Demonstrative_Examples
CWE Content Team MITRE 2012-05-11 +00:00 updated References, Relationships
CWE Content Team MITRE 2012-10-30 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Modes_of_Introduction, Relationships
CWE Content Team MITRE 2019-06-20 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2020-02-24 +00:00 updated References, Relationships
CWE Content Team MITRE 2021-07-20 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2021-10-28 +00:00 updated Relationships
CWE Content Team MITRE 2023-01-31 +00:00 updated Description
CWE Content Team MITRE 2023-04-27 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes
Click on the button to the left (OFF), to authorize the inscription of cookie improving the functionalities of the site. Click on the button to the left (Accept all), to unauthorize the inscription of cookie improving the functionalities of the site.