CWE-434 Detail

CWE-434

Unrestricted Upload of File with Dangerous Type
MEDIUM
Draft
2006-07-19 00:00 +00:00
2024-02-29 00:00 +00:00

Alerte pour un CWE

Stay informed of any changes for a specific CWE.
Alert management

Unrestricted Upload of File with Dangerous Type

The product allows the attacker to upload or transfer files of dangerous types that can be automatically processed within the product's environment.

Informations

Modes Of Introduction

Implementation
Architecture and Design : OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.

Applicable Platforms

Language

Name: ASP.NET (Sometimes)
Name: PHP (Often)
Class: Not Language-Specific (Undetermined)

Technologies

Name: Web Server (Sometimes)

Common Consequences

Scope Impact Likelihood
Integrity
Confidentiality
Availability
Execute Unauthorized Code or Commands

Note: Arbitrary code execution is possible if an uploaded file is interpreted and executed as code by the recipient. This is especially true for .asp and .php extensions uploaded to web servers because these file types are often treated as automatically executable, even when file system permissions do not specify execution. For example, in Unix environments, programs typically cannot run unless the execute bit is set, but PHP programs may be executed by the web server without directly invoking them on the operating system.

Observed Examples

Reference Description
CVE-2023-5227PHP-based FAQ management app does not check the MIME type for uploaded images
CVE-2001-0901Web-based mail product stores ".shtml" attachments that could contain SSI
CVE-2002-1841PHP upload does not restrict file types
CVE-2005-1868upload and execution of .php file
CVE-2005-1881upload file with dangerous extension
CVE-2005-0254program does not restrict file types
CVE-2004-2262improper type checking of uploaded files
CVE-2006-4558Double "php" extension leaves an active php extension in the generated filename.
CVE-2006-6994ASP program allows upload of .asp files by bypassing client-side checks
CVE-2005-3288ASP file upload
CVE-2006-2428ASP file upload

Potential Mitigations

Phases : Architecture and Design
Generate a new, unique filename for an uploaded file instead of using the user-supplied filename, so that no external input is used at all.[REF-422] [REF-423]
Phases : Architecture and Design
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.
Phases : Architecture and Design
Consider storing the uploaded files outside of the web document root entirely. Then, use other mechanisms to deliver the files dynamically. [REF-423]
Phases : Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

For example, limiting filenames to alphanumeric characters can help to restrict the introduction of unintended file extensions.


Phases : Architecture and Design
Define a very limited set of allowable extensions and only generate filenames that end in these extensions. Consider the possibility of XSS (CWE-79) before allowing .html or .htm file types.
Phases : Implementation
Ensure that only one extension is used in the filename. Some web servers, including some versions of Apache, may process files based on inner extensions so that "filename.php.gif" is fed to the PHP interpreter.[REF-422] [REF-423]
Phases : Implementation
When running on a web server that supports case-insensitive filenames, perform case-insensitive evaluations of the extensions that are provided.
Phases : Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phases : Implementation
Do not rely exclusively on sanity checks of file contents to ensure that the file is of the expected type and size. It may be possible for an attacker to hide code in some file segments that will still be executed by the server. For example, GIF images may contain a free-form comments field.
Phases : Implementation
Do not rely exclusively on the MIME content type or filename attribute when determining how to render a file. Validating the MIME content type and ensuring that it matches the extension is only a partial solution.
Phases : Architecture and Design // Operation
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.
Phases : Architecture and Design // Operation

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.


Detection Methods

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness : SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness : SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness : High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness : High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness : High

Vulnerability Mapping Notes

Rationale : This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Related Attack Patterns

CAPEC-ID Attack Pattern Name
CAPEC-1 Accessing Functionality Not Properly Constrained by ACLs
In applications, particularly web applications, access to functionality is mitigated by an authorization framework. This framework maps Access Control Lists (ACLs) to elements of the application's functionality; particularly URL's for web apps. In the case that the administrator failed to specify an ACL for a particular element, an attacker may be able to access it with impunity. An attacker with the ability to access functionality not properly constrained by ACLs can obtain sensitive information and possibly compromise the entire application. Such an attacker can access resources that must be available only to users at a higher privilege level, can access management sections of the application, or can run queries for data that they otherwise not supposed to.

Notes

This can have a chaining relationship with incomplete denylist / permissive allowlist errors when the product tries, but fails, to properly limit which types of files are allowed (CWE-183, CWE-184).

This can also overlap multiple interpretation errors for intermediaries, e.g. anti-virus products that do not remove or quarantine attachments with certain file extensions that can be processed by client systems.


References

REF-422

Dynamic File Uploads, Security and You
Richard Stanway (r1CH).
https://web.archive.org/web/20090208005456/http://shsc.info/FileUploadSecurity

REF-423

8 Basic Rules to Implement Secure File Uploads
Johannes Ullrich.
https://www.sans.org/blog/8-basic-rules-to-implement-secure-file-uploads/

REF-424

Top 25 Series - Rank 8 - Unrestricted Upload of Dangerous File Type
Johannes Ullrich.
https://www.sans.org/blog/top-25-series-rank-8-unrestricted-upload-of-dangerous-file-type/

REF-76

Least Privilege
Sean Barnum, Michael Gegick.
https://web.archive.org/web/20211209014121/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege

REF-62

The Art of Software Security Assessment
Mark Dowd, John McDonald, Justin Schuh.

REF-962

Automated Source Code Security Measure (ASCSM)
Object Management Group (OMG).
http://www.omg.org/spec/ASCSM/1.0/

Submission

Name Organization Date Date Release Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Alternate_Terms, Relationships, Other_Notes, Taxonomy_Mappings
CWE Content Team MITRE 2009-01-12 +00:00 updated Relationships
CWE Content Team MITRE 2009-12-28 +00:00 updated Applicable_Platforms, Functional_Areas, Likelihood_of_Exploit, Potential_Mitigations, Time_of_Introduction
CWE Content Team MITRE 2010-02-16 +00:00 converted from Compound_Element to Weakness
CWE Content Team MITRE 2010-02-16 +00:00 updated Alternate_Terms, Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Name, Other_Notes, Potential_Mitigations, References, Related_Attack_Patterns, Relationship_Notes, Relationships, Type, Weakness_Ordinalities
CWE Content Team MITRE 2010-04-05 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2010-06-21 +00:00 updated References, Relationship_Notes
CWE Content Team MITRE 2010-09-27 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2010-12-13 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-06-27 +00:00 updated Relationships
CWE Content Team MITRE 2011-09-13 +00:00 updated Potential_Mitigations, References, Relationships
CWE Content Team MITRE 2012-05-11 +00:00 updated References, Relationships
CWE Content Team MITRE 2012-10-30 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-07-30 +00:00 updated Detection_Factors
CWE Content Team MITRE 2015-12-07 +00:00 updated Relationships
CWE Content Team MITRE 2017-11-08 +00:00 updated Affected_Resources, Applicable_Platforms, Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships, Weakness_Ordinalities
CWE Content Team MITRE 2019-01-03 +00:00 updated References, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2019-06-20 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2019-09-19 +00:00 updated Relationships
CWE Content Team MITRE 2020-02-24 +00:00 updated Applicable_Platforms, Potential_Mitigations
CWE Content Team MITRE 2020-06-25 +00:00 updated Potential_Mitigations, Relationship_Notes
CWE Content Team MITRE 2020-08-20 +00:00 updated Relationships
CWE Content Team MITRE 2020-12-10 +00:00 updated Relationships
CWE Content Team MITRE 2021-03-15 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2021-07-20 +00:00 updated Relationships
CWE Content Team MITRE 2021-10-28 +00:00 updated Relationships
CWE Content Team MITRE 2022-04-28 +00:00 updated Research_Gaps
CWE Content Team MITRE 2022-06-28 +00:00 updated Relationships
CWE Content Team MITRE 2022-10-13 +00:00 updated References
CWE Content Team MITRE 2023-01-31 +00:00 updated Alternate_Terms, Description
CWE Content Team MITRE 2023-04-27 +00:00 updated References, Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes, Relationships
CWE Content Team MITRE 2024-02-29 +00:00 updated Observed_Examples
Click on the button to the left (OFF), to authorize the inscription of cookie improving the functionalities of the site. Click on the button to the left (Accept all), to unauthorize the inscription of cookie improving the functionalities of the site.