0b 01
d2 44 89 d1 29 d1 ba 00 00 00 00 0f 48 ca e9 28 ff ff ff
RSP: 0018:ffffc900002b0d08 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff888102398c80 RCX: 0000000080190009
RDX: 0000000000000000 RSI: 000000000000006a RDI: 0000000000000000
RBP: ffff888102398c00 R08: 0000000000000000 R09: 0000000000000000
R10: 00000000000000ca R11: 0000000000015681 R12: 0000000000000001
R13: ffffc900002b0d68 R14: ffff88811115e000 R15: ffff8881107aca40
FS: 00007f41ded69500(0000) GS:ffff888667dc0000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556ccc2dc1a0 CR3: 0000000104fd8003 CR4: 0000000000772ef0
PKRU: 55555554
Call Trace:
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. This metric reflects the context by which vulnerability exploitation is possible. Local The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Low Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. Low The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Unchanged An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. None There is no loss of integrity within the impacted component. This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. High There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. Linux>>Linux_kernel >> Version From (including) 6.11 To (excluding) 6.12.6 Linux>>Linux_kernel >> Version 6.13 Linux>>Linux_kernel >> Version 6.13CVE-2024-56674
CVE Descriptions
virtio_net: correct netdev_tx_reset_queue() invocation point
In the Linux kernel, the following vulnerability has been resolved:
virtio_net: correct netdev_tx_reset_queue() invocation point
When virtnet_close is followed by virtnet_open, some TX completions can
possibly remain unconsumed, until they are finally processed during the
first NAPI poll after the netdev_tx_reset_queue(), resulting in a crash
[1]. Commit b96ed2c97c79 ("virtio_net: move netdev_tx_reset_queue() call
before RX napi enable") was not sufficient to eliminate all BQL crash
cases for virtio-net.
This issue can be reproduced with the latest net-next master by running:
`while :; do ip l set DEV down; ip l set DEV up; done` under heavy network
TX load from inside the machine.
netdev_tx_reset_queue() can actually be dropped from virtnet_open path;
the device is not stopped in any case. For BQL core part, it's just like
traffic nearly ceases to exist for some period. For stall detector added
to BQL, even if virtnet_close could somehow lead to some TX completions
delayed for long, followed by virtnet_open, we can just take it as stall
as mentioned in commit 6025b9135f7a ("net: dqs: add NIC stall detector
based on BQL"). Note also that users can still reset stall_max via sysfs.
So, drop netdev_tx_reset_queue() from virtnet_enable_queue_pair(). This
eliminates the BQL crashes. As a result, netdev_tx_reset_queue() is now
explicitly required in freeze/restore path. This patch adds it to
immediately after free_unused_bufs(), following the rule of thumb:
netdev_tx_reset_queue() should follow any SKB freeing not followed by
netdev_tx_completed_queue(). This seems the most consistent and
streamlined approach, and now netdev_tx_reset_queue() runs whenever
free_unused_bufs() is done.
[1]:
------------[ cut here ]------------
kernel BUG at lib/dynamic_queue_limits.c:99!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 7 UID: 0 PID: 1598 Comm: ip Tainted: G N 6.12.0net-next_main+ #2
Tainted: [N]=TEST
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), \
BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
RIP: 0010:dql_completed+0x26b/0x290
Code: b7 c2 49 89 e9 44 89 da 89 c6 4c 89 d7 e8 ed 17 47 00 58 65 ff 0d
4d 27 90 7e 0f 85 fd fe ff ff e8 ea 53 8d ff e9 f3 fe ff ff <0f> 0b 01
d2 44 89 d1 29 d1 ba 00 00 00 00 0f 48 ca e9 28 ff ff ff
RSP: 0018:ffffc900002b0d08 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff888102398c80 RCX: 0000000080190009
RDX: 0000000000000000 RSI: 000000000000006a RDI: 0000000000000000
RBP: ffff888102398c00 R08: 0000000000000000 R09: 0000000000000000
R10: 00000000000000ca R11: 0000000000015681 R12: 0000000000000001
R13: ffffc900002b0d68 R14: ffff88811115e000 R15: ffff8881107aca40
FS: 00007f41ded69500(0000) GS:ffff888667dc0000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556ccc2dc1a0 CR3: 0000000104fd8003 CR4: 0000000000772ef0
PKRU: 55555554
Call Trace:
CVE Informations
Related Weaknesses
Weakness Name
Source
Operation on a Resource after Expiration or Release
The product uses, accesses, or otherwise operates on a resource after that resource has been expired, released, or revoked.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V3.1
5.5
MEDIUM
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Base: Exploitabilty Metrics
Base: Scope Metrics
Base: Impact Metrics
Temporal Metrics
Environmental Metrics
[email protected]
EPSS
EPSS Score
EPSS Percentile
Products Mentioned
Configuraton 0
References