Linux Kernel 5.15.176

CPE Details

Linux Kernel 5.15.176
5.15.176
2025-02-11
15h34 +00:00
2025-02-11
15h34 +00:00
Alerte pour un CPE
Stay informed of any changes for a specific CPE.
Notifications manage

CPE Name: cpe:2.3:o:linux:linux_kernel:5.15.176:*:*:*:*:*:*:*

Informations

Vendor

linux

Product

linux_kernel

Version

5.15.176

Related CVE

Open and find in CVE List

CVE ID Published Description Score Severity
CVE-2025-21866 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/code-patching: Fix KASAN hit by not flagging text patching area as VM_ALLOC Erhard reported the following KASAN hit while booting his PowerMac G4 with a KASAN-enabled kernel 6.13-rc6: BUG: KASAN: vmalloc-out-of-bounds in copy_to_kernel_nofault+0xd8/0x1c8 Write of size 8 at addr f1000000 by task chronyd/1293 CPU: 0 UID: 123 PID: 1293 Comm: chronyd Tainted: G W 6.13.0-rc6-PMacG4 #2 Tainted: [W]=WARN Hardware name: PowerMac3,6 7455 0x80010303 PowerMac Call Trace: [c2437590] [c1631a84] dump_stack_lvl+0x70/0x8c (unreliable) [c24375b0] [c0504998] print_report+0xdc/0x504 [c2437610] [c050475c] kasan_report+0xf8/0x108 [c2437690] [c0505a3c] kasan_check_range+0x24/0x18c [c24376a0] [c03fb5e4] copy_to_kernel_nofault+0xd8/0x1c8 [c24376c0] [c004c014] patch_instructions+0x15c/0x16c [c2437710] [c00731a8] bpf_arch_text_copy+0x60/0x7c [c2437730] [c0281168] bpf_jit_binary_pack_finalize+0x50/0xac [c2437750] [c0073cf4] bpf_int_jit_compile+0xb30/0xdec [c2437880] [c0280394] bpf_prog_select_runtime+0x15c/0x478 [c24378d0] [c1263428] bpf_prepare_filter+0xbf8/0xc14 [c2437990] [c12677ec] bpf_prog_create_from_user+0x258/0x2b4 [c24379d0] [c027111c] do_seccomp+0x3dc/0x1890 [c2437ac0] [c001d8e0] system_call_exception+0x2dc/0x420 [c2437f30] [c00281ac] ret_from_syscall+0x0/0x2c --- interrupt: c00 at 0x5a1274 NIP: 005a1274 LR: 006a3b3c CTR: 005296c8 REGS: c2437f40 TRAP: 0c00 Tainted: G W (6.13.0-rc6-PMacG4) MSR: 0200f932 CR: 24004422 XER: 00000000 GPR00: 00000166 af8f3fa0 a7ee3540 00000001 00000000 013b6500 005a5858 0200f932 GPR08: 00000000 00001fe9 013d5fc8 005296c8 2822244c 00b2fcd8 00000000 af8f4b57 GPR16: 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000002 GPR24: 00afdbb0 00000000 00000000 00000000 006e0004 013ce060 006e7c1c 00000001 NIP [005a1274] 0x5a1274 LR [006a3b3c] 0x6a3b3c --- interrupt: c00 The buggy address belongs to the virtual mapping at [f1000000, f1002000) created by: text_area_cpu_up+0x20/0x190 The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x76e30 flags: 0x80000000(zone=2) raw: 80000000 00000000 00000122 00000000 00000000 00000000 ffffffff 00000001 raw: 00000000 page dumped because: kasan: bad access detected Memory state around the buggy address: f0ffff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0ffff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >f1000000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ f1000080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f1000100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== f8 corresponds to KASAN_VMALLOC_INVALID which means the area is not initialised hence not supposed to be used yet. Powerpc text patching infrastructure allocates a virtual memory area using get_vm_area() and flags it as VM_ALLOC. But that flag is meant to be used for vmalloc() and vmalloc() allocated memory is not supposed to be used before a call to __vmalloc_node_range() which is never called for that area. That went undetected until commit e4137f08816b ("mm, kasan, kmsan: instrument copy_from/to_kernel_nofault") The area allocated by text_area_cpu_up() is not vmalloc memory, it is mapped directly on demand when needed by map_kernel_page(). There is no VM flag corresponding to such usage, so just pass no flag. That way the area will be unpoisonned and usable immediately.
5.5
Medium
CVE-2025-21863 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: prevent opcode speculation sqe->opcode is used for different tables, make sure we santitise it against speculations.
7.8
High
CVE-2025-21862 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: drop_monitor: fix incorrect initialization order Syzkaller reports the following bug: BUG: spinlock bad magic on CPU#1, syz-executor.0/7995 lock: 0xffff88805303f3e0, .magic: 00000000, .owner: /-1, .owner_cpu: 0 CPU: 1 PID: 7995 Comm: syz-executor.0 Tainted: G E 5.10.209+ #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x119/0x179 lib/dump_stack.c:118 debug_spin_lock_before kernel/locking/spinlock_debug.c:83 [inline] do_raw_spin_lock+0x1f6/0x270 kernel/locking/spinlock_debug.c:112 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:117 [inline] _raw_spin_lock_irqsave+0x50/0x70 kernel/locking/spinlock.c:159 reset_per_cpu_data+0xe6/0x240 [drop_monitor] net_dm_cmd_trace+0x43d/0x17a0 [drop_monitor] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739 genl_family_rcv_msg net/netlink/genetlink.c:783 [inline] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800 netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2497 genl_rcv+0x29/0x40 net/netlink/genetlink.c:811 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x914/0xe00 net/netlink/af_netlink.c:1916 sock_sendmsg_nosec net/socket.c:651 [inline] __sock_sendmsg+0x157/0x190 net/socket.c:663 ____sys_sendmsg+0x712/0x870 net/socket.c:2378 ___sys_sendmsg+0xf8/0x170 net/socket.c:2432 __sys_sendmsg+0xea/0x1b0 net/socket.c:2461 do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x62/0xc7 RIP: 0033:0x7f3f9815aee9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f3f972bf0c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f3f9826d050 RCX: 00007f3f9815aee9 RDX: 0000000020000000 RSI: 0000000020001300 RDI: 0000000000000007 RBP: 00007f3f981b63bd R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000006e R14: 00007f3f9826d050 R15: 00007ffe01ee6768 If drop_monitor is built as a kernel module, syzkaller may have time to send a netlink NET_DM_CMD_START message during the module loading. This will call the net_dm_monitor_start() function that uses a spinlock that has not yet been initialized. To fix this, let's place resource initialization above the registration of a generic netlink family. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with Syzkaller.
5.5
Medium
CVE-2025-21861 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/migrate_device: don't add folio to be freed to LRU in migrate_device_finalize() If migration succeeded, we called folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the old to the new folio. This will set memcg_data of the old folio to 0. Similarly, if migration failed, memcg_data of the dst folio is left unset. If we call folio_putback_lru() on such folios (memcg_data == 0), we will add the folio to be freed to the LRU, making memcg code unhappy. Running the hmm selftests: # ./hmm-tests ... # RUN hmm.hmm_device_private.migrate ... [ 102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00 [ 102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff) [ 102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9 [ 102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000 [ 102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled()) [ 102.087230][T14893] ------------[ cut here ]------------ [ 102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.090478][T14893] Modules linked in: [ 102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151 [ 102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 [ 102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.096104][T14893] Code: ... [ 102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293 [ 102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426 [ 102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880 [ 102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000 [ 102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8 [ 102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000 [ 102.108830][T14893] FS: 00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000 [ 102.110643][T14893] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0 [ 102.113478][T14893] PKRU: 55555554 [ 102.114172][T14893] Call Trace: [ 102.114805][T14893] [ 102.115397][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.116547][T14893] ? __warn.cold+0x110/0x210 [ 102.117461][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.118667][T14893] ? report_bug+0x1b9/0x320 [ 102.119571][T14893] ? handle_bug+0x54/0x90 [ 102.120494][T14893] ? exc_invalid_op+0x17/0x50 [ 102.121433][T14893] ? asm_exc_invalid_op+0x1a/0x20 [ 102.122435][T14893] ? __wake_up_klogd.part.0+0x76/0xd0 [ 102.123506][T14893] ? dump_page+0x4f/0x60 [ 102.124352][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.125500][T14893] folio_batch_move_lru+0xd4/0x200 [ 102.126577][T14893] ? __pfx_lru_add+0x10/0x10 [ 102.127505][T14893] __folio_batch_add_and_move+0x391/0x720 [ 102.128633][T14893] ? __pfx_lru_add+0x10/0x10 [ 102.129550][T14893] folio_putback_lru+0x16/0x80 [ 102.130564][T14893] migrate_device_finalize+0x9b/0x530 [ 102.131640][T14893] dmirror_migrate_to_device.constprop.0+0x7c5/0xad0 [ 102.133047][T14893] dmirror_fops_unlocked_ioctl+0x89b/0xc80 Likely, nothing else goes wrong: putting the last folio reference will remove the folio from the LRU again. So besides memcg complaining, adding the folio to be freed to the LRU is just an unnecessary step. The new flow resembles what we have in migrate_folio_move(): add the dst to the lru, rem ---truncated---
5.5
Medium
CVE-2025-21859 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: gadget: f_midi: f_midi_complete to call queue_work When using USB MIDI, a lock is attempted to be acquired twice through a re-entrant call to f_midi_transmit, causing a deadlock. Fix it by using queue_work() to schedule the inner f_midi_transmit() via a high priority work queue from the completion handler.
5.5
Medium
CVE-2025-21858 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: geneve: Fix use-after-free in geneve_find_dev(). syzkaller reported a use-after-free in geneve_find_dev() [0] without repro. geneve_configure() links struct geneve_dev.next to net_generic(net, geneve_net_id)->geneve_list. The net here could differ from dev_net(dev) if IFLA_NET_NS_PID, IFLA_NET_NS_FD, or IFLA_TARGET_NETNSID is set. When dev_net(dev) is dismantled, geneve_exit_batch_rtnl() finally calls unregister_netdevice_queue() for each dev in the netns, and later the dev is freed. However, its geneve_dev.next is still linked to the backend UDP socket netns. Then, use-after-free will occur when another geneve dev is created in the netns. Let's call geneve_dellink() instead in geneve_destroy_tunnels(). [0]: BUG: KASAN: slab-use-after-free in geneve_find_dev drivers/net/geneve.c:1295 [inline] BUG: KASAN: slab-use-after-free in geneve_configure+0x234/0x858 drivers/net/geneve.c:1343 Read of size 2 at addr ffff000054d6ee24 by task syz.1.4029/13441 CPU: 1 UID: 0 PID: 13441 Comm: syz.1.4029 Not tainted 6.13.0-g0ad9617c78ac #24 dc35ca22c79fb82e8e7bc5c9c9adafea898b1e3d Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x38/0x50 arch/arm64/kernel/stacktrace.c:466 (C) __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0xbc/0x108 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x16c/0x6f0 mm/kasan/report.c:489 kasan_report+0xc0/0x120 mm/kasan/report.c:602 __asan_report_load2_noabort+0x20/0x30 mm/kasan/report_generic.c:379 geneve_find_dev drivers/net/geneve.c:1295 [inline] geneve_configure+0x234/0x858 drivers/net/geneve.c:1343 geneve_newlink+0xb8/0x128 drivers/net/geneve.c:1634 rtnl_newlink_create+0x23c/0x868 net/core/rtnetlink.c:3795 __rtnl_newlink net/core/rtnetlink.c:3906 [inline] rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021 rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543 rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x618/0x838 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x5fc/0x8b0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:713 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x410/0x6f8 net/socket.c:2568 ___sys_sendmsg+0x178/0x1d8 net/socket.c:2622 __sys_sendmsg net/socket.c:2654 [inline] __do_sys_sendmsg net/socket.c:2659 [inline] __se_sys_sendmsg net/socket.c:2657 [inline] __arm64_sys_sendmsg+0x12c/0x1c8 net/socket.c:2657 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x90/0x278 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x13c/0x250 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x54/0x70 arch/arm64/kernel/syscall.c:151 el0_svc+0x4c/0xa8 arch/arm64/kernel/entry-common.c:744 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:762 el0t_64_sync+0x198/0x1a0 arch/arm64/kernel/entry.S:600 Allocated by task 13247: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x68 mm/kasan/common.c:68 kasan_save_alloc_info+0x44/0x58 mm/kasan/generic.c:568 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x84/0xa0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4298 [inline] __kmalloc_node_noprof+0x2a0/0x560 mm/slub.c:4304 __kvmalloc_node_noprof+0x9c/0x230 mm/util.c:645 alloc_netdev_mqs+0xb8/0x11a0 net/core/dev.c:11470 rtnl_create_link+0x2b8/0xb50 net/core/rtnetlink.c:3604 rtnl_newlink_create+0x19c/0x868 net/core/rtnetlink.c:3780 __rtnl_newlink net/core/rtnetlink.c:3906 [inline] rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021 rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543 rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938 netlink_unicast_kernel net/netlink/af_n ---truncated---
7.8
High
CVE-2025-21855 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Don't reference skb after sending to VIOS Previously, after successfully flushing the xmit buffer to VIOS, the tx_bytes stat was incremented by the length of the skb. It is invalid to access the skb memory after sending the buffer to the VIOS because, at any point after sending, the VIOS can trigger an interrupt to free this memory. A race between reading skb->len and freeing the skb is possible (especially during LPM) and will result in use-after-free: ================================================================== BUG: KASAN: slab-use-after-free in ibmvnic_xmit+0x75c/0x1808 [ibmvnic] Read of size 4 at addr c00000024eb48a70 by task hxecom/14495 <...> Call Trace: [c000000118f66cf0] [c0000000018cba6c] dump_stack_lvl+0x84/0xe8 (unreliable) [c000000118f66d20] [c0000000006f0080] print_report+0x1a8/0x7f0 [c000000118f66df0] [c0000000006f08f0] kasan_report+0x128/0x1f8 [c000000118f66f00] [c0000000006f2868] __asan_load4+0xac/0xe0 [c000000118f66f20] [c0080000046eac84] ibmvnic_xmit+0x75c/0x1808 [ibmvnic] [c000000118f67340] [c0000000014be168] dev_hard_start_xmit+0x150/0x358 <...> Freed by task 0: kasan_save_stack+0x34/0x68 kasan_save_track+0x2c/0x50 kasan_save_free_info+0x64/0x108 __kasan_mempool_poison_object+0x148/0x2d4 napi_skb_cache_put+0x5c/0x194 net_tx_action+0x154/0x5b8 handle_softirqs+0x20c/0x60c do_softirq_own_stack+0x6c/0x88 <...> The buggy address belongs to the object at c00000024eb48a00 which belongs to the cache skbuff_head_cache of size 224 ==================================================================
7.8
High
CVE-2025-21853 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: avoid holding freeze_mutex during mmap operation We use map->freeze_mutex to prevent races between map_freeze() and memory mapping BPF map contents with writable permissions. The way we naively do this means we'll hold freeze_mutex for entire duration of all the mm and VMA manipulations, which is completely unnecessary. This can potentially also lead to deadlocks, as reported by syzbot in [0]. So, instead, hold freeze_mutex only during writeability checks, bump (proactively) "write active" count for the map, unlock the mutex and proceed with mmap logic. And only if something went wrong during mmap logic, then undo that "write active" counter increment. [0] https://lore.kernel.org/bpf/[email protected]/
5.5
Medium
CVE-2025-21848 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfp: bpf: Add check for nfp_app_ctrl_msg_alloc() Add check for the return value of nfp_app_ctrl_msg_alloc() in nfp_bpf_cmsg_alloc() to prevent null pointer dereference.
5.5
Medium
CVE-2025-21846 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: acct: perform last write from workqueue In [1] it was reported that the acct(2) system call can be used to trigger NULL deref in cases where it is set to write to a file that triggers an internal lookup. This can e.g., happen when pointing acc(2) to /sys/power/resume. At the point the where the write to this file happens the calling task has already exited and called exit_fs(). A lookup will thus trigger a NULL-deref when accessing current->fs. Reorganize the code so that the the final write happens from the workqueue but with the caller's credentials. This preserves the (strange) permission model and has almost no regression risk. This api should stop to exist though.
5.5
Medium
CVE-2024-58089 2025-03-12 09h41 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double accounting race when btrfs_run_delalloc_range() failed [BUG] When running btrfs with block size (4K) smaller than page size (64K, aarch64), there is a very high chance to crash the kernel at generic/750, with the following messages: (before the call traces, there are 3 extra debug messages added) BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-3): checking UUID tree hrtimer: interrupt took 5451385 ns BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs] CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs] lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] Call trace: can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P) can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L) btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs] extent_writepage+0x10c/0x3b8 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x160 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x74/0xa0 start_delalloc_inodes+0x17c/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x17c/0x288 [btrfs] shrink_delalloc+0x11c/0x280 [btrfs] flush_space+0x288/0x328 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x228/0x680 worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0 CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write) pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : process_one_work+0x110/0x680 lr : worker_thread+0x1bc/0x360 Call trace: process_one_work+0x110/0x680 (P) worker_thread+0x1bc/0x360 (L) worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 2-3 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x275bb9540000 from 0xffff800080000000 PHYS_OFFSET: 0xffff8fbba0000000 CPU features: 0x100,00000070,00801250,8201720b [CAUSE] The above warning is triggered immediately after the delalloc range failure, this happens in the following sequence: - Range [1568K, 1636K) is dirty 1536K 1568K 1600K 1636K 1664K | |/////////|////////| | Where 1536K, 1600K and 1664K are page boundaries (64K page size) - Enter extent_writepage() for page 1536K - Enter run_delalloc_nocow() with locke ---truncated---
5.5
Medium
CVE-2025-21833 2025-03-06 16h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE There is a WARN_ON_ONCE to catch an unlikely situation when domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless happens we must avoid using a NULL pointer.
5.5
Medium
CVE-2024-58076 2025-03-06 16h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-sm6350: Add missing parent_map for two clocks If a clk_rcg2 has a parent, it should also have parent_map defined, otherwise we'll get a NULL pointer dereference when calling clk_set_rate like the following: [ 3.388105] Call trace: [ 3.390664] qcom_find_src_index+0x3c/0x70 (P) [ 3.395301] qcom_find_src_index+0x1c/0x70 (L) [ 3.399934] _freq_tbl_determine_rate+0x48/0x100 [ 3.404753] clk_rcg2_determine_rate+0x1c/0x28 [ 3.409387] clk_core_determine_round_nolock+0x58/0xe4 [ 3.421414] clk_core_round_rate_nolock+0x48/0xfc [ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc [ 3.444483] clk_core_set_rate_nolock+0x8c/0x300 [ 3.455886] clk_set_rate+0x38/0x14c Add the parent_map property for two clocks where it's missing and also un-inline the parent_data as well to keep the matching parent_map and parent_data together.
5.5
Medium
CVE-2024-58071 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: team: prevent adding a device which is already a team device lower Prevent adding a device which is already a team device lower, e.g. adding veth0 if vlan1 was already added and veth0 is a lower of vlan1. This is not useful in practice and can lead to recursive locking: $ ip link add veth0 type veth peer name veth1 $ ip link set veth0 up $ ip link set veth1 up $ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1 $ ip link add team0 type team $ ip link set veth0.1 down $ ip link set veth0.1 master team0 team0: Port device veth0.1 added $ ip link set veth0 down $ ip link set veth0 master team0 ============================================ WARNING: possible recursive locking detected 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted -------------------------------------------- ip/7684 is trying to acquire lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) but task is already holding lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977) other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(team->team_lock_key); lock(team->team_lock_key); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by ip/7684: stack backtrace: CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:122) print_deadlock_bug.cold (kernel/locking/lockdep.c:3040) __lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226) ? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548) lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2)) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? lock_acquire (kernel/locking/lockdep.c:5822) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) __mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? fib_sync_up (net/ipv4/fib_semantics.c:2167) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) __dev_notify_flags (net/core/dev.c:8993) ? __dev_change_flags (net/core/dev.c:8975) dev_change_flags (net/core/dev.c:9027) vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470) ? br_device_event (net/bridge/br.c:143) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) dev_open (net/core/dev.c:1519 net/core/dev.c:1505) team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977) ? __pfx_team_add_slave (drivers/net/team/team_core.c:1972) do_set_master (net/core/rtnetlink.c:2917) do_setlink.isra.0 (net/core/rtnetlink.c:3117)
5.5
Medium
CVE-2024-58069 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: rtc: pcf85063: fix potential OOB write in PCF85063 NVMEM read The nvmem interface supports variable buffer sizes, while the regmap interface operates with fixed-size storage. If an nvmem client uses a buffer size less than 4 bytes, regmap_read will write out of bounds as it expects the buffer to point at an unsigned int. Fix this by using an intermediary unsigned int to hold the value.
7.8
High
CVE-2024-58063 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: fix memory leaks and invalid access at probe error path Deinitialize at reverse order when probe fails. When init_sw_vars fails, rtl_deinit_core should not be called, specially now that it destroys the rtl_wq workqueue. And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be leaked. Remove pci_set_drvdata call as it will already be cleaned up by the core driver code and could lead to memory leaks too. cf. commit 8d450935ae7f ("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory").
5.5
Medium
CVE-2024-58058 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ubifs: skip dumping tnc tree when zroot is null Clearing slab cache will free all znode in memory and make c->zroot.znode = NULL, then dumping tnc tree will access c->zroot.znode which cause null pointer dereference.
5.5
Medium
CVE-2024-58055 2025-03-06 15h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_tcm: Don't free command immediately Don't prematurely free the command. Wait for the status completion of the sense status. It can be freed then. Otherwise we will double-free the command.
7.8
High
CVE-2024-58052 2025-03-06 15h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential NULL pointer dereference in atomctrl_get_smc_sclk_range_table The function atomctrl_get_smc_sclk_range_table() does not check the return value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to retrieve SMU_Info table, it returns NULL which is later dereferenced. Found by Linux Verification Center (linuxtesting.org) with SVACE. In practice this should never happen as this code only gets called on polaris chips and the vbios data table will always be present on those chips.
5.5
Medium
CVE-2025-21820 2025-02-27 20h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: tty: xilinx_uartps: split sysrq handling lockdep detects the following circular locking dependency: CPU 0 CPU 1 ========================== ============================ cdns_uart_isr() printk() uart_port_lock(port) console_lock() cdns_uart_console_write() if (!port->sysrq) uart_port_lock(port) uart_handle_break() port->sysrq = ... uart_handle_sysrq_char() printk() console_lock() The fixed commit attempts to avoid this situation by only taking the port lock in cdns_uart_console_write if port->sysrq unset. However, if (as shown above) cdns_uart_console_write runs before port->sysrq is set, then it will try to take the port lock anyway. This may result in a deadlock. Fix this by splitting sysrq handling into two parts. We use the prepare helper under the port lock and defer handling until we release the lock.
5.5
Medium
CVE-2025-21814 2025-02-27 20h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: ptp: Ensure info->enable callback is always set The ioctl and sysfs handlers unconditionally call the ->enable callback. Not all drivers implement that callback, leading to NULL dereferences. Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c. Instead use a dummy callback if no better was specified by the driver.
5.5
Medium
CVE-2025-21812 2025-02-27 20h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: ax25: rcu protect dev->ax25_ptr syzbot found a lockdep issue [1]. We should remove ax25 RTNL dependency in ax25_setsockopt() This should also fix a variety of possible UAF in ax25. [1] WARNING: possible circular locking dependency detected 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted ------------------------------------------------------ syz.5.1818/12806 is trying to acquire lock: ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 but task is already holding lock: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_AX25){+.+.}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 lock_sock_nested+0x48/0x100 net/core/sock.c:3642 lock_sock include/net/sock.h:1618 [inline] ax25_kill_by_device net/ax25/af_ax25.c:101 [inline] ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146 notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85 __dev_notify_flags+0x207/0x400 dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026 dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563 dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820 sock_do_ioctl+0x240/0x460 net/socket.c:1234 sock_ioctl+0x626/0x8e0 net/socket.c:1339 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (rtnl_mutex){+.+.}-{4:4}: check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __mutex_lock_common kernel/locking/mutex.c:585 [inline] __mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735 ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 do_sock_setsockopt+0x3af/0x720 net/socket.c:2324 __sys_setsockopt net/socket.c:2349 [inline] __do_sys_setsockopt net/socket.c:2355 [inline] __se_sys_setsockopt net/socket.c:2352 [inline] __x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_AX25); lock(rtnl_mutex); lock(sk_lock-AF_AX25); lock(rtnl_mutex); *** DEADLOCK *** 1 lock held by syz.5.1818/12806: #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 stack backtrace: CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074 check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206 check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/lockin ---truncated---
7.8
High
CVE-2025-21811 2025-02-27 20h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: protect access to buffers with no active references nilfs_lookup_dirty_data_buffers(), which iterates through the buffers attached to dirty data folios/pages, accesses the attached buffers without locking the folios/pages. For data cache, nilfs_clear_folio_dirty() may be called asynchronously when the file system degenerates to read only, so nilfs_lookup_dirty_data_buffers() still has the potential to cause use after free issues when buffers lose the protection of their dirty state midway due to this asynchronous clearing and are unintentionally freed by try_to_free_buffers(). Eliminate this race issue by adjusting the lock section in this function.
7.8
High
CVE-2024-58034 2025-02-27 20h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code() As of_find_node_by_name() release the reference of the argument device node, tegra_emc_find_node_by_ram_code() releases some device nodes while still in use, resulting in possible UAFs. According to the bindings and the in-tree DTS files, the "emc-tables" node is always device's child node with the property "nvidia,use-ram-code", and the "lpddr2" node is a child of the "emc-tables" node. Thus utilize the for_each_child_of_node() macro and of_get_child_by_name() instead of of_find_node_by_name() to simplify the code. This bug was found by an experimental verification tool that I am developing. [krzysztof: applied v1, adjust the commit msg to incorporate v2 parts]
7.8
High
CVE-2025-21796 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: clear acl_access/acl_default after releasing them If getting acl_default fails, acl_access and acl_default will be released simultaneously. However, acl_access will still retain a pointer pointing to the released posix_acl, which will trigger a WARNING in nfs3svc_release_getacl like this: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 26 PID: 3199 at lib/refcount.c:28 refcount_warn_saturate+0xb5/0x170 Modules linked in: CPU: 26 UID: 0 PID: 3199 Comm: nfsd Not tainted 6.12.0-rc6-00079-g04ae226af01f-dirty #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb5/0x170 Code: cc cc 0f b6 1d b3 20 a5 03 80 fb 01 0f 87 65 48 d8 00 83 e3 01 75 e4 48 c7 c7 c0 3b 9b 85 c6 05 97 20 a5 03 01 e8 fb 3e 30 ff <0f> 0b eb cd 0f b6 1d 8a3 RSP: 0018:ffffc90008637cd8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff83904fde RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88871ed36380 RBP: ffff888158beeb40 R08: 0000000000000001 R09: fffff520010c6f56 R10: ffffc90008637ab7 R11: 0000000000000001 R12: 0000000000000001 R13: ffff888140e77400 R14: ffff888140e77408 R15: ffffffff858b42c0 FS: 0000000000000000(0000) GS:ffff88871ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000562384d32158 CR3: 000000055cc6a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? refcount_warn_saturate+0xb5/0x170 ? __warn+0xa5/0x140 ? refcount_warn_saturate+0xb5/0x170 ? report_bug+0x1b1/0x1e0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x17/0x40 ? asm_exc_invalid_op+0x1a/0x20 ? tick_nohz_tick_stopped+0x1e/0x40 ? refcount_warn_saturate+0xb5/0x170 ? refcount_warn_saturate+0xb5/0x170 nfs3svc_release_getacl+0xc9/0xe0 svc_process_common+0x5db/0xb60 ? __pfx_svc_process_common+0x10/0x10 ? __rcu_read_unlock+0x69/0xa0 ? __pfx_nfsd_dispatch+0x10/0x10 ? svc_xprt_received+0xa1/0x120 ? xdr_init_decode+0x11d/0x190 svc_process+0x2a7/0x330 svc_handle_xprt+0x69d/0x940 svc_recv+0x180/0x2d0 nfsd+0x168/0x200 ? __pfx_nfsd+0x10/0x10 kthread+0x1a2/0x1e0 ? kthread+0xf4/0x1e0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 Kernel panic - not syncing: kernel: panic_on_warn set ... Clear acl_access/acl_default after posix_acl_release is called to prevent UAF from being triggered.
7.8
High
CVE-2025-21791 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: vrf: use RCU protection in l3mdev_l3_out() l3mdev_l3_out() can be called without RCU being held: raw_sendmsg() ip_push_pending_frames() ip_send_skb() ip_local_out() __ip_local_out() l3mdev_ip_out() Add rcu_read_lock() / rcu_read_unlock() pair to avoid a potential UAF.
7.8
High
CVE-2025-21787 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: team: better TEAM_OPTION_TYPE_STRING validation syzbot reported following splat [1] Make sure user-provided data contains one nul byte. [1] BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:633 [inline] BUG: KMSAN: uninit-value in string+0x3ec/0x5f0 lib/vsprintf.c:714 string_nocheck lib/vsprintf.c:633 [inline] string+0x3ec/0x5f0 lib/vsprintf.c:714 vsnprintf+0xa5d/0x1960 lib/vsprintf.c:2843 __request_module+0x252/0x9f0 kernel/module/kmod.c:149 team_mode_get drivers/net/team/team_core.c:480 [inline] team_change_mode drivers/net/team/team_core.c:607 [inline] team_mode_option_set+0x437/0x970 drivers/net/team/team_core.c:1401 team_option_set drivers/net/team/team_core.c:375 [inline] team_nl_options_set_doit+0x1339/0x1f90 drivers/net/team/team_core.c:2662 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x1214/0x12c0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2543 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0xf52/0x1260 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x10da/0x11e0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:718 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:733 ____sys_sendmsg+0x877/0xb60 net/socket.c:2573 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2627 __sys_sendmsg net/socket.c:2659 [inline] __do_sys_sendmsg net/socket.c:2664 [inline] __se_sys_sendmsg net/socket.c:2662 [inline] __x64_sys_sendmsg+0x212/0x3c0 net/socket.c:2662 x64_sys_call+0x2ed6/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2025-21786 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: workqueue: Put the pwq after detaching the rescuer from the pool The commit 68f83057b913("workqueue: Reap workers via kthread_stop() and remove detach_completion") adds code to reap the normal workers but mistakenly does not handle the rescuer and also removes the code waiting for the rescuer in put_unbound_pool(), which caused a use-after-free bug reported by Cheung Wall. To avoid the use-after-free bug, the pool’s reference must be held until the detachment is complete. Therefore, move the code that puts the pwq after detaching the rescuer from the pool.
7.8
High
CVE-2025-21785 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array The loop that detects/populates cache information already has a bounds check on the array size but does not account for cache levels with separate data/instructions cache. Fix this by incrementing the index for any populated leaf (instead of any populated level).
7.8
High
CVE-2025-21782 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: orangefs: fix a oob in orangefs_debug_write I got a syzbot report: slab-out-of-bounds Read in orangefs_debug_write... several people suggested fixes, I tested Al Viro's suggestion and made this patch.
7.1
High
CVE-2025-21779 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Reject Hyper-V's SEND_IPI hypercalls if local APIC isn't in-kernel Advertise support for Hyper-V's SEND_IPI and SEND_IPI_EX hypercalls if and only if the local API is emulated/virtualized by KVM, and explicitly reject said hypercalls if the local APIC is emulated in userspace, i.e. don't rely on userspace to opt-in to KVM_CAP_HYPERV_ENFORCE_CPUID. Rejecting SEND_IPI and SEND_IPI_EX fixes a NULL-pointer dereference if Hyper-V enlightenments are exposed to the guest without an in-kernel local APIC: dump_stack+0xbe/0xfd __kasan_report.cold+0x34/0x84 kasan_report+0x3a/0x50 __apic_accept_irq+0x3a/0x5c0 kvm_hv_send_ipi.isra.0+0x34e/0x820 kvm_hv_hypercall+0x8d9/0x9d0 kvm_emulate_hypercall+0x506/0x7e0 __vmx_handle_exit+0x283/0xb60 vmx_handle_exit+0x1d/0xd0 vcpu_enter_guest+0x16b0/0x24c0 vcpu_run+0xc0/0x550 kvm_arch_vcpu_ioctl_run+0x170/0x6d0 kvm_vcpu_ioctl+0x413/0xb20 __se_sys_ioctl+0x111/0x160 do_syscal1_64+0x30/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Note, checking the sending vCPU is sufficient, as the per-VM irqchip_mode can't be modified after vCPUs are created, i.e. if one vCPU has an in-kernel local APIC, then all vCPUs have an in-kernel local APIC.
5.5
Medium
CVE-2025-21776 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: hub: Ignore non-compliant devices with too many configs or interfaces Robert Morris created a test program which can cause usb_hub_to_struct_hub() to dereference a NULL or inappropriate pointer: Oops: general protection fault, probably for non-canonical address 0xcccccccccccccccc: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 7 UID: 0 PID: 117 Comm: kworker/7:1 Not tainted 6.13.0-rc3-00017-gf44d154d6e3d #14 Hardware name: FreeBSD BHYVE/BHYVE, BIOS 14.0 10/17/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_hub_adjust_deviceremovable+0x78/0x110 ... Call Trace: ? die_addr+0x31/0x80 ? exc_general_protection+0x1b4/0x3c0 ? asm_exc_general_protection+0x26/0x30 ? usb_hub_adjust_deviceremovable+0x78/0x110 hub_probe+0x7c7/0xab0 usb_probe_interface+0x14b/0x350 really_probe+0xd0/0x2d0 ? __pfx___device_attach_driver+0x10/0x10 __driver_probe_device+0x6e/0x110 driver_probe_device+0x1a/0x90 __device_attach_driver+0x7e/0xc0 bus_for_each_drv+0x7f/0xd0 __device_attach+0xaa/0x1a0 bus_probe_device+0x8b/0xa0 device_add+0x62e/0x810 usb_set_configuration+0x65d/0x990 usb_generic_driver_probe+0x4b/0x70 usb_probe_device+0x36/0xd0 The cause of this error is that the device has two interfaces, and the hub driver binds to interface 1 instead of interface 0, which is where usb_hub_to_struct_hub() looks. We can prevent the problem from occurring by refusing to accept hub devices that violate the USB spec by having more than one configuration or interface.
5.5
Medium
CVE-2025-21764 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ndisc: use RCU protection in ndisc_alloc_skb() ndisc_alloc_skb() can be called without RTNL or RCU being held. Add RCU protection to avoid possible UAF.
7.8
High
CVE-2025-21763 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: neighbour: use RCU protection in __neigh_notify() __neigh_notify() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
7.8
High
CVE-2025-21762 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: arp: use RCU protection in arp_xmit() arp_xmit() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
7.8
High
CVE-2025-21761 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: openvswitch: use RCU protection in ovs_vport_cmd_fill_info() ovs_vport_cmd_fill_info() can be called without RTNL or RCU. Use RCU protection and dev_net_rcu() to avoid potential UAF.
7.8
High
CVE-2025-21760 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ndisc: extend RCU protection in ndisc_send_skb() ndisc_send_skb() can be called without RTNL or RCU held. Acquire rcu_read_lock() earlier, so that we can use dev_net_rcu() and avoid a potential UAF.
7.8
High
CVE-2025-21759 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.
7.8
High
CVE-2025-21756 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock: Keep the binding until socket destruction Preserve sockets bindings; this includes both resulting from an explicit bind() and those implicitly bound through autobind during connect(). Prevents socket unbinding during a transport reassignment, which fixes a use-after-free: 1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2) 2. transport->release() calls vsock_remove_bound() without checking if sk was bound and moved to bound list (refcnt=1) 3. vsock_bind() assumes sk is in unbound list and before __vsock_insert_bound(vsock_bound_sockets()) calls __vsock_remove_bound() which does: list_del_init(&vsk->bound_table); // nop sock_put(&vsk->sk); // refcnt=0 BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730 Read of size 4 at addr ffff88816b46a74c by task a.out/2057 dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 __vsock_bind+0x62e/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 __vsock_create.constprop.0+0x2e/0xb60 vsock_create+0xe4/0x420 __sock_create+0x241/0x650 __sys_socket+0xf2/0x1a0 __x64_sys_socket+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 __vsock_bind+0x5e1/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: addition on 0; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150 RIP: 0010:refcount_warn_saturate+0xce/0x150 __vsock_bind+0x66d/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: underflow; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150 RIP: 0010:refcount_warn_saturate+0xee/0x150 vsock_remove_bound+0x187/0x1e0 __vsock_release+0x383/0x4a0 vsock_release+0x90/0x120 __sock_release+0xa3/0x250 sock_close+0x14/0x20 __fput+0x359/0xa80 task_work_run+0x107/0x1d0 do_exit+0x847/0x2560 do_group_exit+0xb8/0x250 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0xfec/0x14f0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
7.8
High
CVE-2024-58020 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: HID: multitouch: Add NULL check in mt_input_configured devm_kasprintf() can return a NULL pointer on failure,but this returned value in mt_input_configured() is not checked. Add NULL check in mt_input_configured(), to handle kernel NULL pointer dereference error.
5.5
Medium
CVE-2024-57834 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix a null-ptr-deref in vidtv_mux_stop_thread syzbot report a null-ptr-deref in vidtv_mux_stop_thread. [1] If dvb->mux is not initialized successfully by vidtv_mux_init() in the vidtv_start_streaming(), it will trigger null pointer dereference about mux in vidtv_mux_stop_thread(). Adjust the timing of streaming initialization and check it before stopping it. [1] KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f] CPU: 0 UID: 0 PID: 5842 Comm: syz-executor248 Not tainted 6.13.0-rc4-syzkaller-00012-g9b2ffa6148b1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:vidtv_mux_stop_thread+0x26/0x80 drivers/media/test-drivers/vidtv/vidtv_mux.c:471 Code: 90 90 90 90 66 0f 1f 00 55 53 48 89 fb e8 82 2e c8 f9 48 8d bb 28 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 02 7e 3b 0f b6 ab 28 01 00 00 31 ff 89 ee e8 RSP: 0018:ffffc90003f2faa8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff87cfb125 RDX: 0000000000000025 RSI: ffffffff87d120ce RDI: 0000000000000128 RBP: ffff888029b8d220 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000003 R12: ffff888029b8d188 R13: ffffffff8f590aa0 R14: ffffc9000581c5c8 R15: ffff888029a17710 FS: 00007f7eef5156c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7eef5e635c CR3: 0000000076ca6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vidtv_stop_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:209 [inline] vidtv_stop_feed+0x151/0x250 drivers/media/test-drivers/vidtv/vidtv_bridge.c:252 dmx_section_feed_stop_filtering+0x90/0x160 drivers/media/dvb-core/dvb_demux.c:1000 dvb_dmxdev_feed_stop.isra.0+0x1ee/0x270 drivers/media/dvb-core/dmxdev.c:486 dvb_dmxdev_filter_stop+0x22a/0x3a0 drivers/media/dvb-core/dmxdev.c:559 dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline] dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246 __fput+0x3f8/0xb60 fs/file_table.c:450 task_work_run+0x14e/0x250 kernel/task_work.c:239 get_signal+0x1d3/0x2610 kernel/signal.c:2790 arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop kernel/entry/common.c:111 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218 do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-54458 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: bsg: Set bsg_queue to NULL after removal Currently, this does not cause any issues, but I believe it is necessary to set bsg_queue to NULL after removing it to prevent potential use-after-free (UAF) access.
7.8
High
CVE-2024-52559 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/gem: prevent integer overflow in msm_ioctl_gem_submit() The "submit->cmd[i].size" and "submit->cmd[i].offset" variables are u32 values that come from the user via the submit_lookup_cmds() function. This addition could lead to an integer wrapping bug so use size_add() to prevent that. Patchwork: https://patchwork.freedesktop.org/patch/624696/
5.5
Medium
CVE-2025-21753 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when attempting to join an aborted transaction When we are trying to join the current transaction and if it's aborted, we read its 'aborted' field after unlocking fs_info->trans_lock and without holding any extra reference count on it. This means that a concurrent task that is aborting the transaction may free the transaction before we read its 'aborted' field, leading to a use-after-free. Fix this by reading the 'aborted' field while holding fs_info->trans_lock since any freeing task must first acquire that lock and set fs_info->running_transaction to NULL before freeing the transaction. This was reported by syzbot and Dmitry with the following stack traces from KASAN: ================================================================== BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128 CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: events_unbound btrfs_async_reclaim_data_space Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803 btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317 worker_thread+0x870/0xd30 kernel/workqueue.c:3398 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 5315: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329 kmalloc_noprof include/linux/slab.h:901 [inline] join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572 lookup_open fs/namei.c:3649 [inline] open_last_lookups fs/namei.c:3748 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3984 do_filp_open+0x27f/0x4e0 fs/namei.c:4014 do_sys_openat2+0x13e/0x1d0 fs/open.c:1402 do_sys_open fs/open.c:1417 [inline] __do_sys_creat fs/open.c:1495 [inline] __se_sys_creat fs/open.c:1489 [inline] __x64_sys_creat+0x123/0x170 fs/open.c:1489 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 5336: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2353 [inline] slab_free mm/slub.c:4613 [inline] kfree+0x196/0x430 mm/slub.c:4761 cleanup_transaction fs/btrfs/transaction.c:2063 [inline] btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598 insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757 btrfs_balance+0x992/ ---truncated---
7.8
High
CVE-2025-21751 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: HWS, change error flow on matcher disconnect Currently, when firmware failure occurs during matcher disconnect flow, the error flow of the function reconnects the matcher back and returns an error, which continues running the calling function and eventually frees the matcher that is being disconnected. This leads to a case where we have a freed matcher on the matchers list, which in turn leads to use-after-free and eventual crash. This patch fixes that by not trying to reconnect the matcher back when some FW command fails during disconnect. Note that we're dealing here with FW error. We can't overcome this problem. This might lead to bad steering state (e.g. wrong connection between matchers), and will also lead to resource leakage, as it is the case with any other error handling during resource destruction. However, the goal here is to allow the driver to continue and not crash the machine with use-after-free error.
7.8
High
CVE-2025-21749 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: rose: lock the socket in rose_bind() syzbot reported a soft lockup in rose_loopback_timer(), with a repro calling bind() from multiple threads. rose_bind() must lock the socket to avoid this issue.
5.5
Medium
CVE-2025-21748 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix integer overflows on 32 bit systems On 32bit systems the addition operations in ipc_msg_alloc() can potentially overflow leading to memory corruption. Add bounds checking using KSMBD_IPC_MAX_PAYLOAD to avoid overflow.
5.5
Medium
CVE-2025-21745 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: Fix class @block_class's subsystem refcount leakage blkcg_fill_root_iostats() iterates over @block_class's devices by class_dev_iter_(init|next)(), but does not end iterating with class_dev_iter_exit(), so causes the class's subsystem refcount leakage. Fix by ending the iterating with class_dev_iter_exit().
5.5
Medium
CVE-2025-21744 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize() On removal of the device or unloading of the kernel module a potential NULL pointer dereference occurs. The following sequence deletes the interface: brcmf_detach() brcmf_remove_interface() brcmf_del_if() Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches. After brcmf_remove_interface() call the brcmf_proto_detach() function is called providing the following sequence: brcmf_detach() brcmf_proto_detach() brcmf_proto_msgbuf_detach() brcmf_flowring_detach() brcmf_msgbuf_delete_flowring() brcmf_msgbuf_remove_flowring() brcmf_flowring_delete() brcmf_get_ifp() brcmf_txfinalize() Since brcmf_get_ip() can and actually will return NULL in this case the call to brcmf_txfinalize() will result in a NULL pointer dereference inside brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors. This will only happen if a flowring still has an skb. Although the NULL pointer dereference has only been seen when trying to update the tx statistic, all other uses of the ifp pointer have been guarded as well with an early return if ifp is NULL.
5.5
Medium
CVE-2025-21739 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix use-after free in init error and remove paths devm_blk_crypto_profile_init() registers a cleanup handler to run when the associated (platform-) device is being released. For UFS, the crypto private data and pointers are stored as part of the ufs_hba's data structure 'struct ufs_hba::crypto_profile'. This structure is allocated as part of the underlying ufshcd and therefore Scsi_host allocation. During driver release or during error handling in ufshcd_pltfrm_init(), this structure is released as part of ufshcd_dealloc_host() before the (platform-) device associated with the crypto call above is released. Once this device is released, the crypto cleanup code will run, using the just-released 'struct ufs_hba::crypto_profile'. This causes a use-after-free situation: Call trace: kfree+0x60/0x2d8 (P) kvfree+0x44/0x60 blk_crypto_profile_destroy_callback+0x28/0x70 devm_action_release+0x1c/0x30 release_nodes+0x6c/0x108 devres_release_all+0x98/0x100 device_unbind_cleanup+0x20/0x70 really_probe+0x218/0x2d0 In other words, the initialisation code flow is: platform-device probe ufshcd_pltfrm_init() ufshcd_alloc_host() scsi_host_alloc() allocation of struct ufs_hba creation of scsi-host devices devm_blk_crypto_profile_init() devm registration of cleanup handler using platform-device and during error handling of ufshcd_pltfrm_init() or during driver removal: ufshcd_dealloc_host() scsi_host_put() put_device(scsi-host) release of struct ufs_hba put_device(platform-device) crypto cleanup handler To fix this use-after free, change ufshcd_alloc_host() to register a devres action to automatically cleanup the underlying SCSI device on ufshcd destruction, without requiring explicit calls to ufshcd_dealloc_host(). This way: * the crypto profile and all other ufs_hba-owned resources are destroyed before SCSI (as they've been registered after) * a memleak is plugged in tc-dwc-g210-pci.c remove() as a side-effect * EXPORT_SYMBOL_GPL(ufshcd_dealloc_host) can be removed fully as it's not needed anymore * no future drivers using ufshcd_alloc_host() could ever forget adding the cleanup
7.8
High
CVE-2025-21736 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix possible int overflows in nilfs_fiemap() Since nilfs_bmap_lookup_contig() in nilfs_fiemap() calculates its result by being prepared to go through potentially maxblocks == INT_MAX blocks, the value in n may experience an overflow caused by left shift of blkbits. While it is extremely unlikely to occur, play it safe and cast right hand expression to wider type to mitigate the issue. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE.
5.5
Medium
CVE-2025-21735 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFC: nci: Add bounds checking in nci_hci_create_pipe() The "pipe" variable is a u8 which comes from the network. If it's more than 127, then it results in memory corruption in the caller, nci_hci_connect_gate().
7.8
High
CVE-2024-58017 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: printk: Fix signed integer overflow when defining LOG_BUF_LEN_MAX Shifting 1 << 31 on a 32-bit int causes signed integer overflow, which leads to undefined behavior. To prevent this, cast 1 to u32 before performing the shift, ensuring well-defined behavior. This change explicitly avoids any potential overflow by ensuring that the shift occurs on an unsigned 32-bit integer.
5.5
Medium
CVE-2024-58013 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix slab-use-after-free Read in mgmt_remove_adv_monitor_sync This fixes the following crash: ================================================================== BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 Read of size 8 at addr ffff88814128f898 by task kworker/u9:4/5961 CPU: 1 UID: 0 PID: 5961 Comm: kworker/u9:4 Not tainted 6.12.0-syzkaller-10684-gf1cd565ce577 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: hci0 hci_cmd_sync_work Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 16026: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kzalloc_noprof include/linux/slab.h:1037 [inline] mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296 remove_adv_monitor+0x102/0x1b0 net/bluetooth/mgmt.c:5568 hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712 hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 sock_write_iter+0x2d7/0x3f0 net/socket.c:1147 new_sync_write fs/read_write.c:586 [inline] vfs_write+0xaeb/0xd30 fs/read_write.c:679 ksys_write+0x18f/0x2b0 fs/read_write.c:731 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 16022: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kfree+0x196/0x420 mm/slub.c:4746 mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259 __mgmt_power_off+0x183/0x430 net/bluetooth/mgmt.c:9550 hci_dev_close_sync+0x6c4/0x11c0 net/bluetooth/hci_sync.c:5208 hci_dev_do_close net/bluetooth/hci_core.c:483 [inline] hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508 sock_do_ioctl+0x158/0x460 net/socket.c:1209 sock_ioctl+0x626/0x8e0 net/socket.c:1328 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
7.8
High
CVE-2024-58012 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params Each cpu DAI should associate with a widget. However, the topology might not create the right number of DAI widgets for aggregated amps. And it will cause NULL pointer deference. Check that the DAI widget associated with the CPU DAI is valid to prevent NULL pointer deference due to missing DAI widgets in topologies with aggregated amps.
5.5
Medium
CVE-2024-58011 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: platform/x86: int3472: Check for adev == NULL Not all devices have an ACPI companion fwnode, so adev might be NULL. This can e.g. (theoretically) happen when a user manually binds one of the int3472 drivers to another i2c/platform device through sysfs. Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
5.5
Medium
CVE-2024-58010 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: binfmt_flat: Fix integer overflow bug on 32 bit systems Most of these sizes and counts are capped at 256MB so the math doesn't result in an integer overflow. The "relocs" count needs to be checked as well. Otherwise on 32bit systems the calculation of "full_data" could be wrong. full_data = data_len + relocs * sizeof(unsigned long);
5.5
Medium
CVE-2024-58007 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: soc: qcom: socinfo: Avoid out of bounds read of serial number On MSM8916 devices, the serial number exposed in sysfs is constant and does not change across individual devices. It's always: db410c:/sys/devices/soc0$ cat serial_number 2644893864 The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not have support for the serial_num field in the socinfo struct. There is an existing check to avoid exposing the serial number in that case, but it's not correct: When checking the item_size returned by SMEM, we need to make sure the *end* of the serial_num is within bounds, instead of comparing with the *start* offset. The serial_number currently exposed on MSM8916 devices is just an out of bounds read of whatever comes after the socinfo struct in SMEM. Fix this by changing offsetof() to offsetofend(), so that the size of the field is also taken into account.
7.1
High
CVE-2024-58005 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: tpm: Change to kvalloc() in eventlog/acpi.c The following failure was reported on HPE ProLiant D320: [ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0) [ 10.848132][ T1] ------------[ cut here ]------------ [ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330 [ 10.862827][ T1] Modules linked in: [ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375 [ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024 [ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330 [ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1 [ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246 [ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000 [ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0 The above transcript shows that ACPI pointed a 16 MiB buffer for the log events because RSI maps to the 'order' parameter of __alloc_pages_noprof(). Address the bug by moving from devm_kmalloc() to devm_add_action() and kvmalloc() and devm_add_action().
5.5
Medium
CVE-2024-58002 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Remove dangling pointers When an async control is written, we copy a pointer to the file handle that started the operation. That pointer will be used when the device is done. Which could be anytime in the future. If the user closes that file descriptor, its structure will be freed, and there will be one dangling pointer per pending async control, that the driver will try to use. Clean all the dangling pointers during release(). To avoid adding a performance penalty in the most common case (no async operation), a counter has been introduced with some logic to make sure that it is properly handled.
7.8
High
CVE-2025-21731 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: nbd: don't allow reconnect after disconnect Following process can cause nbd_config UAF: 1) grab nbd_config temporarily; 2) nbd_genl_disconnect() flush all recv_work() and release the initial reference: nbd_genl_disconnect nbd_disconnect_and_put nbd_disconnect flush_workqueue(nbd->recv_workq) if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...)) nbd_config_put -> due to step 1), reference is still not zero 3) nbd_genl_reconfigure() queue recv_work() again; nbd_genl_reconfigure config = nbd_get_config_unlocked(nbd) if (!config) -> succeed if (!test_bit(NBD_RT_BOUND, ...)) -> succeed nbd_reconnect_socket queue_work(nbd->recv_workq, &args->work) 4) step 1) release the reference; 5) Finially, recv_work() will trigger UAF: recv_work nbd_config_put(nbd) -> nbd_config is freed atomic_dec(&config->recv_threads) -> UAF Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so that nbd_genl_reconfigure() will fail.
7.8
High
CVE-2025-21727 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: padata: fix UAF in padata_reorder A bug was found when run ltp test: BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0 Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206 CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+ Workqueue: pdecrypt_parallel padata_parallel_worker Call Trace: dump_stack_lvl+0x32/0x50 print_address_description.constprop.0+0x6b/0x3d0 print_report+0xdd/0x2c0 kasan_report+0xa5/0xd0 padata_find_next+0x29/0x1a0 padata_reorder+0x131/0x220 padata_parallel_worker+0x3d/0xc0 process_one_work+0x2ec/0x5a0 If 'mdelay(10)' is added before calling 'padata_find_next' in the 'padata_reorder' function, this issue could be reproduced easily with ltp test (pcrypt_aead01). This can be explained as bellow: pcrypt_aead_encrypt ... padata_do_parallel refcount_inc(&pd->refcnt); // add refcnt ... padata_do_serial padata_reorder // pd while (1) { padata_find_next(pd, true); // using pd queue_work_on ... padata_serial_worker crypto_del_alg padata_put_pd_cnt // sub refcnt padata_free_shell padata_put_pd(ps->pd); // pd is freed // loop again, but pd is freed // call padata_find_next, UAF } In the padata_reorder function, when it loops in 'while', if the alg is deleted, the refcnt may be decreased to 0 before entering 'padata_find_next', which leads to UAF. As mentioned in [1], do_serial is supposed to be called with BHs disabled and always happen under RCU protection, to address this issue, add synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls to finish. [1] https://lore.kernel.org/all/[email protected]/ [2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/
7.8
High
CVE-2025-21722 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: do not force clear folio if buffer is referenced Patch series "nilfs2: protect busy buffer heads from being force-cleared". This series fixes the buffer head state inconsistency issues reported by syzbot that occurs when the filesystem is corrupted and falls back to read-only, and the associated buffer head use-after-free issue. This patch (of 2): Syzbot has reported that after nilfs2 detects filesystem corruption and falls back to read-only, inconsistencies in the buffer state may occur. One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty() to set a data or metadata buffer as dirty, but it detects that the buffer is not in the uptodate state: WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520 fs/buffer.c:1177 ... Call Trace: nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598 nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73 nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344 nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218 vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257 do_mkdirat+0x264/0x3a0 fs/namei.c:4280 __do_sys_mkdirat fs/namei.c:4295 [inline] __se_sys_mkdirat fs/namei.c:4293 [inline] __x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The other is when nilfs_btree_propagate(), which propagates the dirty state to the ancestor nodes of a b-tree that point to a dirty buffer, detects that the origin buffer is not dirty, even though it should be: WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089 nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089 ... Call Trace: nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345 nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587 nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006 nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline] nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115 nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline] nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Both of these issues are caused by the callbacks that handle the page/folio write requests, forcibly clear various states, including the working state of the buffers they hold, at unexpected times when they detect read-only fallback. Fix these issues by checking if the buffer is referenced before clearing the page/folio state, and skipping the clear if it is.
7.8
High
CVE-2025-21718 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: rose: fix timer races against user threads Rose timers only acquire the socket spinlock, without checking if the socket is owned by one user thread. Add a check and rearm the timers if needed. BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 Read of size 2 at addr ffff88802f09b82a by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 call_timer_fn+0x187/0x650 kernel/time/timer.c:1793 expire_timers kernel/time/timer.c:1844 [inline] __run_timers kernel/time/timer.c:2418 [inline] __run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430 run_timer_base kernel/time/timer.c:2439 [inline] run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049
7
High
CVE-2025-21714 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix implicit ODP use after free Prevent double queueing of implicit ODP mr destroy work by using __xa_cmpxchg() to make sure this is the only time we are destroying this specific mr. Without this change, we could try to invalidate this mr twice, which in turn could result in queuing a MR work destroy twice, and eventually the second work could execute after the MR was freed due to the first work, causing a user after free and trace below. refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 12178 at lib/refcount.c:28 refcount_warn_saturate+0x12b/0x130 Modules linked in: bonding ib_ipoib vfio_pci ip_gre geneve nf_tables ip6_gre gre ip6_tunnel tunnel6 ipip tunnel4 ib_umad rdma_ucm mlx5_vfio_pci vfio_pci_core vfio_iommu_type1 mlx5_ib vfio ib_uverbs mlx5_core iptable_raw openvswitch nsh rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay zram zsmalloc fuse [last unloaded: ib_uverbs] CPU: 2 PID: 12178 Comm: kworker/u20:5 Not tainted 6.5.0-rc1_net_next_mlx5_58c644e #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: events_unbound free_implicit_child_mr_work [mlx5_ib] RIP: 0010:refcount_warn_saturate+0x12b/0x130 Code: 48 c7 c7 38 95 2a 82 c6 05 bc c6 fe 00 01 e8 0c 66 aa ff 0f 0b 5b c3 48 c7 c7 e0 94 2a 82 c6 05 a7 c6 fe 00 01 e8 f5 65 aa ff <0f> 0b 5b c3 90 8b 07 3d 00 00 00 c0 74 12 83 f8 01 74 13 8d 50 ff RSP: 0018:ffff8881008e3e40 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000027 RDX: ffff88852c91b5c8 RSI: 0000000000000001 RDI: ffff88852c91b5c0 RBP: ffff8881dacd4e00 R08: 00000000ffffffff R09: 0000000000000019 R10: 000000000000072e R11: 0000000063666572 R12: ffff88812bfd9e00 R13: ffff8881c792d200 R14: ffff88810011c005 R15: ffff8881002099c0 FS: 0000000000000000(0000) GS:ffff88852c900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5694b5e000 CR3: 00000001153f6003 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? refcount_warn_saturate+0x12b/0x130 free_implicit_child_mr_work+0x180/0x1b0 [mlx5_ib] process_one_work+0x1cc/0x3c0 worker_thread+0x218/0x3c0 kthread+0xc6/0xf0 ret_from_fork+0x1f/0x30
7.8
High
CVE-2025-21711 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/rose: prevent integer overflows in rose_setsockopt() In case of possible unpredictably large arguments passed to rose_setsockopt() and multiplied by extra values on top of that, integer overflows may occur. Do the safest minimum and fix these issues by checking the contents of 'opt' and returning -EINVAL if they are too large. Also, switch to unsigned int and remove useless check for negative 'opt' in ROSE_IDLE case.
5.5
Medium
CVE-2025-21707 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: consolidate suboption status MPTCP maintains the received sub-options status is the bitmask carrying the received suboptions and in several bitfields carrying per suboption additional info. Zeroing the bitmask before parsing is not enough to ensure a consistent status, and the MPTCP code has to additionally clear some bitfiled depending on the actually parsed suboption. The above schema is fragile, and syzbot managed to trigger a path where a relevant bitfield is not cleared/initialized: BUG: KMSAN: uninit-value in __mptcp_expand_seq net/mptcp/options.c:1030 [inline] BUG: KMSAN: uninit-value in mptcp_expand_seq net/mptcp/protocol.h:864 [inline] BUG: KMSAN: uninit-value in ack_update_msk net/mptcp/options.c:1060 [inline] BUG: KMSAN: uninit-value in mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 __mptcp_expand_seq net/mptcp/options.c:1030 [inline] mptcp_expand_seq net/mptcp/protocol.h:864 [inline] ack_update_msk net/mptcp/options.c:1060 [inline] mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 tcp_data_queue+0xb4/0x7be0 net/ipv4/tcp_input.c:5233 tcp_rcv_established+0x1061/0x2510 net/ipv4/tcp_input.c:6264 tcp_v4_do_rcv+0x7f3/0x11a0 net/ipv4/tcp_ipv4.c:1916 tcp_v4_rcv+0x51df/0x5750 net/ipv4/tcp_ipv4.c:2351 ip_protocol_deliver_rcu+0x2a3/0x13d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:460 [inline] ip_rcv_finish+0x4a2/0x520 net/ipv4/ip_input.c:447 NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0xcd/0x380 net/ipv4/ip_input.c:567 __netif_receive_skb_one_core net/core/dev.c:5704 [inline] __netif_receive_skb+0x319/0xa00 net/core/dev.c:5817 process_backlog+0x4ad/0xa50 net/core/dev.c:6149 __napi_poll+0xe7/0x980 net/core/dev.c:6902 napi_poll net/core/dev.c:6971 [inline] net_rx_action+0xa5a/0x19b0 net/core/dev.c:7093 handle_softirqs+0x1a0/0x7c0 kernel/softirq.c:561 __do_softirq+0x14/0x1a kernel/softirq.c:595 do_softirq+0x9a/0x100 kernel/softirq.c:462 __local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:389 local_bh_enable include/linux/bottom_half.h:33 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline] __dev_queue_xmit+0x2758/0x57d0 net/core/dev.c:4493 dev_queue_xmit include/linux/netdevice.h:3168 [inline] neigh_hh_output include/net/neighbour.h:523 [inline] neigh_output include/net/neighbour.h:537 [inline] ip_finish_output2+0x187c/0x1b70 net/ipv4/ip_output.c:236 __ip_finish_output+0x287/0x810 ip_finish_output+0x4b/0x600 net/ipv4/ip_output.c:324 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip_output+0x15f/0x3f0 net/ipv4/ip_output.c:434 dst_output include/net/dst.h:450 [inline] ip_local_out net/ipv4/ip_output.c:130 [inline] __ip_queue_xmit+0x1f2a/0x20d0 net/ipv4/ip_output.c:536 ip_queue_xmit+0x60/0x80 net/ipv4/ip_output.c:550 __tcp_transmit_skb+0x3cea/0x4900 net/ipv4/tcp_output.c:1468 tcp_transmit_skb net/ipv4/tcp_output.c:1486 [inline] tcp_write_xmit+0x3b90/0x9070 net/ipv4/tcp_output.c:2829 __tcp_push_pending_frames+0xc4/0x380 net/ipv4/tcp_output.c:3012 tcp_send_fin+0x9f6/0xf50 net/ipv4/tcp_output.c:3618 __tcp_close+0x140c/0x1550 net/ipv4/tcp.c:3130 __mptcp_close_ssk+0x74e/0x16f0 net/mptcp/protocol.c:2496 mptcp_close_ssk+0x26b/0x2c0 net/mptcp/protocol.c:2550 mptcp_pm_nl_rm_addr_or_subflow+0x635/0xd10 net/mptcp/pm_netlink.c:889 mptcp_pm_nl_rm_subflow_received net/mptcp/pm_netlink.c:924 [inline] mptcp_pm_flush_addrs_and_subflows net/mptcp/pm_netlink.c:1688 [inline] mptcp_nl_flush_addrs_list net/mptcp/pm_netlink.c:1709 [inline] mptcp_pm_nl_flush_addrs_doit+0xe10/0x1630 net/mptcp/pm_netlink.c:1750 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] ---truncated---
5.5
Medium
CVE-2024-57984 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: i3c: dw: Fix use-after-free in dw_i3c_master driver due to race condition In dw_i3c_common_probe, &master->hj_work is bound with dw_i3c_hj_work. And dw_i3c_master_irq_handler can call dw_i3c_master_irq_handle_ibis function to start the work. If we remove the module which will call dw_i3c_common_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | dw_i3c_hj_work dw_i3c_common_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in dw_i3c_common_remove.
7.8
High
CVE-2024-57982 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.
7.1
High
CVE-2024-57981 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Fix NULL pointer dereference on certain command aborts If a command is queued to the final usable TRB of a ring segment, the enqueue pointer is advanced to the subsequent link TRB and no further. If the command is later aborted, when the abort completion is handled the dequeue pointer is advanced to the first TRB of the next segment. If no further commands are queued, xhci_handle_stopped_cmd_ring() sees the ring pointers unequal and assumes that there is a pending command, so it calls xhci_mod_cmd_timer() which crashes if cur_cmd was NULL. Don't attempt timer setup if cur_cmd is NULL. The subsequent doorbell ring likely is unnecessary too, but it's harmless. Leave it alone. This is probably Bug 219532, but no confirmation has been received. The issue has been independently reproduced and confirmed fixed using a USB MCU programmed to NAK the Status stage of SET_ADDRESS forever. Everything continued working normally after several prevented crashes.
5.5
Medium
CVE-2024-57980 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix double free in error path If the uvc_status_init() function fails to allocate the int_urb, it will free the dev->status pointer but doesn't reset the pointer to NULL. This results in the kfree() call in uvc_status_cleanup() trying to double-free the memory. Fix it by resetting the dev->status pointer to NULL after freeing it. Reviewed by: Ricardo Ribalda
7.8
High
CVE-2024-57979 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: pps: Fix a use-after-free On a board running ntpd and gpsd, I'm seeing a consistent use-after-free in sys_exit() from gpsd when rebooting: pps pps1: removed ------------[ cut here ]------------ kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called. WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150 CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1 Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kobject_put+0x120/0x150 lr : kobject_put+0x120/0x150 sp : ffffffc0803d3ae0 x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001 x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440 x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600 x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20 x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: kobject_put+0x120/0x150 cdev_put+0x20/0x3c __fput+0x2c4/0x2d8 ____fput+0x1c/0x38 task_work_run+0x70/0xfc do_exit+0x2a0/0x924 do_group_exit+0x34/0x90 get_signal+0x7fc/0x8c0 do_signal+0x128/0x13b4 do_notify_resume+0xdc/0x160 el0_svc+0xd4/0xf8 el0t_64_sync_handler+0x140/0x14c el0t_64_sync+0x190/0x194 ---[ end trace 0000000000000000 ]--- ...followed by more symptoms of corruption, with similar stacks: refcount_t: underflow; use-after-free. kernel BUG at lib/list_debug.c:62! Kernel panic - not syncing: Oops - BUG: Fatal exception This happens because pps_device_destruct() frees the pps_device with the embedded cdev immediately after calling cdev_del(), but, as the comment above cdev_del() notes, fops for previously opened cdevs are still callable even after cdev_del() returns. I think this bug has always been there: I can't explain why it suddenly started happening every time I reboot this particular board. In commit d953e0e837e6 ("pps: Fix a use-after free bug when unregistering a source."), George Spelvin suggested removing the embedded cdev. That seems like the simplest way to fix this, so I've implemented his suggestion, using __register_chrdev() with pps_idr becoming the source of truth for which minor corresponds to which device. But now that pps_idr defines userspace visibility instead of cdev_add(), we need to be sure the pps->dev refcount can't reach zero while userspace can still find it again. So, the idr_remove() call moves to pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev. pps_core: source serial1 got cdev (251:1) <...> pps pps1: removed pps_core: unregistering pps1 pps_core: deallocating pps1
7.8
High
CVE-2024-57977 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: memcg: fix soft lockup in the OOM process A soft lockup issue was found in the product with about 56,000 tasks were in the OOM cgroup, it was traversing them when the soft lockup was triggered. watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066] CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G Hardware name: Huawei Cloud OpenStack Nova, BIOS RIP: 0010:console_unlock+0x343/0x540 RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247 RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040 R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0 R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vprintk_emit+0x193/0x280 printk+0x52/0x6e dump_task+0x114/0x130 mem_cgroup_scan_tasks+0x76/0x100 dump_header+0x1fe/0x210 oom_kill_process+0xd1/0x100 out_of_memory+0x125/0x570 mem_cgroup_out_of_memory+0xb5/0xd0 try_charge+0x720/0x770 mem_cgroup_try_charge+0x86/0x180 mem_cgroup_try_charge_delay+0x1c/0x40 do_anonymous_page+0xb5/0x390 handle_mm_fault+0xc4/0x1f0 This is because thousands of processes are in the OOM cgroup, it takes a long time to traverse all of them. As a result, this lead to soft lockup in the OOM process. To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks' function per 1000 iterations. For global OOM, call 'touch_softlockup_watchdog' per 1000 iterations to avoid this issue.
5.5
Medium
CVE-2024-57973 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: rdma/cxgb4: Prevent potential integer overflow on 32bit The "gl->tot_len" variable is controlled by the user. It comes from process_responses(). On 32bit systems, the "gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header)" addition could have an integer wrapping bug. Use size_add() to prevent this.
5.5
Medium
CVE-2022-49728 2025-02-26 02h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix signed integer overflow in __ip6_append_data Resurrect ubsan overflow checks and ubsan report this warning, fix it by change the variable [length] type to size_t. UBSAN: signed-integer-overflow in net/ipv6/ip6_output.c:1489:19 2147479552 + 8567 cannot be represented in type 'int' CPU: 0 PID: 253 Comm: err Not tainted 5.16.0+ #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x214/0x230 show_stack+0x30/0x78 dump_stack_lvl+0xf8/0x118 dump_stack+0x18/0x30 ubsan_epilogue+0x18/0x60 handle_overflow+0xd0/0xf0 __ubsan_handle_add_overflow+0x34/0x44 __ip6_append_data.isra.48+0x1598/0x1688 ip6_append_data+0x128/0x260 udpv6_sendmsg+0x680/0xdd0 inet6_sendmsg+0x54/0x90 sock_sendmsg+0x70/0x88 ____sys_sendmsg+0xe8/0x368 ___sys_sendmsg+0x98/0xe0 __sys_sendmmsg+0xf4/0x3b8 __arm64_sys_sendmmsg+0x34/0x48 invoke_syscall+0x64/0x160 el0_svc_common.constprop.4+0x124/0x300 do_el0_svc+0x44/0xc8 el0_svc+0x3c/0x1e8 el0t_64_sync_handler+0x88/0xb0 el0t_64_sync+0x16c/0x170 Changes since v1: -Change the variable [length] type to unsigned, as Eric Dumazet suggested. Changes since v2: -Don't change exthdrlen type in ip6_make_skb, as Paolo Abeni suggested. Changes since v3: -Don't change ulen type in udpv6_sendmsg and l2tp_ip6_sendmsg, as Jakub Kicinski suggested.
5.5
Medium
CVE-2022-49651 2025-02-26 02h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: srcu: Tighten cleanup_srcu_struct() GP checks Currently, cleanup_srcu_struct() checks for a grace period in progress, but it does not check for a grace period that has not yet started but which might start at any time. Such a situation could result in a use-after-free bug, so this commit adds a check for a grace period that is needed but not yet started to cleanup_srcu_struct().
7.8
High
CVE-2022-49636 2025-02-26 02h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: vlan: fix memory leak in vlan_newlink() Blamed commit added back a bug I fixed in commit 9bbd917e0bec ("vlan: fix memory leak in vlan_dev_set_egress_priority") If a memory allocation fails in vlan_changelink() after other allocations succeeded, we need to call vlan_dev_free_egress_priority() to free all allocated memory because after a failed ->newlink() we do not call any methods like ndo_uninit() or dev->priv_destructor(). In following example, if the allocation for last element 2000:2001 fails, we need to free eight prior allocations: ip link add link dummy0 dummy0.100 type vlan id 100 \ egress-qos-map 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 2000:2001 syzbot report was: BUG: memory leak unreferenced object 0xffff888117bd1060 (size 32): comm "syz-executor408", pid 3759, jiffies 4294956555 (age 34.090s) hex dump (first 32 bytes): 09 00 00 00 00 a0 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [] kmalloc include/linux/slab.h:600 [inline] [] vlan_dev_set_egress_priority+0xed/0x170 net/8021q/vlan_dev.c:193 [] vlan_changelink+0x178/0x1d0 net/8021q/vlan_netlink.c:128 [] vlan_newlink+0x148/0x260 net/8021q/vlan_netlink.c:185 [] rtnl_newlink_create net/core/rtnetlink.c:3363 [inline] [] __rtnl_newlink+0xa58/0xdc0 net/core/rtnetlink.c:3580 [] rtnl_newlink+0x49/0x70 net/core/rtnetlink.c:3593 [] rtnetlink_rcv_msg+0x21c/0x5c0 net/core/rtnetlink.c:6089 [] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2501 [] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [] sock_sendmsg_nosec net/socket.c:714 [inline] [] sock_sendmsg+0x56/0x80 net/socket.c:734 [] ____sys_sendmsg+0x36c/0x390 net/socket.c:2488 [] ___sys_sendmsg+0x8b/0xd0 net/socket.c:2542 [] __sys_sendmsg net/socket.c:2571 [inline] [] __do_sys_sendmsg net/socket.c:2580 [inline] [] __se_sys_sendmsg net/socket.c:2578 [inline] [] __x64_sys_sendmsg+0x78/0xf0 net/socket.c:2578 [] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [] entry_SYSCALL_64_after_hwframe+0x46/0xb0
5.5
Medium
CVE-2022-49622 2025-02-26 02h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: avoid skb access on nf_stolen When verdict is NF_STOLEN, the skb might have been freed. When tracing is enabled, this can result in a use-after-free: 1. access to skb->nf_trace 2. access to skb->mark 3. computation of trace id 4. dump of packet payload To avoid 1, keep a cached copy of skb->nf_trace in the trace state struct. Refresh this copy whenever verdict is != STOLEN. Avoid 2 by skipping skb->mark access if verdict is STOLEN. 3 is avoided by precomputing the trace id. Only dump the packet when verdict is not "STOLEN".
7.8
High
CVE-2022-49547 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock between concurrent dio writes when low on free data space When reserving data space for a direct IO write we can end up deadlocking if we have multiple tasks attempting a write to the same file range, there are multiple extents covered by that file range, we are low on available space for data and the writes don't expand the inode's i_size. The deadlock can happen like this: 1) We have a file with an i_size of 1M, at offset 0 it has an extent with a size of 128K and at offset 128K it has another extent also with a size of 128K; 2) Task A does a direct IO write against file range [0, 256K), and because the write is within the i_size boundary, it takes the inode's lock (VFS level) in shared mode; 3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and then gets the extent map for the extent covering the range [0, 128K). At btrfs_get_blocks_direct_write(), it creates an ordered extent for that file range ([0, 128K)); 4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file range [0, 256K); 5) Task A executes btrfs_dio_iomap_begin() again, this time for the file range [128K, 256K), and locks the file range [128K, 256K); 6) Task B starts a direct IO write against file range [0, 256K) as well. It also locks the inode in shared mode, as it's within the i_size limit, and then tries to lock file range [0, 256K). It is able to lock the subrange [0, 128K) but then blocks waiting for the range [128K, 256K), as it is currently locked by task A; 7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data space. Because we are low on available free space, it triggers the async data reclaim task, and waits for it to reserve data space; 8) The async reclaim task decides to wait for all existing ordered extents to complete (through btrfs_wait_ordered_roots()). It finds the ordered extent previously created by task A for the file range [0, 128K) and waits for it to complete; 9) The ordered extent for the file range [0, 128K) can not complete because it blocks at btrfs_finish_ordered_io() when trying to lock the file range [0, 128K). This results in a deadlock, because: - task B is holding the file range [0, 128K) locked, waiting for the range [128K, 256K) to be unlocked by task A; - task A is holding the file range [128K, 256K) locked and it's waiting for the async data reclaim task to satisfy its space reservation request; - the async data reclaim task is waiting for ordered extent [0, 128K) to complete, but the ordered extent can not complete because the file range [0, 128K) is currently locked by task B, which is waiting on task A to unlock file range [128K, 256K) and task A waiting on the async data reclaim task. This results in a deadlock between 4 task: task A, task B, the async data reclaim task and the task doing ordered extent completion (a work queue task). This type of deadlock can sporadically be triggered by the test case generic/300 from fstests, and results in a stack trace like the following: [12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds. [12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000 [12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [12084.036599] Call Trace: [12084.036601] [12084.036606] __schedule+0x3cb/0xed0 [12084.036616] schedule+0x4e/0xb0 [12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs] [12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs] [12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs] [12084.0367 ---truncated---
5.5
Medium
CVE-2022-49535 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix null pointer dereference after failing to issue FLOGI and PLOGI If lpfc_issue_els_flogi() fails and returns non-zero status, the node reference count is decremented to trigger the release of the nodelist structure. However, if there is a prior registration or dev-loss-evt work pending, the node may be released prematurely. When dev-loss-evt completes, the released node is referenced causing a use-after-free null pointer dereference. Similarly, when processing non-zero ELS PLOGI completion status in lpfc_cmpl_els_plogi(), the ndlp flags are checked for a transport registration before triggering node removal. If dev-loss-evt work is pending, the node may be released prematurely and a subsequent call to lpfc_dev_loss_tmo_handler() results in a use after free ndlp dereference. Add test for pending dev-loss before decrementing the node reference count for FLOGI, PLOGI, PRLI, and ADISC handling.
7.8
High
CVE-2022-49534 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Protect memory leak for NPIV ports sending PLOGI_RJT There is a potential memory leak in lpfc_ignore_els_cmpl() and lpfc_els_rsp_reject() that was allocated from NPIV PLOGI_RJT (lpfc_rcv_plogi()'s login_mbox). Check if cmdiocb->context_un.mbox was allocated in lpfc_ignore_els_cmpl(), and then free it back to phba->mbox_mem_pool along with mbox->ctx_buf for service parameters. For lpfc_els_rsp_reject() failure, free both the ctx_buf for service parameters and the login_mbox.
5.5
Medium
CVE-2022-49531 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: loop: implement ->free_disk Ensure that the lo_device which is stored in the gendisk private data is valid until the gendisk is freed. Currently the loop driver uses a lot of effort to make sure a device is not freed when it is still in use, but to to fix a potential deadlock this will be relaxed a bit soon.
5.5
Medium
CVE-2022-49529 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/pm: fix the null pointer while the smu is disabled It needs to check if the pp_funcs is initialized while release the context, otherwise it will trigger null pointer panic while the software smu is not enabled. [ 1109.404555] BUG: kernel NULL pointer dereference, address: 0000000000000078 [ 1109.404609] #PF: supervisor read access in kernel mode [ 1109.404638] #PF: error_code(0x0000) - not-present page [ 1109.404657] PGD 0 P4D 0 [ 1109.404672] Oops: 0000 [#1] PREEMPT SMP NOPTI [ 1109.404701] CPU: 7 PID: 9150 Comm: amdgpu_test Tainted: G OEL 5.16.0-custom #1 [ 1109.404732] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [ 1109.404765] RIP: 0010:amdgpu_dpm_force_performance_level+0x1d/0x170 [amdgpu] [ 1109.405109] Code: 5d c3 44 8b a3 f0 80 00 00 eb e5 66 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 08 4c 8b b7 f0 7d 00 00 <49> 83 7e 78 00 0f 84 f2 00 00 00 80 bf 87 80 00 00 00 48 89 fb 0f [ 1109.405176] RSP: 0018:ffffaf3083ad7c20 EFLAGS: 00010282 [ 1109.405203] RAX: 0000000000000000 RBX: ffff9796b1c14600 RCX: 0000000002862007 [ 1109.405229] RDX: ffff97968591c8c0 RSI: 0000000000000001 RDI: ffff9796a3700000 [ 1109.405260] RBP: ffffaf3083ad7c50 R08: ffffffff9897de00 R09: ffff979688d9db60 [ 1109.405286] R10: 0000000000000000 R11: ffff979688d9db90 R12: 0000000000000001 [ 1109.405316] R13: ffff9796a3700000 R14: 0000000000000000 R15: ffff9796a3708fc0 [ 1109.405345] FS: 00007ff055cff180(0000) GS:ffff9796bfdc0000(0000) knlGS:0000000000000000 [ 1109.405378] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1109.405400] CR2: 0000000000000078 CR3: 000000000a394000 CR4: 00000000000506e0 [ 1109.405434] Call Trace: [ 1109.405445] [ 1109.405456] ? delete_object_full+0x1d/0x20 [ 1109.405480] amdgpu_ctx_set_stable_pstate+0x7c/0xa0 [amdgpu] [ 1109.405698] amdgpu_ctx_fini.part.0+0xcb/0x100 [amdgpu] [ 1109.405911] amdgpu_ctx_do_release+0x71/0x80 [amdgpu] [ 1109.406121] amdgpu_ctx_ioctl+0x52d/0x550 [amdgpu] [ 1109.406327] ? _raw_spin_unlock+0x1a/0x30 [ 1109.406354] ? drm_gem_handle_delete+0x81/0xb0 [drm] [ 1109.406400] ? amdgpu_ctx_get_entity+0x2c0/0x2c0 [amdgpu] [ 1109.406609] drm_ioctl_kernel+0xb6/0x140 [drm]
5.5
Medium
CVE-2022-49516 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: always check VF VSI pointer values The ice_get_vf_vsi function can return NULL in some cases, such as if handling messages during a reset where the VSI is being removed and recreated. Several places throughout the driver do not bother to check whether this VSI pointer is valid. Static analysis tools maybe report issues because they detect paths where a potentially NULL pointer could be dereferenced. Fix this by checking the return value of ice_get_vf_vsi everywhere.
5.5
Medium
CVE-2022-49496 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: prevent kernel crash when rmmod mtk-vcodec-dec.ko If the driver support subdev mode, the parameter "dev->pm.dev" will be NULL in mtk_vcodec_dec_remove. Kernel will crash when try to rmmod mtk-vcodec-dec.ko. [ 4380.702726] pc : do_raw_spin_trylock+0x4/0x80 [ 4380.707075] lr : _raw_spin_lock_irq+0x90/0x14c [ 4380.711509] sp : ffff80000819bc10 [ 4380.714811] x29: ffff80000819bc10 x28: ffff3600c03e4000 x27: 0000000000000000 [ 4380.721934] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 [ 4380.729057] x23: ffff3600c0f34930 x22: ffffd5e923549000 x21: 0000000000000220 [ 4380.736179] x20: 0000000000000208 x19: ffffd5e9213e8ebc x18: 0000000000000020 [ 4380.743298] x17: 0000002000000000 x16: ffffd5e9213e8e90 x15: 696c346f65646976 [ 4380.750420] x14: 0000000000000000 x13: 0000000000000001 x12: 0000000000000040 [ 4380.757542] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 [ 4380.764664] x8 : 0000000000000000 x7 : ffff3600c7273ae8 x6 : ffffd5e9213e8ebc [ 4380.771786] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000 [ 4380.778908] x2 : 0000000000000000 x1 : ffff3600c03e4000 x0 : 0000000000000208 [ 4380.786031] Call trace: [ 4380.788465] do_raw_spin_trylock+0x4/0x80 [ 4380.792462] __pm_runtime_disable+0x2c/0x1b0 [ 4380.796723] mtk_vcodec_dec_remove+0x5c/0xa0 [mtk_vcodec_dec] [ 4380.802466] platform_remove+0x2c/0x60 [ 4380.806204] __device_release_driver+0x194/0x250 [ 4380.810810] driver_detach+0xc8/0x15c [ 4380.814462] bus_remove_driver+0x5c/0xb0 [ 4380.818375] driver_unregister+0x34/0x64 [ 4380.822288] platform_driver_unregister+0x18/0x24 [ 4380.826979] mtk_vcodec_dec_driver_exit+0x1c/0x888 [mtk_vcodec_dec] [ 4380.833240] __arm64_sys_delete_module+0x190/0x224 [ 4380.838020] invoke_syscall+0x48/0x114 [ 4380.841760] el0_svc_common.constprop.0+0x60/0x11c [ 4380.846540] do_el0_svc+0x28/0x90 [ 4380.849844] el0_svc+0x4c/0x100 [ 4380.852975] el0t_64_sync_handler+0xec/0xf0 [ 4380.857148] el0t_64_sync+0x190/0x194 [ 4380.860801] Code: 94431515 17ffffca d503201f d503245f (b9400004)
5.5
Medium
CVE-2022-49484 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: mt76: mt7915: fix possible NULL pointer dereference in mt7915_mac_fill_rx_vector Fix possible NULL pointer dereference in mt7915_mac_fill_rx_vector routine if the chip does not support dbdc and the hw reports band_idx set to 1.
5.5
Medium
CVE-2022-49476 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix kernel crash at mt7921_pci_remove The crash log shown it is possible that mt7921_irq_handler is called while devm_free_irq is being handled so mt76_free_device need to be postponed until devm_free_irq is completed to solve the crash we free the mt76 device too early. [ 9299.339655] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 9299.339705] #PF: supervisor read access in kernel mode [ 9299.339735] #PF: error_code(0x0000) - not-present page [ 9299.339768] PGD 0 P4D 0 [ 9299.339786] Oops: 0000 [#1] SMP PTI [ 9299.339812] CPU: 1 PID: 1624 Comm: prepare-suspend Not tainted 5.15.14-1.fc32.qubes.x86_64 #1 [ 9299.339863] Hardware name: Xen HVM domU, BIOS 4.14.3 01/20/2022 [ 9299.339901] RIP: 0010:mt7921_irq_handler+0x1e/0x70 [mt7921e] [ 9299.340048] RSP: 0018:ffffa81b80c27cb0 EFLAGS: 00010082 [ 9299.340081] RAX: 0000000000000000 RBX: ffff98a4cb752020 RCX: ffffffffa96211c5 [ 9299.340123] RDX: 0000000000000000 RSI: 00000000000d4204 RDI: ffff98a4cb752020 [ 9299.340165] RBP: ffff98a4c28a62a4 R08: ffff98a4c37a96c0 R09: 0000000080150011 [ 9299.340207] R10: 0000000040000000 R11: 0000000000000000 R12: ffff98a4c4eaa080 [ 9299.340249] R13: ffff98a4c28a6360 R14: ffff98a4cb752020 R15: ffff98a4c28a6228 [ 9299.340297] FS: 00007260840d3740(0000) GS:ffff98a4ef700000(0000) knlGS:0000000000000000 [ 9299.340345] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9299.340383] CR2: 0000000000000008 CR3: 0000000004c56001 CR4: 0000000000770ee0 [ 9299.340432] PKRU: 55555554 [ 9299.340449] Call Trace: [ 9299.340467] [ 9299.340485] __free_irq+0x221/0x350 [ 9299.340527] free_irq+0x30/0x70 [ 9299.340553] devm_free_irq+0x55/0x80 [ 9299.340579] mt7921_pci_remove+0x2f/0x40 [mt7921e] [ 9299.340616] pci_device_remove+0x3b/0xa0 [ 9299.340651] __device_release_driver+0x17a/0x240 [ 9299.340686] device_driver_detach+0x3c/0xa0 [ 9299.340714] unbind_store+0x113/0x130 [ 9299.340740] kernfs_fop_write_iter+0x124/0x1b0 [ 9299.340775] new_sync_write+0x15c/0x1f0 [ 9299.340806] vfs_write+0x1d2/0x270 [ 9299.340831] ksys_write+0x67/0xe0 [ 9299.340857] do_syscall_64+0x3b/0x90 [ 9299.340887] entry_SYSCALL_64_after_hwframe+0x44/0xae
5.5
Medium
CVE-2022-49471 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: rtw89: cfo: check mac_id to avoid out-of-bounds Somehow, hardware reports incorrect mac_id and pollute memory. Check index before we access the array. UBSAN: array-index-out-of-bounds in rtw89/phy.c:2517:23 index 188 is out of range for type 's32 [64]' CPU: 1 PID: 51550 Comm: irq/35-rtw89_pc Tainted: G OE Call Trace: show_stack+0x52/0x58 dump_stack_lvl+0x4c/0x63 dump_stack+0x10/0x12 ubsan_epilogue+0x9/0x45 __ubsan_handle_out_of_bounds.cold+0x44/0x49 ? __alloc_skb+0x92/0x1d0 rtw89_phy_cfo_parse+0x44/0x7f [rtw89_core] rtw89_core_rx+0x261/0x871 [rtw89_core] ? __alloc_skb+0xee/0x1d0 rtw89_pci_napi_poll+0x3fa/0x4ea [rtw89_pci] __napi_poll+0x33/0x1a0 net_rx_action+0x126/0x260 ? __queue_work+0x217/0x4c0 __do_softirq+0xd9/0x315 ? disable_irq_nosync+0x10/0x10 do_softirq.part.0+0x6d/0x90 __local_bh_enable_ip+0x62/0x70 rtw89_pci_interrupt_threadfn+0x182/0x1a6 [rtw89_pci] irq_thread_fn+0x28/0x60 irq_thread+0xc8/0x190 ? irq_thread_fn+0x60/0x60 kthread+0x16b/0x190 ? irq_thread_check_affinity+0xe0/0xe0 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x22/0x30
7.8
High
CVE-2022-49465 2025-02-26 02h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-throttle: Set BIO_THROTTLED when bio has been throttled 1.In current process, all bio will set the BIO_THROTTLED flag after __blk_throtl_bio(). 2.If bio needs to be throttled, it will start the timer and stop submit bio directly. Bio will submit in blk_throtl_dispatch_work_fn() when the timer expires.But in the current process, if bio is throttled. The BIO_THROTTLED will be set to bio after timer start. If the bio has been completed, it may cause use-after-free blow. BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70 Read of size 2 at addr ffff88801b8902d4 by task fio/26380 dump_stack+0x9b/0xce print_address_description.constprop.6+0x3e/0x60 kasan_report.cold.9+0x22/0x3a blk_throtl_bio+0x12f0/0x2c70 submit_bio_checks+0x701/0x1550 submit_bio_noacct+0x83/0xc80 submit_bio+0xa7/0x330 mpage_readahead+0x380/0x500 read_pages+0x1c1/0xbf0 page_cache_ra_unbounded+0x471/0x6f0 do_page_cache_ra+0xda/0x110 ondemand_readahead+0x442/0xae0 page_cache_async_ra+0x210/0x300 generic_file_buffered_read+0x4d9/0x2130 generic_file_read_iter+0x315/0x490 blkdev_read_iter+0x113/0x1b0 aio_read+0x2ad/0x450 io_submit_one+0xc8e/0x1d60 __se_sys_io_submit+0x125/0x350 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Allocated by task 26380: kasan_save_stack+0x19/0x40 __kasan_kmalloc.constprop.2+0xc1/0xd0 kmem_cache_alloc+0x146/0x440 mempool_alloc+0x125/0x2f0 bio_alloc_bioset+0x353/0x590 mpage_alloc+0x3b/0x240 do_mpage_readpage+0xddf/0x1ef0 mpage_readahead+0x264/0x500 read_pages+0x1c1/0xbf0 page_cache_ra_unbounded+0x471/0x6f0 do_page_cache_ra+0xda/0x110 ondemand_readahead+0x442/0xae0 page_cache_async_ra+0x210/0x300 generic_file_buffered_read+0x4d9/0x2130 generic_file_read_iter+0x315/0x490 blkdev_read_iter+0x113/0x1b0 aio_read+0x2ad/0x450 io_submit_one+0xc8e/0x1d60 __se_sys_io_submit+0x125/0x350 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 0: kasan_save_stack+0x19/0x40 kasan_set_track+0x1c/0x30 kasan_set_free_info+0x1b/0x30 __kasan_slab_free+0x111/0x160 kmem_cache_free+0x94/0x460 mempool_free+0xd6/0x320 bio_free+0xe0/0x130 bio_put+0xab/0xe0 bio_endio+0x3a6/0x5d0 blk_update_request+0x590/0x1370 scsi_end_request+0x7d/0x400 scsi_io_completion+0x1aa/0xe50 scsi_softirq_done+0x11b/0x240 blk_mq_complete_request+0xd4/0x120 scsi_mq_done+0xf0/0x200 virtscsi_vq_done+0xbc/0x150 vring_interrupt+0x179/0x390 __handle_irq_event_percpu+0xf7/0x490 handle_irq_event_percpu+0x7b/0x160 handle_irq_event+0xcc/0x170 handle_edge_irq+0x215/0xb20 common_interrupt+0x60/0x120 asm_common_interrupt+0x1e/0x40 Fix this by move BIO_THROTTLED set into the queue_lock.
7.8
High
CVE-2022-49390 2025-02-26 02h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: macsec: fix UAF bug for real_dev Create a new macsec device but not get reference to real_dev. That can not ensure that real_dev is freed after macsec. That will trigger the UAF bug for real_dev as following: ================================================================== BUG: KASAN: use-after-free in macsec_get_iflink+0x5f/0x70 drivers/net/macsec.c:3662 Call Trace: ... macsec_get_iflink+0x5f/0x70 drivers/net/macsec.c:3662 dev_get_iflink+0x73/0xe0 net/core/dev.c:637 default_operstate net/core/link_watch.c:42 [inline] rfc2863_policy+0x233/0x2d0 net/core/link_watch.c:54 linkwatch_do_dev+0x2a/0x150 net/core/link_watch.c:161 Allocated by task 22209: ... alloc_netdev_mqs+0x98/0x1100 net/core/dev.c:10549 rtnl_create_link+0x9d7/0xc00 net/core/rtnetlink.c:3235 veth_newlink+0x20e/0xa90 drivers/net/veth.c:1748 Freed by task 8: ... kfree+0xd6/0x4d0 mm/slub.c:4552 kvfree+0x42/0x50 mm/util.c:615 device_release+0x9f/0x240 drivers/base/core.c:2229 kobject_cleanup lib/kobject.c:673 [inline] kobject_release lib/kobject.c:704 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x1c8/0x540 lib/kobject.c:721 netdev_run_todo+0x72e/0x10b0 net/core/dev.c:10327 After commit faab39f63c1f ("net: allow out-of-order netdev unregistration") and commit e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"), we can add dev_hold_track() in macsec_dev_init() and dev_put_track() in macsec_free_netdev() to fix the problem.
7.8
High
CVE-2022-49359 2025-02-26 02h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/panfrost: Job should reference MMU not file_priv For a while now it's been allowed for a MMU context to outlive it's corresponding panfrost_priv, however the job structure still references panfrost_priv to get hold of the MMU context. If panfrost_priv has been freed this is a use-after-free which I've been able to trigger resulting in a splat. To fix this, drop the reference to panfrost_priv in the job structure and add a direct reference to the MMU structure which is what's actually needed.
7.8
High
CVE-2022-49342 2025-02-26 02h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: ethernet: bgmac: Fix refcount leak in bcma_mdio_mii_register of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.
5.5
Medium
CVE-2022-49317 2025-02-26 02h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: avoid infinite loop to flush node pages xfstests/generic/475 can give EIO all the time which give an infinite loop to flush node page like below. Let's avoid it. [16418.518551] Call Trace: [16418.518553] ? dm_submit_bio+0x48/0x400 [16418.518574] ? submit_bio_checks+0x1ac/0x5a0 [16418.525207] __submit_bio+0x1a9/0x230 [16418.525210] ? kmem_cache_alloc+0x29e/0x3c0 [16418.525223] submit_bio_noacct+0xa8/0x2b0 [16418.525226] submit_bio+0x4d/0x130 [16418.525238] __submit_bio+0x49/0x310 [f2fs] [16418.525339] ? bio_add_page+0x6a/0x90 [16418.525344] f2fs_submit_page_bio+0x134/0x1f0 [f2fs] [16418.525365] read_node_page+0x125/0x1b0 [f2fs] [16418.525388] __get_node_page.part.0+0x58/0x3f0 [f2fs] [16418.525409] __get_node_page+0x2f/0x60 [f2fs] [16418.525431] f2fs_get_dnode_of_data+0x423/0x860 [f2fs] [16418.525452] ? asm_sysvec_apic_timer_interrupt+0x12/0x20 [16418.525458] ? __mod_memcg_state.part.0+0x2a/0x30 [16418.525465] ? __mod_memcg_lruvec_state+0x27/0x40 [16418.525467] ? __xa_set_mark+0x57/0x70 [16418.525472] f2fs_do_write_data_page+0x10e/0x7b0 [f2fs] [16418.525493] f2fs_write_single_data_page+0x555/0x830 [f2fs] [16418.525514] ? sysvec_apic_timer_interrupt+0x4e/0x90 [16418.525518] ? asm_sysvec_apic_timer_interrupt+0x12/0x20 [16418.525523] f2fs_write_cache_pages+0x303/0x880 [f2fs] [16418.525545] ? blk_flush_plug_list+0x47/0x100 [16418.525548] f2fs_write_data_pages+0xfd/0x320 [f2fs] [16418.525569] do_writepages+0xd5/0x210 [16418.525648] filemap_fdatawrite_wbc+0x7d/0xc0 [16418.525655] filemap_fdatawrite+0x50/0x70 [16418.525658] f2fs_sync_dirty_inodes+0xa4/0x230 [f2fs] [16418.525679] f2fs_write_checkpoint+0x16d/0x1720 [f2fs] [16418.525699] ? ttwu_do_wakeup+0x1c/0x160 [16418.525709] ? ttwu_do_activate+0x6d/0xd0 [16418.525711] ? __wait_for_common+0x11d/0x150 [16418.525715] kill_f2fs_super+0xca/0x100 [f2fs] [16418.525733] deactivate_locked_super+0x3b/0xb0 [16418.525739] deactivate_super+0x40/0x50 [16418.525741] cleanup_mnt+0x139/0x190 [16418.525747] __cleanup_mnt+0x12/0x20 [16418.525749] task_work_run+0x6d/0xa0 [16418.525765] exit_to_user_mode_prepare+0x1ad/0x1b0 [16418.525771] syscall_exit_to_user_mode+0x27/0x50 [16418.525774] do_syscall_64+0x48/0xc0 [16418.525776] entry_SYSCALL_64_after_hwframe+0x44/0xae
5.5
Medium
CVE-2022-49218 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/dp: Fix OOB read when handling Post Cursor2 register The link_status array was not large enough to read the Adjust Request Post Cursor2 register, so remove the common helper function to avoid an OOB read, found with a -Warray-bounds build: drivers/gpu/drm/drm_dp_helper.c: In function 'drm_dp_get_adjust_request_post_cursor': drivers/gpu/drm/drm_dp_helper.c:59:27: error: array subscript 10 is outside array bounds of 'const u8[6]' {aka 'const unsigned char[6]'} [-Werror=array-bounds] 59 | return link_status[r - DP_LANE0_1_STATUS]; | ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/drm_dp_helper.c:147:51: note: while referencing 'link_status' 147 | u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE], | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Replace the only user of the helper with an open-coded fetch and decode, similar to drivers/gpu/drm/amd/display/dc/core/dc_link_dp.c.
7.1
High
CVE-2022-49177 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: hwrng: cavium - fix NULL but dereferenced coccicheck error Fix following coccicheck warning: ./drivers/char/hw_random/cavium-rng-vf.c:182:17-20: ERROR: pdev is NULL but dereferenced.
5.5
Medium
CVE-2022-49168 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: do not clean up repair bio if submit fails The submit helper will always run bio_endio() on the bio if it fails to submit, so cleaning up the bio just leads to a variety of use-after-free and NULL pointer dereference bugs because we race with the endio function that is cleaning up the bio. Instead just return BLK_STS_OK as the repair function has to continue to process the rest of the pages, and the endio for the repair bio will do the appropriate cleanup for the page that it was given.
7.8
High
CVE-2022-49134 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum: Guard against invalid local ports When processing events generated by the device's firmware, the driver protects itself from events reported for non-existent local ports, but not for the CPU port (local port 0), which exists, but does not have all the fields as any local port. This can result in a NULL pointer dereference when trying access 'struct mlxsw_sp_port' fields which are not initialized for CPU port. Commit 63b08b1f6834 ("mlxsw: spectrum: Protect driver from buggy firmware") already handled such issue by bailing early when processing a PUDE event reported for the CPU port. Generalize the approach by moving the check to a common function and making use of it in all relevant places.
5.5
Medium
CVE-2022-49125 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/sprd: fix potential NULL dereference 'drm' could be null in sprd_drm_shutdown, and drm_warn maybe dereference it, remove this warning log. v1 -> v2: - Split checking platform_get_resource() return value to a separate patch - Use dev_warn() instead of removing the warning log
5.5
Medium
CVE-2022-49123 2025-02-26 01h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: ath11k: Fix frames flush failure caused by deadlock We are seeing below warnings: kernel: [25393.301506] ath11k_pci 0000:01:00.0: failed to flush mgmt transmit queue 0 kernel: [25398.421509] ath11k_pci 0000:01:00.0: failed to flush mgmt transmit queue 0 kernel: [25398.421831] ath11k_pci 0000:01:00.0: dropping mgmt frame for vdev 0, is_started 0 this means ath11k fails to flush mgmt. frames because wmi_mgmt_tx_work has no chance to run in 5 seconds. By setting /proc/sys/kernel/hung_task_timeout_secs to 20 and increasing ATH11K_FLUSH_TIMEOUT to 50 we get below warnings: kernel: [ 120.763160] INFO: task wpa_supplicant:924 blocked for more than 20 seconds. kernel: [ 120.763169] Not tainted 5.10.90 #12 kernel: [ 120.763177] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kernel: [ 120.763186] task:wpa_supplicant state:D stack: 0 pid: 924 ppid: 1 flags:0x000043a0 kernel: [ 120.763201] Call Trace: kernel: [ 120.763214] __schedule+0x785/0x12fa kernel: [ 120.763224] ? lockdep_hardirqs_on_prepare+0xe2/0x1bb kernel: [ 120.763242] schedule+0x7e/0xa1 kernel: [ 120.763253] schedule_timeout+0x98/0xfe kernel: [ 120.763266] ? run_local_timers+0x4a/0x4a kernel: [ 120.763291] ath11k_mac_flush_tx_complete+0x197/0x2b1 [ath11k 13c3a9bf37790f4ac8103b3decf7ab4008ac314a] kernel: [ 120.763306] ? init_wait_entry+0x2e/0x2e kernel: [ 120.763343] __ieee80211_flush_queues+0x167/0x21f [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763378] __ieee80211_recalc_idle+0x105/0x125 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763411] ieee80211_recalc_idle+0x14/0x27 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763441] ieee80211_free_chanctx+0x77/0xa2 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763473] __ieee80211_vif_release_channel+0x100/0x131 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763540] ieee80211_vif_release_channel+0x66/0x81 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763572] ieee80211_destroy_auth_data+0xa3/0xe6 [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763612] ieee80211_mgd_deauth+0x178/0x29b [mac80211 335da900954f1c5ea7f1613d92088ce83342042c] kernel: [ 120.763654] cfg80211_mlme_deauth+0x1a8/0x22c [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be] kernel: [ 120.763697] nl80211_deauthenticate+0xfa/0x123 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be] kernel: [ 120.763715] genl_rcv_msg+0x392/0x3c2 kernel: [ 120.763750] ? nl80211_associate+0x432/0x432 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be] kernel: [ 120.763782] ? nl80211_associate+0x432/0x432 [cfg80211 8945aa5bc2af5f6972336665d8ad6f9c191ad5be] kernel: [ 120.763802] ? genl_rcv+0x36/0x36 kernel: [ 120.763814] netlink_rcv_skb+0x89/0xf7 kernel: [ 120.763829] genl_rcv+0x28/0x36 kernel: [ 120.763840] netlink_unicast+0x179/0x24b kernel: [ 120.763854] netlink_sendmsg+0x393/0x401 kernel: [ 120.763872] sock_sendmsg+0x72/0x76 kernel: [ 120.763886] ____sys_sendmsg+0x170/0x1e6 kernel: [ 120.763897] ? copy_msghdr_from_user+0x7a/0xa2 kernel: [ 120.763914] ___sys_sendmsg+0x95/0xd1 kernel: [ 120.763940] __sys_sendmsg+0x85/0xbf kernel: [ 120.763956] do_syscall_64+0x43/0x55 kernel: [ 120.763966] entry_SYSCALL_64_after_hwframe+0x44/0xa9 kernel: [ 120.763977] RIP: 0033:0x79089f3fcc83 kernel: [ 120.763986] RSP: 002b:00007ffe604f0508 EFLAGS: 00000246 ORIG_RAX: 000000000000002e kernel: [ 120.763997] RAX: ffffffffffffffda RBX: 000059b40e987690 RCX: 000079089f3fcc83 kernel: [ 120.764006] RDX: 0000000000000000 RSI: 00007ffe604f0558 RDI: 0000000000000009 kernel: [ 120.764014] RBP: 00007ffe604f0540 R08: 0000000000000004 R09: 0000000000400000 kernel: [ 120.764023] R10: 00007ffe604f0638 R11: 0000000000000246 R12: 000059b40ea04980 kernel: [ 120.764032] R13: 00007ffe604 ---truncated---
5.5
Medium
CVE-2022-49108 2025-02-26 01h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: Fix memory leaks on probe Handle the error branches to free memory where required. Addresses-Coverity-ID: 1491825 ("Resource leak")
5.5
Medium
CVE-2022-49063 2025-02-26 01h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: arfs: fix use-after-free when freeing @rx_cpu_rmap The CI testing bots triggered the following splat: [ 718.203054] BUG: KASAN: use-after-free in free_irq_cpu_rmap+0x53/0x80 [ 718.206349] Read of size 4 at addr ffff8881bd127e00 by task sh/20834 [ 718.212852] CPU: 28 PID: 20834 Comm: sh Kdump: loaded Tainted: G S W IOE 5.17.0-rc8_nextqueue-devqueue-02643-g23f3121aca93 #1 [ 718.219695] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0012.070720200218 07/07/2020 [ 718.223418] Call Trace: [ 718.227139] [ 718.230783] dump_stack_lvl+0x33/0x42 [ 718.234431] print_address_description.constprop.9+0x21/0x170 [ 718.238177] ? free_irq_cpu_rmap+0x53/0x80 [ 718.241885] ? free_irq_cpu_rmap+0x53/0x80 [ 718.245539] kasan_report.cold.18+0x7f/0x11b [ 718.249197] ? free_irq_cpu_rmap+0x53/0x80 [ 718.252852] free_irq_cpu_rmap+0x53/0x80 [ 718.256471] ice_free_cpu_rx_rmap.part.11+0x37/0x50 [ice] [ 718.260174] ice_remove_arfs+0x5f/0x70 [ice] [ 718.263810] ice_rebuild_arfs+0x3b/0x70 [ice] [ 718.267419] ice_rebuild+0x39c/0xb60 [ice] [ 718.270974] ? asm_sysvec_apic_timer_interrupt+0x12/0x20 [ 718.274472] ? ice_init_phy_user_cfg+0x360/0x360 [ice] [ 718.278033] ? delay_tsc+0x4a/0xb0 [ 718.281513] ? preempt_count_sub+0x14/0xc0 [ 718.284984] ? delay_tsc+0x8f/0xb0 [ 718.288463] ice_do_reset+0x92/0xf0 [ice] [ 718.292014] ice_pci_err_resume+0x91/0xf0 [ice] [ 718.295561] pci_reset_function+0x53/0x80 <...> [ 718.393035] Allocated by task 690: [ 718.433497] Freed by task 20834: [ 718.495688] Last potentially related work creation: [ 718.568966] The buggy address belongs to the object at ffff8881bd127e00 which belongs to the cache kmalloc-96 of size 96 [ 718.574085] The buggy address is located 0 bytes inside of 96-byte region [ffff8881bd127e00, ffff8881bd127e60) [ 718.579265] The buggy address belongs to the page: [ 718.598905] Memory state around the buggy address: [ 718.601809] ffff8881bd127d00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc [ 718.604796] ffff8881bd127d80: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc [ 718.607794] >ffff8881bd127e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc [ 718.610811] ^ [ 718.613819] ffff8881bd127e80: 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc fc [ 718.617107] ffff8881bd127f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc This is due to that free_irq_cpu_rmap() is always being called *after* (devm_)free_irq() and thus it tries to work with IRQ descs already freed. For example, on device reset the driver frees the rmap right before allocating a new one (the splat above). Make rmap creation and freeing function symmetrical with {request,free}_irq() calls i.e. do that on ifup/ifdown instead of device probe/remove/resume. These operations can be performed independently from the actual device aRFS configuration. Also, make sure ice_vsi_free_irq() clears IRQ affinity notifiers only when aRFS is disabled -- otherwise, CPU rmap sets and clears its own and they must not be touched manually.
7.8
High
CVE-2023-52926 2025-02-24 09h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: IORING_OP_READ did not correctly consume the provided buffer list when read i/o returned < 0 (except for -EAGAIN and -EIOCBQUEUED return). This can lead to a potential use-after-free when the completion via io_rw_done runs at separate context.
7.8
High
CVE-2025-21703 2025-02-18 14h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: netem: Update sch->q.qlen before qdisc_tree_reduce_backlog() qdisc_tree_reduce_backlog() notifies parent qdisc only if child qdisc becomes empty, therefore we need to reduce the backlog of the child qdisc before calling it. Otherwise it would miss the opportunity to call cops->qlen_notify(), in the case of DRR, it resulted in UAF since DRR uses ->qlen_notify() to maintain its active list.
7.8
High
CVE-2025-21700 2025-02-13 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: sched: Disallow replacing of child qdisc from one parent to another Lion Ackermann was able to create a UAF which can be abused for privilege escalation with the following script Step 1. create root qdisc tc qdisc add dev lo root handle 1:0 drr step2. a class for packet aggregation do demonstrate uaf tc class add dev lo classid 1:1 drr step3. a class for nesting tc class add dev lo classid 1:2 drr step4. a class to graft qdisc to tc class add dev lo classid 1:3 drr step5. tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024 step6. tc qdisc add dev lo parent 1:2 handle 3:0 drr step7. tc class add dev lo classid 3:1 drr step 8. tc qdisc add dev lo parent 3:1 handle 4:0 pfifo step 9. Display the class/qdisc layout tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 limit 1000p qdisc drr 3: dev lo parent 1:2 step10. trigger the bug <=== prevented by this patch tc qdisc replace dev lo parent 1:3 handle 4:0 step 11. Redisplay again the qdiscs/classes tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 1:3 root leaf 4: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p qdisc drr 3: dev lo parent 1:2 Observe that a) parent for 4:0 does not change despite the replace request. There can only be one parent. b) refcount has gone up by two for 4:0 and c) both class 1:3 and 3:1 are pointing to it. Step 12. send one packet to plug echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001)) step13. send one packet to the grafted fifo echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003)) step14. lets trigger the uaf tc class delete dev lo classid 1:3 tc class delete dev lo classid 1:1 The semantics of "replace" is for a del/add _on the same node_ and not a delete from one node(3:1) and add to another node (1:3) as in step10. While we could "fix" with a more complex approach there could be consequences to expectations so the patch takes the preventive approach of "disallow such config". Joint work with Lion Ackermann
7.8
High
CVE-2025-21699 2025-02-12 13h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: gfs2: Truncate address space when flipping GFS2_DIF_JDATA flag Truncate an inode's address space when flipping the GFS2_DIF_JDATA flag: depending on that flag, the pages in the address space will either use buffer heads or iomap_folio_state structs, and we cannot mix the two.
5.5
Medium
CVE-2025-21696 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: clear uffd-wp PTE/PMD state on mremap() When mremap()ing a memory region previously registered with userfaultfd as write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in flag clearing leads to a mismatch between the vma flags (which have uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to trigger a warning in page_table_check_pte_flags() due to setting the pte to writable while uffd-wp is still set. Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any such mremap() so that the values are consistent with the existing clearing of VM_UFFD_WP. Be careful to clear the logical flag regardless of its physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE, huge PMD and hugetlb paths.
5.5
Medium
CVE-2025-21694 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/proc: fix softlockup in __read_vmcore (part 2) Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the number of softlockups in __read_vmcore at kdump time have gone down, but they still happen sometimes. In a memory constrained environment like the kdump image, a softlockup is not just a harmless message, but it can interfere with things like RCU freeing memory, causing the crashdump to get stuck. The second loop in __read_vmcore has a lot more opportunities for natural sleep points, like scheduling out while waiting for a data write to happen, but apparently that is not always enough. Add a cond_resched() to the second loop in __read_vmcore to (hopefully) get rid of the softlockups.
5.5
Medium
CVE-2024-57951 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: hrtimers: Handle CPU state correctly on hotplug Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to CPUHP_ONLINE: Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set to 1 throughout. However, during a CPU unplug operation, the tick and the clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online state, for instance CFS incorrectly assumes that the hrtick is already active, and the chance of the clockevent device to transition to oneshot mode is also lost forever for the CPU, unless it goes back to a lower state than CPUHP_HRTIMERS_PREPARE once. This round-trip reveals another issue; cpu_base.online is not set to 1 after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer(). Aside of that, the bulk of the per CPU state is not reset either, which means there are dangling pointers in the worst case. Address this by adding a corresponding startup() callback, which resets the stale per CPU state and sets the online flag. [ tglx: Make the new callback unconditionally available, remove the online modification in the prepare() callback and clear the remaining state in the starting callback instead of the prepare callback ]
7.8
High
CVE-2025-21693 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: zswap: properly synchronize freeing resources during CPU hotunplug In zswap_compress() and zswap_decompress(), the per-CPU acomp_ctx of the current CPU at the beginning of the operation is retrieved and used throughout. However, since neither preemption nor migration are disabled, it is possible that the operation continues on a different CPU. If the original CPU is hotunplugged while the acomp_ctx is still in use, we run into a UAF bug as some of the resources attached to the acomp_ctx are freed during hotunplug in zswap_cpu_comp_dead() (i.e. acomp_ctx.buffer, acomp_ctx.req, or acomp_ctx.acomp). The problem was introduced in commit 1ec3b5fe6eec ("mm/zswap: move to use crypto_acomp API for hardware acceleration") when the switch to the crypto_acomp API was made. Prior to that, the per-CPU crypto_comp was retrieved using get_cpu_ptr() which disables preemption and makes sure the CPU cannot go away from under us. Preemption cannot be disabled with the crypto_acomp API as a sleepable context is needed. Use the acomp_ctx.mutex to synchronize CPU hotplug callbacks allocating and freeing resources with compression/decompression paths. Make sure that acomp_ctx.req is NULL when the resources are freed. In the compression/decompression paths, check if acomp_ctx.req is NULL after acquiring the mutex (meaning the CPU was offlined) and retry on the new CPU. The initialization of acomp_ctx.mutex is moved from the CPU hotplug callback to the pool initialization where it belongs (where the mutex is allocated). In addition to adding clarity, this makes sure that CPU hotplug cannot reinitialize a mutex that is already locked by compression/decompression. Previously a fix was attempted by holding cpus_read_lock() [1]. This would have caused a potential deadlock as it is possible for code already holding the lock to fall into reclaim and enter zswap (causing a deadlock). A fix was also attempted using SRCU for synchronization, but Johannes pointed out that synchronize_srcu() cannot be used in CPU hotplug notifiers [2]. Alternative fixes that were considered/attempted and could have worked: - Refcounting the per-CPU acomp_ctx. This involves complexity in handling the race between the refcount dropping to zero in zswap_[de]compress() and the refcount being re-initialized when the CPU is onlined. - Disabling migration before getting the per-CPU acomp_ctx [3], but that's discouraged and is a much bigger hammer than needed, and could result in subtle performance issues. [1]https://lkml.kernel.org/[email protected]/ [2]https://lkml.kernel.org/[email protected]/ [3]https://lkml.kernel.org/[email protected]/ [[email protected]: remove comment] Link: https://lkml.kernel.org/r/CAJD7tkaxS1wjn+swugt8QCvQ-rVF5RZnjxwPGX17k8x9zSManA@mail.gmail.com
7.8
High
CVE-2025-21692 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: sched: fix ets qdisc OOB Indexing Haowei Yan found that ets_class_from_arg() can index an Out-Of-Bound class in ets_class_from_arg() when passed clid of 0. The overflow may cause local privilege escalation. [ 18.852298] ------------[ cut here ]------------ [ 18.853271] UBSAN: array-index-out-of-bounds in net/sched/sch_ets.c:93:20 [ 18.853743] index 18446744073709551615 is out of range for type 'ets_class [16]' [ 18.854254] CPU: 0 UID: 0 PID: 1275 Comm: poc Not tainted 6.12.6-dirty #17 [ 18.854821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 18.856532] Call Trace: [ 18.857441] [ 18.858227] dump_stack_lvl+0xc2/0xf0 [ 18.859607] dump_stack+0x10/0x20 [ 18.860908] __ubsan_handle_out_of_bounds+0xa7/0xf0 [ 18.864022] ets_class_change+0x3d6/0x3f0 [ 18.864322] tc_ctl_tclass+0x251/0x910 [ 18.864587] ? lock_acquire+0x5e/0x140 [ 18.865113] ? __mutex_lock+0x9c/0xe70 [ 18.866009] ? __mutex_lock+0xa34/0xe70 [ 18.866401] rtnetlink_rcv_msg+0x170/0x6f0 [ 18.866806] ? __lock_acquire+0x578/0xc10 [ 18.867184] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 18.867503] netlink_rcv_skb+0x59/0x110 [ 18.867776] rtnetlink_rcv+0x15/0x30 [ 18.868159] netlink_unicast+0x1c3/0x2b0 [ 18.868440] netlink_sendmsg+0x239/0x4b0 [ 18.868721] ____sys_sendmsg+0x3e2/0x410 [ 18.869012] ___sys_sendmsg+0x88/0xe0 [ 18.869276] ? rseq_ip_fixup+0x198/0x260 [ 18.869563] ? rseq_update_cpu_node_id+0x10a/0x190 [ 18.869900] ? trace_hardirqs_off+0x5a/0xd0 [ 18.870196] ? syscall_exit_to_user_mode+0xcc/0x220 [ 18.870547] ? do_syscall_64+0x93/0x150 [ 18.870821] ? __memcg_slab_free_hook+0x69/0x290 [ 18.871157] __sys_sendmsg+0x69/0xd0 [ 18.871416] __x64_sys_sendmsg+0x1d/0x30 [ 18.871699] x64_sys_call+0x9e2/0x2670 [ 18.871979] do_syscall_64+0x87/0x150 [ 18.873280] ? do_syscall_64+0x93/0x150 [ 18.874742] ? lock_release+0x7b/0x160 [ 18.876157] ? do_user_addr_fault+0x5ce/0x8f0 [ 18.877833] ? irqentry_exit_to_user_mode+0xc2/0x210 [ 18.879608] ? irqentry_exit+0x77/0xb0 [ 18.879808] ? clear_bhb_loop+0x15/0x70 [ 18.880023] ? clear_bhb_loop+0x15/0x70 [ 18.880223] ? clear_bhb_loop+0x15/0x70 [ 18.880426] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 18.880683] RIP: 0033:0x44a957 [ 18.880851] Code: ff ff e8 fc 00 00 00 66 2e 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 8974 24 10 [ 18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e [ 18.882149] RAX: ffffffffffffffda RBX: 00007ffcdd010db8 RCX: 000000000044a957 [ 18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003 [ 18.885037] RBP: 00007ffcdd010bc0 R08: 000000000703c770 R09: 000000000703c7c0 [ 18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001 [ 18.888026] R13: 00007ffcdd010da8 R14: 00000000004ca7d0 R15: 0000000000000001 [ 18.888395] [ 18.888610] ---[ end trace ]---
7.8
High
CVE-2025-21690 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Ratelimit warning logs to prevent VM denial of service If there's a persistent error in the hypervisor, the SCSI warning for failed I/O can flood the kernel log and max out CPU utilization, preventing troubleshooting from the VM side. Ratelimit the warning so it doesn't DoS the VM.
5.5
Medium
CVE-2025-21689 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: serial: quatech2: fix null-ptr-deref in qt2_process_read_urb() This patch addresses a null-ptr-deref in qt2_process_read_urb() due to an incorrect bounds check in the following: if (newport > serial->num_ports) { dev_err(&port->dev, "%s - port change to invalid port: %i\n", __func__, newport); break; } The condition doesn't account for the valid range of the serial->port buffer, which is from 0 to serial->num_ports - 1. When newport is equal to serial->num_ports, the assignment of "port" in the following code is out-of-bounds and NULL: serial_priv->current_port = newport; port = serial->port[serial_priv->current_port]; The fix checks if newport is greater than or equal to serial->num_ports indicating it is out-of-bounds.
5.5
Medium
CVE-2025-21687 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/platform: check the bounds of read/write syscalls count and offset are passed from user space and not checked, only offset is capped to 40 bits, which can be used to read/write out of bounds of the device.
7.8
High
CVE-2024-57950 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize denominator defaults to 1 [WHAT & HOW] Variables, used as denominators and maybe not assigned to other values, should be initialized to non-zero to avoid DIVIDE_BY_ZERO, as reported by Coverity. (cherry picked from commit e2c4c6c10542ccfe4a0830bb6c9fd5b177b7bbb7)
5.5
Medium
CVE-2025-21684 2025-02-09 11h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpio: xilinx: Convert gpio_lock to raw spinlock irq_chip functions may be called in raw spinlock context. Therefore, we must also use a raw spinlock for our own internal locking. This fixes the following lockdep splat: [ 5.349336] ============================= [ 5.353349] [ BUG: Invalid wait context ] [ 5.357361] 6.13.0-rc5+ #69 Tainted: G W [ 5.363031] ----------------------------- [ 5.367045] kworker/u17:1/44 is trying to lock: [ 5.371587] ffffff88018b02c0 (&chip->gpio_lock){....}-{3:3}, at: xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.380079] other info that might help us debug this: [ 5.385138] context-{5:5} [ 5.387762] 5 locks held by kworker/u17:1/44: [ 5.392123] #0: ffffff8800014958 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3204) [ 5.402260] #1: ffffffc082fcbdd8 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3205) [ 5.411528] #2: ffffff880172c900 (&dev->mutex){....}-{4:4}, at: __device_attach (drivers/base/dd.c:1006) [ 5.419929] #3: ffffff88039c8268 (request_class#2){+.+.}-{4:4}, at: __setup_irq (kernel/irq/internals.h:156 kernel/irq/manage.c:1596) [ 5.428331] #4: ffffff88039c80c8 (lock_class#2){....}-{2:2}, at: __setup_irq (kernel/irq/manage.c:1614) [ 5.436472] stack backtrace: [ 5.439359] CPU: 2 UID: 0 PID: 44 Comm: kworker/u17:1 Tainted: G W 6.13.0-rc5+ #69 [ 5.448690] Tainted: [W]=WARN [ 5.451656] Hardware name: xlnx,zynqmp (DT) [ 5.455845] Workqueue: events_unbound deferred_probe_work_func [ 5.461699] Call trace: [ 5.464147] show_stack+0x18/0x24 C [ 5.467821] dump_stack_lvl (lib/dump_stack.c:123) [ 5.471501] dump_stack (lib/dump_stack.c:130) [ 5.474824] __lock_acquire (kernel/locking/lockdep.c:4828 kernel/locking/lockdep.c:4898 kernel/locking/lockdep.c:5176) [ 5.478758] lock_acquire (arch/arm64/include/asm/percpu.h:40 kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851 kernel/locking/lockdep.c:5814) [ 5.482429] _raw_spin_lock_irqsave (include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162) [ 5.486797] xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.490737] irq_enable (kernel/irq/internals.h:236 kernel/irq/chip.c:170 kernel/irq/chip.c:439 kernel/irq/chip.c:432 kernel/irq/chip.c:345) [ 5.494060] __irq_startup (kernel/irq/internals.h:241 kernel/irq/chip.c:180 kernel/irq/chip.c:250) [ 5.497645] irq_startup (kernel/irq/chip.c:270) [ 5.501143] __setup_irq (kernel/irq/manage.c:1807) [ 5.504728] request_threaded_irq (kernel/irq/manage.c:2208)
5.5
Medium
CVE-2025-21683 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix bpf_sk_select_reuseport() memory leak As pointed out in the original comment, lookup in sockmap can return a TCP ESTABLISHED socket. Such TCP socket may have had SO_ATTACH_REUSEPORT_EBPF set before it was ESTABLISHED. In other words, a non-NULL sk_reuseport_cb does not imply a non-refcounted socket. Drop sk's reference in both error paths. unreferenced object 0xffff888101911800 (size 2048): comm "test_progs", pid 44109, jiffies 4297131437 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 80 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 9336483b): __kmalloc_noprof+0x3bf/0x560 __reuseport_alloc+0x1d/0x40 reuseport_alloc+0xca/0x150 reuseport_attach_prog+0x87/0x140 sk_reuseport_attach_bpf+0xc8/0x100 sk_setsockopt+0x1181/0x1990 do_sock_setsockopt+0x12b/0x160 __sys_setsockopt+0x7b/0xc0 __x64_sys_setsockopt+0x1b/0x30 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e
5.5
Medium
CVE-2025-21682 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: always recalculate features after XDP clearing, fix null-deref Recalculate features when XDP is detached. Before: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: off [requested on] After: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: on The fact that HW-GRO doesn't get re-enabled automatically is just a minor annoyance. The real issue is that the features will randomly come back during another reconfiguration which just happens to invoke netdev_update_features(). The driver doesn't handle reconfiguring two things at a time very robustly. Starting with commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") we only reconfigure the RSS hash table if the "effective" number of Rx rings has changed. If HW-GRO is enabled "effective" number of rings is 2x what user sees. So if we are in the bad state, with HW-GRO re-enablement "pending" after XDP off, and we lower the rings by / 2 - the HW-GRO rings doing 2x and the ethtool -L doing / 2 may cancel each other out, and the: if (old_rx_rings != bp->hw_resc.resv_rx_rings && condition in __bnxt_reserve_rings() will be false. The RSS map won't get updated, and we'll crash with: BUG: kernel NULL pointer dereference, address: 0000000000000168 RIP: 0010:__bnxt_hwrm_vnic_set_rss+0x13a/0x1a0 bnxt_hwrm_vnic_rss_cfg_p5+0x47/0x180 __bnxt_setup_vnic_p5+0x58/0x110 bnxt_init_nic+0xb72/0xf50 __bnxt_open_nic+0x40d/0xab0 bnxt_open_nic+0x2b/0x60 ethtool_set_channels+0x18c/0x1d0 As we try to access a freed ring. The issue is present since XDP support was added, really, but prior to commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") it wasn't causing major issues.
5.5
Medium
CVE-2025-21673 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix double free of TCP_Server_Info::hostname When shutting down the server in cifs_put_tcp_session(), cifsd thread might be reconnecting to multiple DFS targets before it realizes it should exit the loop, so @server->hostname can't be freed as long as cifsd thread isn't done. Otherwise the following can happen: RIP: 0010:__slab_free+0x223/0x3c0 Code: 5e 41 5f c3 cc cc cc cc 4c 89 de 4c 89 cf 44 89 44 24 08 4c 89 1c 24 e8 fb cf 8e 00 44 8b 44 24 08 4c 8b 1c 24 e9 5f fe ff ff <0f> 0b 41 f7 45 08 00 0d 21 00 0f 85 2d ff ff ff e9 1f ff ff ff 80 RSP: 0018:ffffb26180dbfd08 EFLAGS: 00010246 RAX: ffff8ea34728e510 RBX: ffff8ea34728e500 RCX: 0000000000800068 RDX: 0000000000800068 RSI: 0000000000000000 RDI: ffff8ea340042400 RBP: ffffe112041ca380 R08: 0000000000000001 R09: 0000000000000000 R10: 6170732e31303000 R11: 70726f632e786563 R12: ffff8ea34728e500 R13: ffff8ea340042400 R14: ffff8ea34728e500 R15: 0000000000800068 FS: 0000000000000000(0000) GS:ffff8ea66fd80000(0000) 000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc25376080 CR3: 000000012a2ba001 CR4: PKRU: 55555554 Call Trace: ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __reconnect_target_unlocked+0x3e/0x160 [cifs] ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0xce/0x120 ? __slab_free+0x223/0x3c0 ? do_error_trap+0x65/0x80 ? __slab_free+0x223/0x3c0 ? exc_invalid_op+0x4e/0x70 ? __slab_free+0x223/0x3c0 ? asm_exc_invalid_op+0x16/0x20 ? __slab_free+0x223/0x3c0 ? extract_hostname+0x5c/0xa0 [cifs] ? extract_hostname+0x5c/0xa0 [cifs] ? __kmalloc+0x4b/0x140 __reconnect_target_unlocked+0x3e/0x160 [cifs] reconnect_dfs_server+0x145/0x430 [cifs] cifs_handle_standard+0x1ad/0x1d0 [cifs] cifs_demultiplex_thread+0x592/0x730 [cifs] ? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs] kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50
5.5
Medium
CVE-2025-21672 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: afs: Fix merge preference rule failure condition syzbot reported a lock held when returning to userspace[1]. This is because if argc is less than 0 and the function returns directly, the held inode lock is not released. Fix this by store the error in ret and jump to done to clean up instead of returning directly. [dh: Modified Lizhi Xu's original patch to make it honour the error code from afs_split_string()] [1] WARNING: lock held when returning to user space! 6.13.0-rc3-syzkaller-00209-g499551201b5f #0 Not tainted ------------------------------------------------ syz-executor133/5823 is leaving the kernel with locks still held! 1 lock held by syz-executor133/5823: #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: inode_lock include/linux/fs.h:818 [inline] #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: afs_proc_addr_prefs_write+0x2bb/0x14e0 fs/afs/addr_prefs.c:388
5.5
Medium
CVE-2025-21669 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: discard packets if the transport changes If the socket has been de-assigned or assigned to another transport, we must discard any packets received because they are not expected and would cause issues when we access vsk->transport. A possible scenario is described by Hyunwoo Kim in the attached link, where after a first connect() interrupted by a signal, and a second connect() failed, we can find `vsk->transport` at NULL, leading to a NULL pointer dereference.
5.5
Medium
CVE-2025-21667 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: iomap: avoid avoid truncating 64-bit offset to 32 bits on 32-bit kernels, iomap_write_delalloc_scan() was inadvertently using a 32-bit position due to folio_next_index() returning an unsigned long. This could lead to an infinite loop when writing to an xfs filesystem.
5.5
Medium
CVE-2025-21666 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock: prevent null-ptr-deref in vsock_*[has_data|has_space] Recent reports have shown how we sometimes call vsock_*_has_data() when a vsock socket has been de-assigned from a transport (see attached links), but we shouldn't. Previous commits should have solved the real problems, but we may have more in the future, so to avoid null-ptr-deref, we can return 0 (no space, no data available) but with a warning. This way the code should continue to run in a nearly consistent state and have a warning that allows us to debug future problems.
5.5
Medium
CVE-2025-21658 2025-01-21 12h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: avoid NULL pointer dereference if no valid extent tree [BUG] Syzbot reported a crash with the following call trace: BTRFS info (device loop0): scrub: started on devid 1 BUG: kernel NULL pointer dereference, address: 0000000000000208 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 106e70067 P4D 106e70067 PUD 107143067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 UID: 0 PID: 689 Comm: repro Kdump: loaded Tainted: G O 6.13.0-rc4-custom+ #206 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022 RIP: 0010:find_first_extent_item+0x26/0x1f0 [btrfs] Call Trace: scrub_find_fill_first_stripe+0x13d/0x3b0 [btrfs] scrub_simple_mirror+0x175/0x260 [btrfs] scrub_stripe+0x5d4/0x6c0 [btrfs] scrub_chunk+0xbb/0x170 [btrfs] scrub_enumerate_chunks+0x2f4/0x5f0 [btrfs] btrfs_scrub_dev+0x240/0x600 [btrfs] btrfs_ioctl+0x1dc8/0x2fa0 [btrfs] ? do_sys_openat2+0xa5/0xf0 __x64_sys_ioctl+0x97/0xc0 do_syscall_64+0x4f/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e [CAUSE] The reproducer is using a corrupted image where extent tree root is corrupted, thus forcing to use "rescue=all,ro" mount option to mount the image. Then it triggered a scrub, but since scrub relies on extent tree to find where the data/metadata extents are, scrub_find_fill_first_stripe() relies on an non-empty extent root. But unfortunately scrub_find_fill_first_stripe() doesn't really expect an NULL pointer for extent root, it use extent_root to grab fs_info and triggered a NULL pointer dereference. [FIX] Add an extra check for a valid extent root at the beginning of scrub_find_fill_first_stripe(). The new error path is introduced by 42437a6386ff ("btrfs: introduce mount option rescue=ignorebadroots"), but that's pretty old, and later commit b979547513ff ("btrfs: scrub: introduce helper to find and fill sector info for a scrub_stripe") changed how we do scrub. So for kernels older than 6.6, the fix will need manual backport.
5.5
Medium
CVE-2024-57940 2025-01-21 12h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: exfat: fix the infinite loop in exfat_readdir() If the file system is corrupted so that a cluster is linked to itself in the cluster chain, and there is an unused directory entry in the cluster, 'dentry' will not be incremented, causing condition 'dentry < max_dentries' unable to prevent an infinite loop. This infinite loop causes s_lock not to be released, and other tasks will hang, such as exfat_sync_fs(). This commit stops traversing the cluster chain when there is unused directory entry in the cluster to avoid this infinite loop.
5.5
Medium
CVE-2024-57912 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: pressure: zpa2326: fix information leak in triggered buffer The 'sample' local struct is used to push data to user space from a triggered buffer, but it has a hole between the temperature and the timestamp (u32 pressure, u16 temperature, GAP, u64 timestamp). This hole is never initialized. Initialize the struct to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57908 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: imu: kmx61: fix information leak in triggered buffer The 'buffer' local array is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the array to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57907 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: rockchip_saradc: fix information leak in triggered buffer The 'data' local struct is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the struct to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57906 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: ti-ads8688: fix information leak in triggered buffer The 'buffer' local array is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the array to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2025-21649 2025-01-19 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when 1588 is sent on HIP08 devices Currently, HIP08 devices does not register the ptp devices, so the hdev->ptp is NULL. But the tx process would still try to set hardware time stamp info with SKBTX_HW_TSTAMP flag and cause a kernel crash. [ 128.087798] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 ... [ 128.280251] pc : hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.286600] lr : hclge_ptp_set_tx_info+0x20/0x140 [hclge] [ 128.292938] sp : ffff800059b93140 [ 128.297200] x29: ffff800059b93140 x28: 0000000000003280 [ 128.303455] x27: ffff800020d48280 x26: ffff0cb9dc814080 [ 128.309715] x25: ffff0cb9cde93fa0 x24: 0000000000000001 [ 128.315969] x23: 0000000000000000 x22: 0000000000000194 [ 128.322219] x21: ffff0cd94f986000 x20: 0000000000000000 [ 128.328462] x19: ffff0cb9d2a166c0 x18: 0000000000000000 [ 128.334698] x17: 0000000000000000 x16: ffffcf1fc523ed24 [ 128.340934] x15: 0000ffffd530a518 x14: 0000000000000000 [ 128.347162] x13: ffff0cd6bdb31310 x12: 0000000000000368 [ 128.353388] x11: ffff0cb9cfbc7070 x10: ffff2cf55dd11e02 [ 128.359606] x9 : ffffcf1f85a212b4 x8 : ffff0cd7cf27dab0 [ 128.365831] x7 : 0000000000000a20 x6 : ffff0cd7cf27d000 [ 128.372040] x5 : 0000000000000000 x4 : 000000000000ffff [ 128.378243] x3 : 0000000000000400 x2 : ffffcf1f85a21294 [ 128.384437] x1 : ffff0cb9db520080 x0 : ffff0cb9db500080 [ 128.390626] Call trace: [ 128.393964] hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.399893] hns3_nic_net_xmit+0x39c/0x4c4 [hns3] [ 128.405468] xmit_one.constprop.0+0xc4/0x200 [ 128.410600] dev_hard_start_xmit+0x54/0xf0 [ 128.415556] sch_direct_xmit+0xe8/0x634 [ 128.420246] __dev_queue_xmit+0x224/0xc70 [ 128.425101] dev_queue_xmit+0x1c/0x40 [ 128.429608] ovs_vport_send+0xac/0x1a0 [openvswitch] [ 128.435409] do_output+0x60/0x17c [openvswitch] [ 128.440770] do_execute_actions+0x898/0x8c4 [openvswitch] [ 128.446993] ovs_execute_actions+0x64/0xf0 [openvswitch] [ 128.453129] ovs_dp_process_packet+0xa0/0x224 [openvswitch] [ 128.459530] ovs_vport_receive+0x7c/0xfc [openvswitch] [ 128.465497] internal_dev_xmit+0x34/0xb0 [openvswitch] [ 128.471460] xmit_one.constprop.0+0xc4/0x200 [ 128.476561] dev_hard_start_xmit+0x54/0xf0 [ 128.481489] __dev_queue_xmit+0x968/0xc70 [ 128.486330] dev_queue_xmit+0x1c/0x40 [ 128.490856] ip_finish_output2+0x250/0x570 [ 128.495810] __ip_finish_output+0x170/0x1e0 [ 128.500832] ip_finish_output+0x3c/0xf0 [ 128.505504] ip_output+0xbc/0x160 [ 128.509654] ip_send_skb+0x58/0xd4 [ 128.513892] udp_send_skb+0x12c/0x354 [ 128.518387] udp_sendmsg+0x7a8/0x9c0 [ 128.522793] inet_sendmsg+0x4c/0x8c [ 128.527116] __sock_sendmsg+0x48/0x80 [ 128.531609] __sys_sendto+0x124/0x164 [ 128.536099] __arm64_sys_sendto+0x30/0x5c [ 128.540935] invoke_syscall+0x50/0x130 [ 128.545508] el0_svc_common.constprop.0+0x10c/0x124 [ 128.551205] do_el0_svc+0x34/0xdc [ 128.555347] el0_svc+0x20/0x30 [ 128.559227] el0_sync_handler+0xb8/0xc0 [ 128.563883] el0_sync+0x160/0x180
5.5
Medium
CVE-2025-21640 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: cookie_hmac_alg: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.sctp_hmac_alg' is used.
5.5
Medium
CVE-2025-21639 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: rto_min/max: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.rto_min/max' is used.
5.5
Medium
CVE-2025-21636 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: plpmtud_probe_interval: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.probe_interval' is used.
5.5
Medium
CVE-2025-21634 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: remove kernfs active break A warning was found: WARNING: CPU: 10 PID: 3486953 at fs/kernfs/file.c:828 CPU: 10 PID: 3486953 Comm: rmdir Kdump: loaded Tainted: G RIP: 0010:kernfs_should_drain_open_files+0x1a1/0x1b0 RSP: 0018:ffff8881107ef9e0 EFLAGS: 00010202 RAX: 0000000080000002 RBX: ffff888154738c00 RCX: dffffc0000000000 RDX: 0000000000000007 RSI: 0000000000000004 RDI: ffff888154738c04 RBP: ffff888154738c04 R08: ffffffffaf27fa15 R09: ffffed102a8e7180 R10: ffff888154738c07 R11: 0000000000000000 R12: ffff888154738c08 R13: ffff888750f8c000 R14: ffff888750f8c0e8 R15: ffff888154738ca0 FS: 00007f84cd0be740(0000) GS:ffff8887ddc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555f9fbe00c8 CR3: 0000000153eec001 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: kernfs_drain+0x15e/0x2f0 __kernfs_remove+0x165/0x300 kernfs_remove_by_name_ns+0x7b/0xc0 cgroup_rm_file+0x154/0x1c0 cgroup_addrm_files+0x1c2/0x1f0 css_clear_dir+0x77/0x110 kill_css+0x4c/0x1b0 cgroup_destroy_locked+0x194/0x380 cgroup_rmdir+0x2a/0x140 It can be explained by: rmdir echo 1 > cpuset.cpus kernfs_fop_write_iter // active=0 cgroup_rm_file kernfs_remove_by_name_ns kernfs_get_active // active=1 __kernfs_remove // active=0x80000002 kernfs_drain cpuset_write_resmask wait_event //waiting (active == 0x80000001) kernfs_break_active_protection // active = 0x80000001 // continue kernfs_unbreak_active_protection // active = 0x80000002 ... kernfs_should_drain_open_files // warning occurs kernfs_put_active This warning is caused by 'kernfs_break_active_protection' when it is writing to cpuset.cpus, and the cgroup is removed concurrently. The commit 3a5a6d0c2b03 ("cpuset: don't nest cgroup_mutex inside get_online_cpus()") made cpuset_hotplug_workfn asynchronous, This change involves calling flush_work(), which can create a multiple processes circular locking dependency that involve cgroup_mutex, potentially leading to a deadlock. To avoid deadlock. the commit 76bb5ab8f6e3 ("cpuset: break kernfs active protection in cpuset_write_resmask()") added 'kernfs_break_active_protection' in the cpuset_write_resmask. This could lead to this warning. After the commit 2125c0034c5d ("cgroup/cpuset: Make cpuset hotplug processing synchronous"), the cpuset_write_resmask no longer needs to wait the hotplug to finish, which means that concurrent hotplug and cpuset operations are no longer possible. Therefore, the deadlock doesn't exist anymore and it does not have to 'break active protection' now. To fix this warning, just remove kernfs_break_active_protection operation in the 'cpuset_write_resmask'.
5.5
Medium
CVE-2024-57857 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Remove direct link to net_device Do not manage a per device direct link to net_device. Rely on associated ib_devices net_device management, not doubling the effort locally. A badly managed local link to net_device was causing a 'KASAN: slab-use-after-free' exception during siw_query_port() call.
7.8
High
CVE-2024-57795 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Remove the direct link to net_device The similar patch in siw is in the link: https://git.kernel.org/rdma/rdma/c/16b87037b48889 This problem also occurred in RXE. The following analyze this problem. In the following Call Traces: " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 Read of size 4 at addr ffff8880554640b0 by task kworker/1:4/5295 CPU: 1 UID: 0 PID: 5295 Comm: kworker/1:4 Not tainted 6.12.0-rc3-syzkaller-00399-g9197b73fd7bb #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: infiniband ib_cache_event_task Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 rxe_query_port+0x12d/0x260 drivers/infiniband/sw/rxe/rxe_verbs.c:60 __ib_query_port drivers/infiniband/core/device.c:2111 [inline] ib_query_port+0x168/0x7d0 drivers/infiniband/core/device.c:2143 ib_cache_update+0x1a9/0xb80 drivers/infiniband/core/cache.c:1494 ib_cache_event_task+0xf3/0x1e0 drivers/infiniband/core/cache.c:1568 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f2/0x390 kernel/kthread.c:389 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 " 1). In the link [1], " infiniband syz2: set down " This means that on 839.350575, the event ib_cache_event_task was sent andi queued in ib_wq. 2). In the link [1], " team0 (unregistering): Port device team_slave_0 removed " It indicates that before 843.251853, the net device should be freed. 3). In the link [1], " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 " This means that on 850.559070, this slab-use-after-free problem occurred. In all, on 839.350575, the event ib_cache_event_task was sent and queued in ib_wq, before 843.251853, the net device veth was freed. on 850.559070, this event was executed, and the mentioned freed net device was called. Thus, the above call trace occurred. [1] https://syzkaller.appspot.com/x/log.txt?x=12e7025f980000
7.8
High
CVE-2024-57895 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: set ATTR_CTIME flags when setting mtime David reported that the new warning from setattr_copy_mgtime is coming like the following. [ 113.215316] ------------[ cut here ]------------ [ 113.215974] WARNING: CPU: 1 PID: 31 at fs/attr.c:300 setattr_copy+0x1ee/0x200 [ 113.219192] CPU: 1 UID: 0 PID: 31 Comm: kworker/1:1 Not tainted 6.13.0-rc1+ #234 [ 113.220127] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 [ 113.221530] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] [ 113.222220] RIP: 0010:setattr_copy+0x1ee/0x200 [ 113.222833] Code: 24 28 49 8b 44 24 30 48 89 53 58 89 43 6c 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 48 89 df e8 77 d6 ff ff e9 cd fe ff ff <0f> 0b e9 be fe ff ff 66 0 [ 113.225110] RSP: 0018:ffffaf218010fb68 EFLAGS: 00010202 [ 113.225765] RAX: 0000000000000120 RBX: ffffa446815f8568 RCX: 0000000000000003 [ 113.226667] RDX: ffffaf218010fd38 RSI: ffffa446815f8568 RDI: ffffffff94eb03a0 [ 113.227531] RBP: ffffaf218010fb90 R08: 0000001a251e217d R09: 00000000675259fa [ 113.228426] R10: 0000000002ba8a6d R11: ffffa4468196c7a8 R12: ffffaf218010fd38 [ 113.229304] R13: 0000000000000120 R14: ffffffff94eb03a0 R15: 0000000000000000 [ 113.230210] FS: 0000000000000000(0000) GS:ffffa44739d00000(0000) knlGS:0000000000000000 [ 113.231215] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 113.232055] CR2: 00007efe0053d27e CR3: 000000000331a000 CR4: 00000000000006b0 [ 113.232926] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 113.233812] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 113.234797] Call Trace: [ 113.235116] [ 113.235393] ? __warn+0x73/0xd0 [ 113.235802] ? setattr_copy+0x1ee/0x200 [ 113.236299] ? report_bug+0xf3/0x1e0 [ 113.236757] ? handle_bug+0x4d/0x90 [ 113.237202] ? exc_invalid_op+0x13/0x60 [ 113.237689] ? asm_exc_invalid_op+0x16/0x20 [ 113.238185] ? setattr_copy+0x1ee/0x200 [ 113.238692] btrfs_setattr+0x80/0x820 [btrfs] [ 113.239285] ? get_stack_info_noinstr+0x12/0xf0 [ 113.239857] ? __module_address+0x22/0xa0 [ 113.240368] ? handle_ksmbd_work+0x6e/0x460 [ksmbd] [ 113.240993] ? __module_text_address+0x9/0x50 [ 113.241545] ? __module_address+0x22/0xa0 [ 113.242033] ? unwind_next_frame+0x10e/0x920 [ 113.242600] ? __pfx_stack_trace_consume_entry+0x10/0x10 [ 113.243268] notify_change+0x2c2/0x4e0 [ 113.243746] ? stack_depot_save_flags+0x27/0x730 [ 113.244339] ? set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.244993] set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.245613] ? process_scheduled_works+0xbe/0x310 [ 113.246181] ? worker_thread+0x100/0x240 [ 113.246696] ? kthread+0xc8/0x100 [ 113.247126] ? ret_from_fork+0x2b/0x40 [ 113.247606] ? ret_from_fork_asm+0x1a/0x30 [ 113.248132] smb2_set_info+0x63f/0xa70 [ksmbd] ksmbd is trying to set the atime and mtime via notify_change without also setting the ctime. so This patch add ATTR_CTIME flags when setting mtime to avoid a warning.
5.5
Medium
CVE-2024-57892 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix slab-use-after-free due to dangling pointer dqi_priv When mounting ocfs2 and then remounting it as read-only, a slab-use-after-free occurs after the user uses a syscall to quota_getnextquota. Specifically, sb_dqinfo(sb, type)->dqi_priv is the dangling pointer. During the remounting process, the pointer dqi_priv is freed but is never set as null leaving it to be accessed. Additionally, the read-only option for remounting sets the DQUOT_SUSPENDED flag instead of setting the DQUOT_USAGE_ENABLED flags. Moreover, later in the process of getting the next quota, the function ocfs2_get_next_id is called and only checks the quota usage flags and not the quota suspended flags. To fix this, I set dqi_priv to null when it is freed after remounting with read-only and put a check for DQUOT_SUSPENDED in ocfs2_get_next_id. [[email protected]: coding-style cleanups]
7.8
High
CVE-2024-57887 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm: adv7511: Fix use-after-free in adv7533_attach_dsi() The host_node pointer was assigned and freed in adv7533_parse_dt(), and later, adv7533_attach_dsi() uses the same. Fix this use-after-free issue by dropping of_node_put() in adv7533_parse_dt() and calling of_node_put() in error path of probe() and also in the remove().
7.8
High
CVE-2024-57882 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix TCP options overflow. Syzbot reported the following splat: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 1 UID: 0 PID: 5836 Comm: sshd Not tainted 6.13.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 RIP: 0010:_compound_head include/linux/page-flags.h:242 [inline] RIP: 0010:put_page+0x23/0x260 include/linux/mm.h:1552 Code: 90 90 90 90 90 90 90 55 41 57 41 56 53 49 89 fe 48 bd 00 00 00 00 00 fc ff df e8 f8 5e 12 f8 49 8d 5e 08 48 89 d8 48 c1 e8 03 <80> 3c 28 00 74 08 48 89 df e8 8f c7 78 f8 48 8b 1b 48 89 de 48 83 RSP: 0000:ffffc90003916c90 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000008 RCX: ffff888030458000 RDX: 0000000000000100 RSI: 0000000000000000 RDI: 0000000000000000 RBP: dffffc0000000000 R08: ffffffff898ca81d R09: 1ffff110054414ac R10: dffffc0000000000 R11: ffffed10054414ad R12: 0000000000000007 R13: ffff88802a20a542 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f34f496e800(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9d6ec9ec28 CR3: 000000004d260000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: skb_page_unref include/linux/skbuff_ref.h:43 [inline] __skb_frag_unref include/linux/skbuff_ref.h:56 [inline] skb_release_data+0x483/0x8a0 net/core/skbuff.c:1119 skb_release_all net/core/skbuff.c:1190 [inline] __kfree_skb+0x55/0x70 net/core/skbuff.c:1204 tcp_clean_rtx_queue net/ipv4/tcp_input.c:3436 [inline] tcp_ack+0x2442/0x6bc0 net/ipv4/tcp_input.c:4032 tcp_rcv_state_process+0x8eb/0x44e0 net/ipv4/tcp_input.c:6805 tcp_v4_do_rcv+0x77d/0xc70 net/ipv4/tcp_ipv4.c:1939 tcp_v4_rcv+0x2dc0/0x37f0 net/ipv4/tcp_ipv4.c:2351 ip_protocol_deliver_rcu+0x22e/0x440 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x341/0x5f0 net/ipv4/ip_input.c:233 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 __netif_receive_skb_one_core net/core/dev.c:5672 [inline] __netif_receive_skb+0x2bf/0x650 net/core/dev.c:5785 process_backlog+0x662/0x15b0 net/core/dev.c:6117 __napi_poll+0xcb/0x490 net/core/dev.c:6883 napi_poll net/core/dev.c:6952 [inline] net_rx_action+0x89b/0x1240 net/core/dev.c:7074 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0x57/0xc0 arch/x86/kernel/apic/apic.c:1049 asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 RIP: 0033:0x7f34f4519ad5 Code: 85 d2 74 0d 0f 10 02 48 8d 54 24 20 0f 11 44 24 20 64 8b 04 25 18 00 00 00 85 c0 75 27 41 b8 08 00 00 00 b8 0f 01 00 00 0f 05 <48> 3d 00 f0 ff ff 76 75 48 8b 15 24 73 0d 00 f7 d8 64 89 02 48 83 RSP: 002b:00007ffec5b32ce0 EFLAGS: 00000246 RAX: 0000000000000001 RBX: 00000000000668a0 RCX: 00007f34f4519ad5 RDX: 00007ffec5b32d00 RSI: 0000000000000004 RDI: 0000564f4bc6cae0 RBP: 0000564f4bc6b5a0 R08: 0000000000000008 R09: 0000000000000000 R10: 00007ffec5b32de8 R11: 0000000000000246 R12: 0000564f48ea8aa4 R13: 0000000000000001 R14: 0000564f48ea93e8 R15: 00007ffec5b32d68 Eric noted a probable shinfo->nr_frags corruption, which indeed occurs. The root cause is a buggy MPTCP option len computation in some circumstances: the ADD_ADDR option should be mutually exclusive with DSS since the blamed commit. Still, mptcp_established_options_add_addr() tries to set the relevant info in mptcp_out_options, if ---truncated---
5.5
Medium
CVE-2024-57872 2025-01-11 14h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: pltfrm: Dellocate HBA during ufshcd_pltfrm_remove() This will ensure that the scsi host is cleaned up properly using scsi_host_dev_release(). Otherwise, it may lead to memory leaks.
5.5
Medium
CVE-2024-57798 2025-01-11 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/dp_mst: Ensure mst_primary pointer is valid in drm_dp_mst_handle_up_req() While receiving an MST up request message from one thread in drm_dp_mst_handle_up_req(), the MST topology could be removed from another thread via drm_dp_mst_topology_mgr_set_mst(false), freeing mst_primary and setting drm_dp_mst_topology_mgr::mst_primary to NULL. This could lead to a NULL deref/use-after-free of mst_primary in drm_dp_mst_handle_up_req(). Avoid the above by holding a reference for mst_primary in drm_dp_mst_handle_up_req() while it's used. v2: Fix kfreeing the request if getting an mst_primary reference fails.
7.8
High
CVE-2024-54683 2025-01-11 12h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: IDLETIMER: Fix for possible ABBA deadlock Deletion of the last rule referencing a given idletimer may happen at the same time as a read of its file in sysfs: | ====================================================== | WARNING: possible circular locking dependency detected | 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted | ------------------------------------------------------ | iptables/3303 is trying to acquire lock: | ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20 | | but task is already holding lock: | ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v] | | which lock already depends on the new lock. A simple reproducer is: | #!/bin/bash | | while true; do | iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | done & | while true; do | cat /sys/class/xt_idletimer/timers/testme >/dev/null | done Avoid this by freeing list_mutex right after deleting the element from the list, then continuing with the teardown.
5.5
Medium
CVE-2024-48875 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't take dev_replace rwsem on task already holding it Running fstests btrfs/011 with MKFS_OPTIONS="-O rst" to force the usage of the RAID stripe-tree, we get the following splat from lockdep: BTRFS info (device sdd): dev_replace from /dev/sdd (devid 1) to /dev/sdb started ============================================ WARNING: possible recursive locking detected 6.11.0-rc3-btrfs-for-next #599 Not tainted -------------------------------------------- btrfs/2326 is trying to acquire lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 but task is already holding lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&fs_info->dev_replace.rwsem); lock(&fs_info->dev_replace.rwsem); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by btrfs/2326: #0: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 stack backtrace: CPU: 1 UID: 0 PID: 2326 Comm: btrfs Not tainted 6.11.0-rc3-btrfs-for-next #599 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack_lvl+0x5b/0x80 __lock_acquire+0x2798/0x69d0 ? __pfx___lock_acquire+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 lock_acquire+0x19d/0x4a0 ? btrfs_map_block+0x39f/0x2250 ? __pfx_lock_acquire+0x10/0x10 ? find_held_lock+0x2d/0x110 ? lock_is_held_type+0x8f/0x100 down_read+0x8e/0x440 ? btrfs_map_block+0x39f/0x2250 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x39f/0x2250 ? btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? btrfs_bio_counter_inc_blocked+0xd9/0x2e0 ? __kasan_slab_alloc+0x6e/0x70 ? __pfx_btrfs_map_block+0x10/0x10 ? __pfx_btrfs_bio_counter_inc_blocked+0x10/0x10 ? kmem_cache_alloc_noprof+0x1f2/0x300 ? mempool_alloc_noprof+0xed/0x2b0 btrfs_submit_chunk+0x28d/0x17e0 ? __pfx_btrfs_submit_chunk+0x10/0x10 ? bvec_alloc+0xd7/0x1b0 ? bio_add_folio+0x171/0x270 ? __pfx_bio_add_folio+0x10/0x10 ? __kasan_check_read+0x20/0x20 btrfs_submit_bio+0x37/0x80 read_extent_buffer_pages+0x3df/0x6c0 btrfs_read_extent_buffer+0x13e/0x5f0 read_tree_block+0x81/0xe0 read_block_for_search+0x4bd/0x7a0 ? __pfx_read_block_for_search+0x10/0x10 btrfs_search_slot+0x78d/0x2720 ? __pfx_btrfs_search_slot+0x10/0x10 ? lock_is_held_type+0x8f/0x100 ? kasan_save_track+0x14/0x30 ? __kasan_slab_alloc+0x6e/0x70 ? kmem_cache_alloc_noprof+0x1f2/0x300 btrfs_get_raid_extent_offset+0x181/0x820 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_btrfs_get_raid_extent_offset+0x10/0x10 ? down_read+0x194/0x440 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x5b5/0x2250 ? __pfx_btrfs_map_block+0x10/0x10 scrub_submit_initial_read+0x8fe/0x11b0 ? __pfx_scrub_submit_initial_read+0x10/0x10 submit_initial_group_read+0x161/0x3a0 ? lock_release+0x20e/0x710 ? __pfx_submit_initial_group_read+0x10/0x10 ? __pfx_lock_release+0x10/0x10 scrub_simple_mirror.isra.0+0x3eb/0x580 scrub_stripe+0xe4d/0x1440 ? lock_release+0x20e/0x710 ? __pfx_scrub_stripe+0x10/0x10 ? __pfx_lock_release+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 scrub_chunk+0x257/0x4a0 scrub_enumerate_chunks+0x64c/0xf70 ? __mutex_unlock_slowpath+0x147/0x5f0 ? __pfx_scrub_enumerate_chunks+0x10/0x10 ? bit_wait_timeout+0xb0/0x170 ? __up_read+0x189/0x700 ? scrub_workers_get+0x231/0x300 ? up_write+0x490/0x4f0 btrfs_scrub_dev+0x52e/0xcd0 ? create_pending_snapshots+0x230/0x250 ? __pfx_btrfs_scrub_dev+0x10/0x10 btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? lock_acquire+0x19d/0x4a0 ? __pfx_btrfs_dev_replace_by_ioctl+0x10/0x10 ? ---truncated---
5.5
Medium
CVE-2024-47809 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: dlm: fix possible lkb_resource null dereference This patch fixes a possible null pointer dereference when this function is called from request_lock() as lkb->lkb_resource is not assigned yet, only after validate_lock_args() by calling attach_lkb(). Another issue is that a resource name could be a non printable bytearray and we cannot assume to be ASCII coded. The log functionality is probably never being hit when DLM is used in normal way and no debug logging is enabled. The null pointer dereference can only occur on a new created lkb that does not have the resource assigned yet, it probably never hits the null pointer dereference but we should be sure that other changes might not change this behaviour and we actually can hit the mentioned null pointer dereference. In this patch we just drop the printout of the resource name, the lkb id is enough to make a possible connection to a resource name if this exists.
5.5
Medium
CVE-2024-47141 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: pinmux: Use sequential access to access desc->pinmux data When two client of the same gpio call pinctrl_select_state() for the same functionality, we are seeing NULL pointer issue while accessing desc->mux_owner. Let's say two processes A, B executing in pin_request() for the same pin and process A updates the desc->mux_usecount but not yet updated the desc->mux_owner while process B see the desc->mux_usecount which got updated by A path and further executes strcmp and while accessing desc->mux_owner it crashes with NULL pointer. Serialize the access to mux related setting with a mutex lock. cpu0 (process A) cpu1(process B) pinctrl_select_state() { pinctrl_select_state() { pin_request() { pin_request() { ... .... } else { desc->mux_usecount++; desc->mux_usecount && strcmp(desc->mux_owner, owner)) { if (desc->mux_usecount > 1) return 0; desc->mux_owner = owner; } }
5.5
Medium
CVE-2024-56786 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: put bpf_link's program when link is safe to be deallocated In general, BPF link's underlying BPF program should be considered to be reachable through attach hook -> link -> prog chain, and, pessimistically, we have to assume that as long as link's memory is not safe to free, attach hook's code might hold a pointer to BPF program and use it. As such, it's not (generally) correct to put link's program early before waiting for RCU GPs to go through. More eager bpf_prog_put() that we currently do is mostly correct due to BPF program's release code doing similar RCU GP waiting, but as will be shown in the following patches, BPF program can be non-sleepable (and, thus, reliant on only "classic" RCU GP), while BPF link's attach hook can have sleepable semantics and needs to be protected by RCU Tasks Trace, and for such cases BPF link has to go through RCU Tasks Trace + "classic" RCU GPs before being deallocated. And so, if we put BPF program early, we might free BPF program before we free BPF link, leading to use-after-free situation. So, this patch defers bpf_prog_put() until we are ready to perform bpf_link's deallocation. At worst, this delays BPF program freeing by one extra RCU GP, but that seems completely acceptable. Alternatively, we'd need more elaborate ways to determine BPF hook, BPF link, and BPF program lifetimes, and how they relate to each other, which seems like an unnecessary complication. Note, for most BPF links we still will perform eager bpf_prog_put() and link dealloc, so for those BPF links there are no observable changes whatsoever. Only BPF links that use deferred dealloc might notice slightly delayed freeing of BPF programs. Also, to reduce code and logic duplication, extract program put + link dealloc logic into bpf_link_dealloc() helper.
7.8
High
CVE-2024-56784 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adding array index check to prevent memory corruption [Why & How] Array indices out of bound caused memory corruption. Adding checks to ensure that array index stays in bound.
7.8
High
CVE-2024-56782 2025-01-08 17h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: ACPI: x86: Add adev NULL check to acpi_quirk_skip_serdev_enumeration() acpi_dev_hid_match() does not check for adev == NULL, dereferencing it unconditional. Add a check for adev being NULL before calling acpi_dev_hid_match(). At the moment acpi_quirk_skip_serdev_enumeration() is never called with a controller_parent without an ACPI companion, but better safe than sorry.
5.5
Medium
CVE-2024-56775 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix handling of plane refcount [Why] The mechanism to backup and restore plane states doesn't maintain refcount, which can cause issues if the refcount of the plane changes in between backup and restore operations, such as memory leaks if the refcount was supposed to go down, or double frees / invalid memory accesses if the refcount was supposed to go up. [How] Cache and re-apply current refcount when restoring plane states.
7.8
High
CVE-2024-56769 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: dib3000mb: fix uninit-value in dib3000_write_reg Syzbot reports [1] an uninitialized value issue found by KMSAN in dib3000_read_reg(). Local u8 rb[2] is used in i2c_transfer() as a read buffer; in case that call fails, the buffer may end up with some undefined values. Since no elaborate error handling is expected in dib3000_write_reg(), simply zero out rb buffer to mitigate the problem. [1] Syzkaller report dvb-usb: bulk message failed: -22 (6/0) ===================================================== BUG: KMSAN: uninit-value in dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 dibusb_dib3000mb_frontend_attach+0x155/0x2f0 drivers/media/usb/dvb-usb/dibusb-mb.c:31 dvb_usb_adapter_frontend_init+0xed/0x9a0 drivers/media/usb/dvb-usb/dvb-usb-dvb.c:290 dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:90 [inline] dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:186 [inline] dvb_usb_device_init+0x25a8/0x3760 drivers/media/usb/dvb-usb/dvb-usb-init.c:310 dibusb_probe+0x46/0x250 drivers/media/usb/dvb-usb/dibusb-mb.c:110 ... Local variable rb created at: dib3000_read_reg+0x86/0x4e0 drivers/media/dvb-frontends/dib3000mb.c:54 dib3000mb_attach+0x123/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 ...
5.5
Medium
CVE-2024-56767 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: dmaengine: at_xdmac: avoid null_prt_deref in at_xdmac_prep_dma_memset The at_xdmac_memset_create_desc may return NULL, which will lead to a null pointer dereference. For example, the len input is error, or the atchan->free_descs_list is empty and memory is exhausted. Therefore, add check to avoid this.
5.5
Medium
CVE-2024-56763 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: tracing: Prevent bad count for tracing_cpumask_write If a large count is provided, it will trigger a warning in bitmap_parse_user. Also check zero for it.
5.5
Medium
CVE-2024-56759 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when COWing tree bock and tracing is enabled When a COWing a tree block, at btrfs_cow_block(), and we have the tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled (CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent buffer while inside the tracepoint code. This is because in some paths that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding the last reference on the extent buffer @buf so btrfs_force_cow_block() drops the last reference on the @buf extent buffer when it calls free_extent_buffer_stale(buf), which schedules the release of the extent buffer with RCU. This means that if we are on a kernel with preemption, the current task may be preempted before calling trace_btrfs_cow_block() and the extent buffer already released by the time trace_btrfs_cow_block() is called, resulting in a use-after-free. Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to btrfs_force_cow_block() before the COWed extent buffer is freed. This also has a side effect of invoking the tracepoint in the tree defrag code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is called there, but this is fine and it was actually missing there.
7.8
High
CVE-2024-56757 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: add intf release flow when usb disconnect MediaTek claim an special usb intr interface for ISO data transmission. The interface need to be released before unregistering hci device when usb disconnect. Removing BT usb dongle without properly releasing the interface may cause Kernel panic while unregister hci device.
5.5
Medium
CVE-2024-56751 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: release nexthop on device removal The CI is hitting some aperiodic hangup at device removal time in the pmtu.sh self-test: unregister_netdevice: waiting for veth_A-R1 to become free. Usage count = 6 ref_tracker: veth_A-R1@ffff888013df15d8 has 1/5 users at dst_init+0x84/0x4a0 dst_alloc+0x97/0x150 ip6_dst_alloc+0x23/0x90 ip6_rt_pcpu_alloc+0x1e6/0x520 ip6_pol_route+0x56f/0x840 fib6_rule_lookup+0x334/0x630 ip6_route_output_flags+0x259/0x480 ip6_dst_lookup_tail.constprop.0+0x5c2/0x940 ip6_dst_lookup_flow+0x88/0x190 udp_tunnel6_dst_lookup+0x2a7/0x4c0 vxlan_xmit_one+0xbde/0x4a50 [vxlan] vxlan_xmit+0x9ad/0xf20 [vxlan] dev_hard_start_xmit+0x10e/0x360 __dev_queue_xmit+0xf95/0x18c0 arp_solicit+0x4a2/0xe00 neigh_probe+0xaa/0xf0 While the first suspect is the dst_cache, explicitly tracking the dst owing the last device reference via probes proved such dst is held by the nexthop in the originating fib6_info. Similar to commit f5b51fe804ec ("ipv6: route: purge exception on removal"), we need to explicitly release the originating fib info when disconnecting a to-be-removed device from a live ipv6 dst: move the fib6_info cleanup into ip6_dst_ifdown(). Tested running: ./pmtu.sh cleanup_ipv6_exception in a tight loop for more than 400 iterations with no spat, running an unpatched kernel I observed a splat every ~10 iterations.
5.5
Medium
CVE-2024-56727 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_flows.c Adding error pointer check after calling otx2_mbox_get_rsp().
5.5
Medium
CVE-2024-56722 2024-12-29 11h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix cpu stuck caused by printings during reset During reset, cmd to destroy resources such as qp, cq, and mr may fail, and error logs will be printed. When a large number of resources are destroyed, there will be lots of printings, and it may lead to a cpu stuck. Delete some unnecessary printings and replace other printing functions in these paths with the ratelimited version.
5.5
Medium
CVE-2024-56718 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/smc: protect link down work from execute after lgr freed link down work may be scheduled before lgr freed but execute after lgr freed, which may result in crash. So it is need to hold a reference before shedule link down work, and put the reference after work executed or canceled. The relevant crash call stack as follows: list_del corruption. prev->next should be ffffb638c9c0fe20, but was 0000000000000000 ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:51! invalid opcode: 0000 [#1] SMP NOPTI CPU: 6 PID: 978112 Comm: kworker/6:119 Kdump: loaded Tainted: G #1 Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 2221b89 04/01/2014 Workqueue: events smc_link_down_work [smc] RIP: 0010:__list_del_entry_valid.cold+0x31/0x47 RSP: 0018:ffffb638c9c0fdd8 EFLAGS: 00010086 RAX: 0000000000000054 RBX: ffff942fb75e5128 RCX: 0000000000000000 RDX: ffff943520930aa0 RSI: ffff94352091fc80 RDI: ffff94352091fc80 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffb638c9c0fc38 R10: ffffb638c9c0fc30 R11: ffffffffa015eb28 R12: 0000000000000002 R13: ffffb638c9c0fe20 R14: 0000000000000001 R15: ffff942f9cd051c0 FS: 0000000000000000(0000) GS:ffff943520900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4f25214000 CR3: 000000025fbae004 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: rwsem_down_write_slowpath+0x17e/0x470 smc_link_down_work+0x3c/0x60 [smc] process_one_work+0x1ac/0x350 worker_thread+0x49/0x2f0 ? rescuer_thread+0x360/0x360 kthread+0x118/0x140 ? __kthread_bind_mask+0x60/0x60 ret_from_fork+0x1f/0x30
5.5
Medium
CVE-2024-56712 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: udmabuf: fix memory leak on last export_udmabuf() error path In export_udmabuf(), if dma_buf_fd() fails because the FD table is full, a dma_buf owning the udmabuf has already been created; but the error handling in udmabuf_create() will tear down the udmabuf without doing anything about the containing dma_buf. This leaves a dma_buf in memory that contains a dangling pointer; though that doesn't seem to lead to anything bad except a memory leak. Fix it by moving the dma_buf_fd() call out of export_udmabuf() so that we can give it different error handling. Note that the shape of this code changed a lot in commit 5e72b2b41a21 ("udmabuf: convert udmabuf driver to use folios"); but the memory leak seems to have existed since the introduction of udmabuf.
5.5
Medium
CVE-2024-56692 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on node blkaddr in truncate_node() syzbot reports a f2fs bug as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/segment.c:2534! RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 Call Trace: truncate_node+0x1ae/0x8c0 fs/f2fs/node.c:909 f2fs_remove_inode_page+0x5c2/0x870 fs/f2fs/node.c:1288 f2fs_evict_inode+0x879/0x15c0 fs/f2fs/inode.c:856 evict+0x4e8/0x9b0 fs/inode.c:723 f2fs_handle_failed_inode+0x271/0x2e0 fs/f2fs/inode.c:986 f2fs_create+0x357/0x530 fs/f2fs/namei.c:394 lookup_open fs/namei.c:3595 [inline] open_last_lookups fs/namei.c:3694 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3930 do_filp_open+0x235/0x490 fs/namei.c:3960 do_sys_openat2+0x13e/0x1d0 fs/open.c:1415 do_sys_open fs/open.c:1430 [inline] __do_sys_openat fs/open.c:1446 [inline] __se_sys_openat fs/open.c:1441 [inline] __x64_sys_openat+0x247/0x2a0 fs/open.c:1441 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 The root cause is: on a fuzzed image, blkaddr in nat entry may be corrupted, then it will cause system panic when using it in f2fs_invalidate_blocks(), to avoid this, let's add sanity check on nat blkaddr in truncate_node().
5.5
Medium
CVE-2024-56672 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: Fix UAF in blkcg_unpin_online() blkcg_unpin_online() walks up the blkcg hierarchy putting the online pin. To walk up, it uses blkcg_parent(blkcg) but it was calling that after blkcg_destroy_blkgs(blkcg) which could free the blkcg, leading to the following UAF: ================================================================== BUG: KASAN: slab-use-after-free in blkcg_unpin_online+0x15a/0x270 Read of size 8 at addr ffff8881057678c0 by task kworker/9:1/117 CPU: 9 UID: 0 PID: 117 Comm: kworker/9:1 Not tainted 6.13.0-rc1-work-00182-gb8f52214c61a-dirty #48 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 02/02/2022 Workqueue: cgwb_release cgwb_release_workfn Call Trace: dump_stack_lvl+0x27/0x80 print_report+0x151/0x710 kasan_report+0xc0/0x100 blkcg_unpin_online+0x15a/0x270 cgwb_release_workfn+0x194/0x480 process_scheduled_works+0x71b/0xe20 worker_thread+0x82a/0xbd0 kthread+0x242/0x2c0 ret_from_fork+0x33/0x70 ret_from_fork_asm+0x1a/0x30 ... Freed by task 1944: kasan_save_track+0x2b/0x70 kasan_save_free_info+0x3c/0x50 __kasan_slab_free+0x33/0x50 kfree+0x10c/0x330 css_free_rwork_fn+0xe6/0xb30 process_scheduled_works+0x71b/0xe20 worker_thread+0x82a/0xbd0 kthread+0x242/0x2c0 ret_from_fork+0x33/0x70 ret_from_fork_asm+0x1a/0x30 Note that the UAF is not easy to trigger as the free path is indirected behind a couple RCU grace periods and a work item execution. I could only trigger it with artifical msleep() injected in blkcg_unpin_online(). Fix it by reading the parent pointer before destroying the blkcg's blkg's.
7.8
High
CVE-2024-56664 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix race between element replace and close() Element replace (with a socket different from the one stored) may race with socket's close() link popping & unlinking. __sock_map_delete() unconditionally unrefs the (wrong) element: // set map[0] = s0 map_update_elem(map, 0, s0) // drop fd of s0 close(s0) sock_map_close() lock_sock(sk) (s0!) sock_map_remove_links(sk) link = sk_psock_link_pop() sock_map_unlink(sk, link) sock_map_delete_from_link // replace map[0] with s1 map_update_elem(map, 0, s1) sock_map_update_elem (s1!) lock_sock(sk) sock_map_update_common psock = sk_psock(sk) spin_lock(&stab->lock) osk = stab->sks[idx] sock_map_add_link(..., &stab->sks[idx]) sock_map_unref(osk, &stab->sks[idx]) psock = sk_psock(osk) sk_psock_put(sk, psock) if (refcount_dec_and_test(&psock)) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) unlock_sock(sk) __sock_map_delete spin_lock(&stab->lock) sk = *psk // s1 replaced s0; sk == s1 if (!sk_test || sk_test == sk) // sk_test (s0) != sk (s1); no branch sk = xchg(psk, NULL) if (sk) sock_map_unref(sk, psk) // unref s1; sks[idx] will dangle psock = sk_psock(sk) sk_psock_put(sk, psock) if (refcount_dec_and_test()) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) release_sock(sk) Then close(map) enqueues bpf_map_free_deferred, which finally calls sock_map_free(). This results in some refcount_t warnings along with a KASAN splat [1]. Fix __sock_map_delete(), do not allow sock_map_unref() on elements that may have been replaced. [1]: BUG: KASAN: slab-use-after-free in sock_map_free+0x10e/0x330 Write of size 4 at addr ffff88811f5b9100 by task kworker/u64:12/1063 CPU: 14 UID: 0 PID: 1063 Comm: kworker/u64:12 Not tainted 6.12.0+ #125 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 Workqueue: events_unbound bpf_map_free_deferred Call Trace: dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 kasan_check_range+0x10f/0x1e0 sock_map_free+0x10e/0x330 bpf_map_free_deferred+0x173/0x320 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 Allocated by task 1202: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 unix_create1+0x88/0x8a0 unix_create+0xc5/0x180 __sock_create+0x241/0x650 __sys_socketpair+0x1ce/0x420 __x64_sys_socketpair+0x92/0x100 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 46: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 sk_psock_destroy+0x73e/0xa50 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 The bu ---truncated---
7
High
CVE-2024-56658 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: defer final 'struct net' free in netns dismantle Ilya reported a slab-use-after-free in dst_destroy [1] Issue is in xfrm6_net_init() and xfrm4_net_init() : They copy xfrm[46]_dst_ops_template into net->xfrm.xfrm[46]_dst_ops. But net structure might be freed before all the dst callbacks are called. So when dst_destroy() calls later : if (dst->ops->destroy) dst->ops->destroy(dst); dst->ops points to the old net->xfrm.xfrm[46]_dst_ops, which has been freed. See a relevant issue fixed in : ac888d58869b ("net: do not delay dst_entries_add() in dst_release()") A fix is to queue the 'struct net' to be freed after one another cleanup_net() round (and existing rcu_barrier()) [1] BUG: KASAN: slab-use-after-free in dst_destroy (net/core/dst.c:112) Read of size 8 at addr ffff8882137ccab0 by task swapper/37/0 Dec 03 05:46:18 kernel: CPU: 37 UID: 0 PID: 0 Comm: swapper/37 Kdump: loaded Not tainted 6.12.0 #67 Hardware name: Red Hat KVM/RHEL, BIOS 1.16.1-1.el9 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:124) print_address_description.constprop.0 (mm/kasan/report.c:378) ? dst_destroy (net/core/dst.c:112) print_report (mm/kasan/report.c:489) ? dst_destroy (net/core/dst.c:112) ? kasan_addr_to_slab (mm/kasan/common.c:37) kasan_report (mm/kasan/report.c:603) ? dst_destroy (net/core/dst.c:112) ? rcu_do_batch (kernel/rcu/tree.c:2567) dst_destroy (net/core/dst.c:112) rcu_do_batch (kernel/rcu/tree.c:2567) ? __pfx_rcu_do_batch (kernel/rcu/tree.c:2491) ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4339 kernel/locking/lockdep.c:4406) rcu_core (kernel/rcu/tree.c:2825) handle_softirqs (kernel/softirq.c:554) __irq_exit_rcu (kernel/softirq.c:589 kernel/softirq.c:428 kernel/softirq.c:637) irq_exit_rcu (kernel/softirq.c:651) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1049 arch/x86/kernel/apic/apic.c:1049) asm_sysvec_apic_timer_interrupt (./arch/x86/include/asm/idtentry.h:702) RIP: 0010:default_idle (./arch/x86/include/asm/irqflags.h:37 ./arch/x86/include/asm/irqflags.h:92 arch/x86/kernel/process.c:743) Code: 00 4d 29 c8 4c 01 c7 4c 29 c2 e9 6e ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 0f 00 2d c7 c9 27 00 fb f4 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 RSP: 0018:ffff888100d2fe00 EFLAGS: 00000246 RAX: 00000000001870ed RBX: 1ffff110201a5fc2 RCX: ffffffffb61a3e46 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffb3d4d123 RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed11c7e1835d R10: ffff888e3f0c1aeb R11: 0000000000000000 R12: 0000000000000000 R13: ffff888100d20000 R14: dffffc0000000000 R15: 0000000000000000 ? ct_kernel_exit.constprop.0 (kernel/context_tracking.c:148) ? cpuidle_idle_call (kernel/sched/idle.c:186) default_idle_call (./include/linux/cpuidle.h:143 kernel/sched/idle.c:118) cpuidle_idle_call (kernel/sched/idle.c:186) ? __pfx_cpuidle_idle_call (kernel/sched/idle.c:168) ? lock_release (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5848) ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4347 kernel/locking/lockdep.c:4406) ? tsc_verify_tsc_adjust (arch/x86/kernel/tsc_sync.c:59) do_idle (kernel/sched/idle.c:326) cpu_startup_entry (kernel/sched/idle.c:423 (discriminator 1)) start_secondary (arch/x86/kernel/smpboot.c:202 arch/x86/kernel/smpboot.c:282) ? __pfx_start_secondary (arch/x86/kernel/smpboot.c:232) ? soft_restart_cpu (arch/x86/kernel/head_64.S:452) common_startup_64 (arch/x86/kernel/head_64.S:414) Dec 03 05:46:18 kernel: Allocated by task 12184: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (./arch/x86/include/asm/current.h:49 mm/kasan/common.c:60 mm/kasan/common.c:69) __kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345) kmem_cache_alloc_noprof (mm/slub.c:4085 mm/slub.c:4134 mm/slub.c:4141) copy_net_ns (net/core/net_namespace.c:421 net/core/net_namespace.c:480) create_new_namespaces ---truncated---
7.8
High
CVE-2024-56657 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: ALSA: control: Avoid WARN() for symlink errors Using WARN() for showing the error of symlink creations don't give more information than telling that something goes wrong, since the usual code path is a lregister callback from each control element creation. More badly, the use of WARN() rather confuses fuzzer as if it were serious issues. This patch downgrades the warning messages to use the normal dev_err() instead of WARN(). For making it clearer, add the function name to the prefix, too.
5.5
Medium
CVE-2024-56647 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: Fix icmp host relookup triggering ip_rt_bug arp link failure may trigger ip_rt_bug while xfrm enabled, call trace is: WARNING: CPU: 0 PID: 0 at net/ipv4/route.c:1241 ip_rt_bug+0x14/0x20 Modules linked in: CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:ip_rt_bug+0x14/0x20 Call Trace: ip_send_skb+0x14/0x40 __icmp_send+0x42d/0x6a0 ipv4_link_failure+0xe2/0x1d0 arp_error_report+0x3c/0x50 neigh_invalidate+0x8d/0x100 neigh_timer_handler+0x2e1/0x330 call_timer_fn+0x21/0x120 __run_timer_base.part.0+0x1c9/0x270 run_timer_softirq+0x4c/0x80 handle_softirqs+0xac/0x280 irq_exit_rcu+0x62/0x80 sysvec_apic_timer_interrupt+0x77/0x90 The script below reproduces this scenario: ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 \ dir out priority 0 ptype main flag localok icmp ip l a veth1 type veth ip a a 192.168.141.111/24 dev veth0 ip l s veth0 up ping 192.168.141.155 -c 1 icmp_route_lookup() create input routes for locally generated packets while xfrm relookup ICMP traffic.Then it will set input route (dst->out = ip_rt_bug) to skb for DESTUNREACH. For ICMP err triggered by locally generated packets, dst->dev of output route is loopback. Generally, xfrm relookup verification is not required on loopback interfaces (net.ipv4.conf.lo.disable_xfrm = 1). Skip icmp relookup for locally generated packets to fix it.
5.5
Medium
CVE-2024-56631 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Fix slab-use-after-free read in sg_release() Fix a use-after-free bug in sg_release(), detected by syzbot with KASAN: BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5838 __mutex_unlock_slowpath+0xe2/0x750 kernel/locking/mutex.c:912 sg_release+0x1f4/0x2e0 drivers/scsi/sg.c:407 In sg_release(), the function kref_put(&sfp->f_ref, sg_remove_sfp) is called before releasing the open_rel_lock mutex. The kref_put() call may decrement the reference count of sfp to zero, triggering its cleanup through sg_remove_sfp(). This cleanup includes scheduling deferred work via sg_remove_sfp_usercontext(), which ultimately frees sfp. After kref_put(), sg_release() continues to unlock open_rel_lock and may reference sfp or sdp. If sfp has already been freed, this results in a slab-use-after-free error. Move the kref_put(&sfp->f_ref, sg_remove_sfp) call after unlocking the open_rel_lock mutex. This ensures: - No references to sfp or sdp occur after the reference count is decremented. - Cleanup functions such as sg_remove_sfp() and sg_remove_sfp_usercontext() can safely execute without impacting the mutex handling in sg_release(). The fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures proper sequencing of resource cleanup and mutex operations, eliminating the risk of use-after-free errors in sg_release().
7.8
High
CVE-2024-56611 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/mempolicy: fix migrate_to_node() assuming there is at least one VMA in a MM We currently assume that there is at least one VMA in a MM, which isn't true. So we might end up having find_vma() return NULL, to then de-reference NULL. So properly handle find_vma() returning NULL. This fixes the report: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 6021 Comm: syz-executor284 Not tainted 6.12.0-rc7-syzkaller-00187-gf868cd251776 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 RIP: 0010:migrate_to_node mm/mempolicy.c:1090 [inline] RIP: 0010:do_migrate_pages+0x403/0x6f0 mm/mempolicy.c:1194 Code: ... RSP: 0018:ffffc9000375fd08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffc9000375fd78 RCX: 0000000000000000 RDX: ffff88807e171300 RSI: dffffc0000000000 RDI: ffff88803390c044 RBP: ffff88807e171428 R08: 0000000000000014 R09: fffffbfff2039ef1 R10: ffffffff901cf78f R11: 0000000000000000 R12: 0000000000000003 R13: ffffc9000375fe90 R14: ffffc9000375fe98 R15: ffffc9000375fdf8 FS: 00005555919e1380(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555919e1ca8 CR3: 000000007f12a000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: kernel_migrate_pages+0x5b2/0x750 mm/mempolicy.c:1709 __do_sys_migrate_pages mm/mempolicy.c:1727 [inline] __se_sys_migrate_pages mm/mempolicy.c:1723 [inline] __x64_sys_migrate_pages+0x96/0x100 mm/mempolicy.c:1723 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [[email protected]: add unlikely()]
5.5
Medium
CVE-2024-56608 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix out-of-bounds access in 'dcn21_link_encoder_create' An issue was identified in the dcn21_link_encoder_create function where an out-of-bounds access could occur when the hpd_source index was used to reference the link_enc_hpd_regs array. This array has a fixed size and the index was not being checked against the array's bounds before accessing it. This fix adds a conditional check to ensure that the hpd_source index is within the valid range of the link_enc_hpd_regs array. If the index is out of bounds, the function now returns NULL to prevent undefined behavior. References: [ 65.920507] ------------[ cut here ]------------ [ 65.920510] UBSAN: array-index-out-of-bounds in drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn21/dcn21_resource.c:1312:29 [ 65.920519] index 7 is out of range for type 'dcn10_link_enc_hpd_registers [5]' [ 65.920523] CPU: 3 PID: 1178 Comm: modprobe Tainted: G OE 6.8.0-cleanershaderfeatureresetasdntipmi200nv2132 #13 [ 65.920525] Hardware name: AMD Majolica-RN/Majolica-RN, BIOS WMJ0429N_Weekly_20_04_2 04/29/2020 [ 65.920527] Call Trace: [ 65.920529] [ 65.920532] dump_stack_lvl+0x48/0x70 [ 65.920541] dump_stack+0x10/0x20 [ 65.920543] __ubsan_handle_out_of_bounds+0xa2/0xe0 [ 65.920549] dcn21_link_encoder_create+0xd9/0x140 [amdgpu] [ 65.921009] link_create+0x6d3/0xed0 [amdgpu] [ 65.921355] create_links+0x18a/0x4e0 [amdgpu] [ 65.921679] dc_create+0x360/0x720 [amdgpu] [ 65.921999] ? dmi_matches+0xa0/0x220 [ 65.922004] amdgpu_dm_init+0x2b6/0x2c90 [amdgpu] [ 65.922342] ? console_unlock+0x77/0x120 [ 65.922348] ? dev_printk_emit+0x86/0xb0 [ 65.922354] dm_hw_init+0x15/0x40 [amdgpu] [ 65.922686] amdgpu_device_init+0x26a8/0x33a0 [amdgpu] [ 65.922921] amdgpu_driver_load_kms+0x1b/0xa0 [amdgpu] [ 65.923087] amdgpu_pci_probe+0x1b7/0x630 [amdgpu] [ 65.923087] local_pci_probe+0x4b/0xb0 [ 65.923087] pci_device_probe+0xc8/0x280 [ 65.923087] really_probe+0x187/0x300 [ 65.923087] __driver_probe_device+0x85/0x130 [ 65.923087] driver_probe_device+0x24/0x110 [ 65.923087] __driver_attach+0xac/0x1d0 [ 65.923087] ? __pfx___driver_attach+0x10/0x10 [ 65.923087] bus_for_each_dev+0x7d/0xd0 [ 65.923087] driver_attach+0x1e/0x30 [ 65.923087] bus_add_driver+0xf2/0x200 [ 65.923087] driver_register+0x64/0x130 [ 65.923087] ? __pfx_amdgpu_init+0x10/0x10 [amdgpu] [ 65.923087] __pci_register_driver+0x61/0x70 [ 65.923087] amdgpu_init+0x7d/0xff0 [amdgpu] [ 65.923087] do_one_initcall+0x49/0x310 [ 65.923087] ? kmalloc_trace+0x136/0x360 [ 65.923087] do_init_module+0x6a/0x270 [ 65.923087] load_module+0x1fce/0x23a0 [ 65.923087] init_module_from_file+0x9c/0xe0 [ 65.923087] ? init_module_from_file+0x9c/0xe0 [ 65.923087] idempotent_init_module+0x179/0x230 [ 65.923087] __x64_sys_finit_module+0x5d/0xa0 [ 65.923087] do_syscall_64+0x76/0x120 [ 65.923087] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 65.923087] RIP: 0033:0x7f2d80f1e88d [ 65.923087] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48 [ 65.923087] RSP: 002b:00007ffc7bc1aa78 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [ 65.923087] RAX: ffffffffffffffda RBX: 0000564c9c1db130 RCX: 00007f2d80f1e88d [ 65.923087] RDX: 0000000000000000 RSI: 0000564c9c1e5480 RDI: 000000000000000f [ 65.923087] RBP: 0000000000040000 R08: 0000000000000000 R09: 0000000000000002 [ 65.923087] R10: 000000000000000f R11: 0000000000000246 R12: 0000564c9c1e5480 [ 65.923087] R13: 0000564c9c1db260 R14: 0000000000000000 R15: 0000564c9c1e54b0 [ 65.923087] [ 65.923927] ---[ end trace ]---
7.8
High
CVE-2024-56604 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc() bt_sock_alloc() attaches allocated sk object to the provided sock object. If rfcomm_dlc_alloc() fails, we release the sk object, but leave the dangling pointer in the sock object, which may cause use-after-free. Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
7.8
High
CVE-2024-56599 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: avoid NULL pointer error during sdio remove When running 'rmmod ath10k', ath10k_sdio_remove() will free sdio workqueue by destroy_workqueue(). But if CONFIG_INIT_ON_FREE_DEFAULT_ON is set to yes, kernel panic will happen: Call trace: destroy_workqueue+0x1c/0x258 ath10k_sdio_remove+0x84/0x94 sdio_bus_remove+0x50/0x16c device_release_driver_internal+0x188/0x25c device_driver_detach+0x20/0x2c This is because during 'rmmod ath10k', ath10k_sdio_remove() will call ath10k_core_destroy() before destroy_workqueue(). wiphy_dev_release() will finally be called in ath10k_core_destroy(). This function will free struct cfg80211_registered_device *rdev and all its members, including wiphy, dev and the pointer of sdio workqueue. Then the pointer of sdio workqueue will be set to NULL due to CONFIG_INIT_ON_FREE_DEFAULT_ON. After device release, destroy_workqueue() will use NULL pointer then the kernel panic happen. Call trace: ath10k_sdio_remove ->ath10k_core_unregister …… ->ath10k_core_stop ->ath10k_hif_stop ->ath10k_sdio_irq_disable ->ath10k_hif_power_down ->del_timer_sync(&ar_sdio->sleep_timer) ->ath10k_core_destroy ->ath10k_mac_destroy ->ieee80211_free_hw ->wiphy_free …… ->wiphy_dev_release ->destroy_workqueue Need to call destroy_workqueue() before ath10k_core_destroy(), free the work queue buffer first and then free pointer of work queue by ath10k_core_destroy(). This order matches the error path order in ath10k_sdio_probe(). No work will be queued on sdio workqueue between it is destroyed and ath10k_core_destroy() is called. Based on the call_stack above, the reason is: Only ath10k_sdio_sleep_timer_handler(), ath10k_sdio_hif_tx_sg() and ath10k_sdio_irq_disable() will queue work on sdio workqueue. Sleep timer will be deleted before ath10k_core_destroy() in ath10k_hif_power_down(). ath10k_sdio_irq_disable() only be called in ath10k_hif_stop(). ath10k_core_unregister() will call ath10k_hif_power_down() to stop hif bus, so ath10k_sdio_hif_tx_sg() won't be called anymore. Tested-on: QCA6174 hw3.2 SDIO WLAN.RMH.4.4.1-00189
5.5
Medium
CVE-2024-56588 2024-12-27 14h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Create all dump files during debugfs initialization For the current debugfs of hisi_sas, after user triggers dump, the driver allocate memory space to save the register information and create debugfs files to display the saved information. In this process, the debugfs files created after each dump. Therefore, when the dump is triggered while the driver is unbind, the following hang occurs: [67840.853907] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [67840.862947] Mem abort info: [67840.865855] ESR = 0x0000000096000004 [67840.869713] EC = 0x25: DABT (current EL), IL = 32 bits [67840.875125] SET = 0, FnV = 0 [67840.878291] EA = 0, S1PTW = 0 [67840.881545] FSC = 0x04: level 0 translation fault [67840.886528] Data abort info: [67840.889524] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [67840.895117] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [67840.900284] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [67840.905709] user pgtable: 4k pages, 48-bit VAs, pgdp=0000002803a1f000 [67840.912263] [00000000000000a0] pgd=0000000000000000, p4d=0000000000000000 [67840.919177] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [67840.996435] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [67841.003628] pc : down_write+0x30/0x98 [67841.007546] lr : start_creating.part.0+0x60/0x198 [67841.012495] sp : ffff8000b979ba20 [67841.016046] x29: ffff8000b979ba20 x28: 0000000000000010 x27: 0000000000024b40 [67841.023412] x26: 0000000000000012 x25: ffff20202b355ae8 x24: ffff20202b35a8c8 [67841.030779] x23: ffffa36877928208 x22: ffffa368b4972240 x21: ffff8000b979bb18 [67841.038147] x20: ffff00281dc1e3c0 x19: fffffffffffffffe x18: 0000000000000020 [67841.045515] x17: 0000000000000000 x16: ffffa368b128a530 x15: ffffffffffffffff [67841.052888] x14: ffff8000b979bc18 x13: ffffffffffffffff x12: ffff8000b979bb18 [67841.060263] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa368b1289b18 [67841.067640] x8 : 0000000000000012 x7 : 0000000000000000 x6 : 00000000000003a9 [67841.075014] x5 : 0000000000000000 x4 : ffff002818c5cb00 x3 : 0000000000000001 [67841.082388] x2 : 0000000000000000 x1 : ffff002818c5cb00 x0 : 00000000000000a0 [67841.089759] Call trace: [67841.092456] down_write+0x30/0x98 [67841.096017] start_creating.part.0+0x60/0x198 [67841.100613] debugfs_create_dir+0x48/0x1f8 [67841.104950] debugfs_create_files_v3_hw+0x88/0x348 [hisi_sas_v3_hw] [67841.111447] debugfs_snapshot_regs_v3_hw+0x708/0x798 [hisi_sas_v3_hw] [67841.118111] debugfs_trigger_dump_v3_hw_write+0x9c/0x120 [hisi_sas_v3_hw] [67841.125115] full_proxy_write+0x68/0xc8 [67841.129175] vfs_write+0xd8/0x3f0 [67841.132708] ksys_write+0x70/0x108 [67841.136317] __arm64_sys_write+0x24/0x38 [67841.140440] invoke_syscall+0x50/0x128 [67841.144385] el0_svc_common.constprop.0+0xc8/0xf0 [67841.149273] do_el0_svc+0x24/0x38 [67841.152773] el0_svc+0x38/0xd8 [67841.156009] el0t_64_sync_handler+0xc0/0xc8 [67841.160361] el0t_64_sync+0x1a4/0x1a8 [67841.164189] Code: b9000882 d2800002 d2800023 f9800011 (c85ffc05) [67841.170443] ---[ end trace 0000000000000000 ]--- To fix this issue, create all directories and files during debugfs initialization. In this way, the driver only needs to allocate memory space to save information each time the user triggers dumping.
5.5
Medium
CVE-2024-56557 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer The AD7923 was updated to support devices with 8 channels, but the size of tx_buf and ring_xfer was not increased accordingly, leading to a potential buffer overflow in ad7923_update_scan_mode().
5.5
Medium
CVE-2024-56551 2024-12-27 14h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix usage slab after free [ +0.000021] BUG: KASAN: slab-use-after-free in drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000027] Read of size 8 at addr ffff8881b8605f88 by task amd_pci_unplug/2147 [ +0.000023] CPU: 6 PID: 2147 Comm: amd_pci_unplug Not tainted 6.10.0+ #1 [ +0.000016] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000016] Call Trace: [ +0.000008] [ +0.000009] dump_stack_lvl+0x76/0xa0 [ +0.000017] print_report+0xce/0x5f0 [ +0.000017] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000019] ? srso_return_thunk+0x5/0x5f [ +0.000015] ? kasan_complete_mode_report_info+0x72/0x200 [ +0.000016] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000019] kasan_report+0xbe/0x110 [ +0.000015] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000023] __asan_report_load8_noabort+0x14/0x30 [ +0.000014] drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_write+0x14/0x30 [ +0.000016] ? __pfx_drm_sched_entity_flush+0x10/0x10 [gpu_sched] [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_write+0x14/0x30 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? enable_work+0x124/0x220 [ +0.000015] ? __pfx_enable_work+0x10/0x10 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? free_large_kmalloc+0x85/0xf0 [ +0.000016] drm_sched_entity_destroy+0x18/0x30 [gpu_sched] [ +0.000020] amdgpu_vce_sw_fini+0x55/0x170 [amdgpu] [ +0.000735] ? __kasan_check_read+0x11/0x20 [ +0.000016] vce_v4_0_sw_fini+0x80/0x110 [amdgpu] [ +0.000726] amdgpu_device_fini_sw+0x331/0xfc0 [amdgpu] [ +0.000679] ? mutex_unlock+0x80/0xe0 [ +0.000017] ? __pfx_amdgpu_device_fini_sw+0x10/0x10 [amdgpu] [ +0.000662] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_check_write+0x14/0x30 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? mutex_unlock+0x80/0xe0 [ +0.000016] amdgpu_driver_release_kms+0x16/0x80 [amdgpu] [ +0.000663] drm_minor_release+0xc9/0x140 [drm] [ +0.000081] drm_release+0x1fd/0x390 [drm] [ +0.000082] __fput+0x36c/0xad0 [ +0.000018] __fput_sync+0x3c/0x50 [ +0.000014] __x64_sys_close+0x7d/0xe0 [ +0.000014] x64_sys_call+0x1bc6/0x2680 [ +0.000014] do_syscall_64+0x70/0x130 [ +0.000014] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? irqentry_exit_to_user_mode+0x60/0x190 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? irqentry_exit+0x43/0x50 [ +0.000012] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? exc_page_fault+0x7c/0x110 [ +0.000015] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ +0.000014] RIP: 0033:0x7ffff7b14f67 [ +0.000013] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff [ +0.000026] RSP: 002b:00007fffffffe378 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 [ +0.000019] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffff7b14f67 [ +0.000014] RDX: 0000000000000000 RSI: 00007ffff7f6f47a RDI: 0000000000000003 [ +0.000014] RBP: 00007fffffffe3a0 R08: 0000555555569890 R09: 0000000000000000 [ +0.000014] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fffffffe5c8 [ +0.000013] R13: 00005555555552a9 R14: 0000555555557d48 R15: 00007ffff7ffd040 [ +0.000020] [ +0.000016] Allocated by task 383 on cpu 7 at 26.880319s: [ +0.000014] kasan_save_stack+0x28/0x60 [ +0.000008] kasan_save_track+0x18/0x70 [ +0.000007] kasan_save_alloc_info+0x38/0x60 [ +0.000007] __kasan_kmalloc+0xc1/0xd0 [ +0.000007] kmalloc_trace_noprof+0x180/0x380 [ +0.000007] drm_sched_init+0x411/0xec0 [gpu_sched] [ +0.000012] amdgpu_device_init+0x695f/0xa610 [amdgpu] [ +0.000658] amdgpu_driver_load_kms+0x1a/0x120 [amdgpu] [ +0.000662] amdgpu_pci_p ---truncated---
7.8
High
CVE-2024-56544 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: udmabuf: change folios array from kmalloc to kvmalloc When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine, page_alloc only support 4MB. If above this, trigger this warn and return NULL. udmabuf can change size limit, if change it to 3072(3GB), and then alloc 3GB udmabuf, will fail create. [ 4080.876581] ------------[ cut here ]------------ [ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350 [ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350 [ 4080.879470] Call Trace: [ 4080.879473] [ 4080.879473] ? __alloc_pages+0x2c8/0x350 [ 4080.879475] ? __warn.cold+0x8e/0xe8 [ 4080.880647] ? __alloc_pages+0x2c8/0x350 [ 4080.880909] ? report_bug+0xff/0x140 [ 4080.881175] ? handle_bug+0x3c/0x80 [ 4080.881556] ? exc_invalid_op+0x17/0x70 [ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20 [ 4080.882077] ? udmabuf_create+0x131/0x400 Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB memory, each array entry is pointer(8byte), so can save 524288 pages(2GB). Further more, costly order(order 3) may not be guaranteed that it can be applied for, due to fragmentation. This patch change udmabuf array use kvmalloc_array, this can fallback alloc into vmalloc, which can guarantee allocation for any size and does not affect the performance of kmalloc allocations.
5.5
Medium
CVE-2024-56538 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm: zynqmp_kms: Unplug DRM device before removal Prevent userspace accesses to the DRM device from causing use-after-frees by unplugging the device before we remove it. This causes any further userspace accesses to result in an error without further calls into this driver's internals.
7.8
High
CVE-2024-53224 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Move events notifier registration to be after device registration Move pkey change work initialization and cleanup from device resources stage to notifier stage, since this is the stage which handles this work events. Fix a race between the device deregistration and pkey change work by moving MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to ensure that the notifier is deregistered before the device during cleanup. Which ensures there are no works that are being executed after the device has already unregistered which can cause the panic below. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023 Workqueue: events pkey_change_handler [mlx5_ib] RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib] Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40 RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36 RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128 RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001 R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000 R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905 FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib] process_one_work+0x1e8/0x3c0 worker_thread+0x50/0x3b0 ? rescuer_thread+0x380/0x380 kthread+0x149/0x170 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x22/0x30 Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core] CR2: 0000000000000000 ---[ end trace f6f8be4eae12f7bc ]---
5.5
Medium
CVE-2024-53221 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null-ptr-deref in f2fs_submit_page_bio() There's issue as follows when concurrently installing the f2fs.ko module and mounting the f2fs file system: KASAN: null-ptr-deref in range [0x0000000000000020-0x0000000000000027] RIP: 0010:__bio_alloc+0x2fb/0x6c0 [f2fs] Call Trace: f2fs_submit_page_bio+0x126/0x8b0 [f2fs] __get_meta_page+0x1d4/0x920 [f2fs] get_checkpoint_version.constprop.0+0x2b/0x3c0 [f2fs] validate_checkpoint+0xac/0x290 [f2fs] f2fs_get_valid_checkpoint+0x207/0x950 [f2fs] f2fs_fill_super+0x1007/0x39b0 [f2fs] mount_bdev+0x183/0x250 legacy_get_tree+0xf4/0x1e0 vfs_get_tree+0x88/0x340 do_new_mount+0x283/0x5e0 path_mount+0x2b2/0x15b0 __x64_sys_mount+0x1fe/0x270 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Above issue happens as the biset of the f2fs file system is not initialized before register "f2fs_fs_type". To address above issue just register "f2fs_fs_type" at the last in init_f2fs_fs(). Ensure that all f2fs file system resources are initialized.
5.5
Medium
CVE-2024-53218 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix race in concurrent f2fs_stop_gc_thread In my test case, concurrent calls to f2fs shutdown report the following stack trace: Oops: general protection fault, probably for non-canonical address 0xc6cfff63bb5513fc: 0000 [#1] PREEMPT SMP PTI CPU: 0 UID: 0 PID: 678 Comm: f2fs_rep_shutdo Not tainted 6.12.0-rc5-next-20241029-g6fb2fa9805c5-dirty #85 Call Trace: ? show_regs+0x8b/0xa0 ? __die_body+0x26/0xa0 ? die_addr+0x54/0x90 ? exc_general_protection+0x24b/0x5c0 ? asm_exc_general_protection+0x26/0x30 ? kthread_stop+0x46/0x390 f2fs_stop_gc_thread+0x6c/0x110 f2fs_do_shutdown+0x309/0x3a0 f2fs_ioc_shutdown+0x150/0x1c0 __f2fs_ioctl+0xffd/0x2ac0 f2fs_ioctl+0x76/0xe0 vfs_ioctl+0x23/0x60 __x64_sys_ioctl+0xce/0xf0 x64_sys_call+0x2b1b/0x4540 do_syscall_64+0xa7/0x240 entry_SYSCALL_64_after_hwframe+0x76/0x7e The root cause is a race condition in f2fs_stop_gc_thread() called from different f2fs shutdown paths: [CPU0] [CPU1] ---------------------- ----------------------- f2fs_stop_gc_thread f2fs_stop_gc_thread gc_th = sbi->gc_thread gc_th = sbi->gc_thread kfree(gc_th) sbi->gc_thread = NULL < gc_th != NULL > kthread_stop(gc_th->f2fs_gc_task) //UAF The commit c7f114d864ac ("f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread()") attempted to fix this issue by using a read semaphore to prevent races between shutdown and remount threads, but it fails to prevent all race conditions. Fix it by converting to write lock of s_umount in f2fs_do_shutdown().
7.8
High
CVE-2024-53216 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: release svc_expkey/svc_export with rcu_work The last reference for `cache_head` can be reduced to zero in `c_show` and `e_show`(using `rcu_read_lock` and `rcu_read_unlock`). Consequently, `svc_export_put` and `expkey_put` will be invoked, leading to two issues: 1. The `svc_export_put` will directly free ex_uuid. However, `e_show`/`c_show` will access `ex_uuid` after `cache_put`, which can trigger a use-after-free issue, shown below. ================================================================== BUG: KASAN: slab-use-after-free in svc_export_show+0x362/0x430 [nfsd] Read of size 1 at addr ff11000010fdc120 by task cat/870 CPU: 1 UID: 0 PID: 870 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: dump_stack_lvl+0x53/0x70 print_address_description.constprop.0+0x2c/0x3a0 print_report+0xb9/0x280 kasan_report+0xae/0xe0 svc_export_show+0x362/0x430 [nfsd] c_show+0x161/0x390 [sunrpc] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 proc_reg_read+0xe1/0x140 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 830: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc_node_track_caller_noprof+0x1bc/0x400 kmemdup_noprof+0x22/0x50 svc_export_parse+0x8a9/0xb80 [nfsd] cache_do_downcall+0x71/0xa0 [sunrpc] cache_write_procfs+0x8e/0xd0 [sunrpc] proc_reg_write+0xe1/0x140 vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 868: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kfree+0xf3/0x3e0 svc_export_put+0x87/0xb0 [nfsd] cache_purge+0x17f/0x1f0 [sunrpc] nfsd_destroy_serv+0x226/0x2d0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e 2. We cannot sleep while using `rcu_read_lock`/`rcu_read_unlock`. However, `svc_export_put`/`expkey_put` will call path_put, which subsequently triggers a sleeping operation due to the following `dput`. ============================= WARNING: suspicious RCU usage 5.10.0-dirty #141 Not tainted ----------------------------- ... Call Trace: dump_stack+0x9a/0xd0 ___might_sleep+0x231/0x240 dput+0x39/0x600 path_put+0x1b/0x30 svc_export_put+0x17/0x80 e_show+0x1c9/0x200 seq_read_iter+0x63f/0x7c0 seq_read+0x226/0x2d0 vfs_read+0x113/0x2c0 ksys_read+0xc9/0x170 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Fix these issues by using `rcu_work` to help release `svc_expkey`/`svc_export`. This approach allows for an asynchronous context to invoke `path_put` and also facilitates the freeing of `uuid/exp/key` after an RCU grace period.
7.8
High
CVE-2024-53210 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/iucv: MSG_PEEK causes memory leak in iucv_sock_destruct() Passing MSG_PEEK flag to skb_recv_datagram() increments skb refcount (skb->users) and iucv_sock_recvmsg() does not decrement skb refcount at exit. This results in skb memory leak in skb_queue_purge() and WARN_ON in iucv_sock_destruct() during socket close. To fix this decrease skb refcount by one if MSG_PEEK is set in order to prevent memory leak and WARN_ON. WARNING: CPU: 2 PID: 6292 at net/iucv/af_iucv.c:286 iucv_sock_destruct+0x144/0x1a0 [af_iucv] CPU: 2 PID: 6292 Comm: afiucv_test_msg Kdump: loaded Tainted: G W 6.10.0-rc7 #1 Hardware name: IBM 3931 A01 704 (z/VM 7.3.0) Call Trace: [<001587c682c4aa98>] iucv_sock_destruct+0x148/0x1a0 [af_iucv] [<001587c682c4a9d0>] iucv_sock_destruct+0x80/0x1a0 [af_iucv] [<001587c704117a32>] __sk_destruct+0x52/0x550 [<001587c704104a54>] __sock_release+0xa4/0x230 [<001587c704104c0c>] sock_close+0x2c/0x40 [<001587c702c5f5a8>] __fput+0x2e8/0x970 [<001587c7024148c4>] task_work_run+0x1c4/0x2c0 [<001587c7023b0716>] do_exit+0x996/0x1050 [<001587c7023b13aa>] do_group_exit+0x13a/0x360 [<001587c7023b1626>] __s390x_sys_exit_group+0x56/0x60 [<001587c7022bccca>] do_syscall+0x27a/0x380 [<001587c7049a6a0c>] __do_syscall+0x9c/0x160 [<001587c7049ce8a8>] system_call+0x70/0x98 Last Breaking-Event-Address: [<001587c682c4a9d4>] iucv_sock_destruct+0x84/0x1a0 [af_iucv]
5.5
Medium
CVE-2024-53203 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential array underflow in ucsi_ccg_sync_control() The "command" variable can be controlled by the user via debugfs. The worry is that if con_index is zero then "&uc->ucsi->connector[con_index - 1]" would be an array underflow.
7.8
High
CVE-2024-53187 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: check for overflows in io_pin_pages WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144 CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0 Call Trace: __io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183 io_rings_map io_uring/io_uring.c:2611 [inline] io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470 io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692 io_uring_setup io_uring/io_uring.c:3781 [inline] ... io_pin_pages()'s uaddr parameter came directly from the user and can be garbage. Don't just add size to it as it can overflow.
5.5
Medium
CVE-2024-53179 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free of signing key Customers have reported use-after-free in @ses->auth_key.response with SMB2.1 + sign mounts which occurs due to following race: task A task B cifs_mount() dfs_mount_share() get_session() cifs_mount_get_session() cifs_send_recv() cifs_get_smb_ses() compound_send_recv() cifs_setup_session() smb2_setup_request() kfree_sensitive() smb2_calc_signature() crypto_shash_setkey() *UAF* Fix this by ensuring that we have a valid @ses->auth_key.response by checking whether @ses->ses_status is SES_GOOD or SES_EXITING with @ses->ses_lock held. After commit 24a9799aa8ef ("smb: client: fix UAF in smb2_reconnect_server()"), we made sure to call ->logoff() only when @ses was known to be good (e.g. valid ->auth_key.response), so it's safe to access signing key when @ses->ses_status == SES_EXITING.
7.8
High
CVE-2024-53177 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: prevent use-after-free due to open_cached_dir error paths If open_cached_dir() encounters an error parsing the lease from the server, the error handling may race with receiving a lease break, resulting in open_cached_dir() freeing the cfid while the queued work is pending. Update open_cached_dir() to drop refs rather than directly freeing the cfid. Have cached_dir_lease_break(), cfids_laundromat_worker(), and invalidate_all_cached_dirs() clear has_lease immediately while still holding cfids->cfid_list_lock, and then use this to also simplify the reference counting in cfids_laundromat_worker() and invalidate_all_cached_dirs(). Fixes this KASAN splat (which manually injects an error and lease break in open_cached_dir()): ================================================================== BUG: KASAN: slab-use-after-free in smb2_cached_lease_break+0x27/0xb0 Read of size 8 at addr ffff88811cc24c10 by task kworker/3:1/65 CPU: 3 UID: 0 PID: 65 Comm: kworker/3:1 Not tainted 6.12.0-rc6-g255cf264e6e5-dirty #87 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Workqueue: cifsiod smb2_cached_lease_break Call Trace: dump_stack_lvl+0x77/0xb0 print_report+0xce/0x660 kasan_report+0xd3/0x110 smb2_cached_lease_break+0x27/0xb0 process_one_work+0x50a/0xc50 worker_thread+0x2ba/0x530 kthread+0x17c/0x1c0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Allocated by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 open_cached_dir+0xa7d/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x51/0x70 kfree+0x174/0x520 open_cached_dir+0x97f/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Last potentially related work creation: kasan_save_stack+0x33/0x60 __kasan_record_aux_stack+0xad/0xc0 insert_work+0x32/0x100 __queue_work+0x5c9/0x870 queue_work_on+0x82/0x90 open_cached_dir+0x1369/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff88811cc24c00 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 16 bytes inside of freed 1024-byte region [ffff88811cc24c00, ffff88811cc25000)
7.8
High
CVE-2024-53168 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix one UAF issue caused by sunrpc kernel tcp socket BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0 Read of size 1 at addr ffff888111f322cd by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 Call Trace: dump_stack_lvl+0x68/0xa0 print_address_description.constprop.0+0x2c/0x3d0 print_report+0xb4/0x270 kasan_report+0xbd/0xf0 tcp_write_timer_handler+0x156/0x3e0 tcp_write_timer+0x66/0x170 call_timer_fn+0xfb/0x1d0 __run_timers+0x3f8/0x480 run_timer_softirq+0x9b/0x100 handle_softirqs+0x153/0x390 __irq_exit_rcu+0x103/0x120 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0x76/0x90 asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242 RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000 R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0 default_idle_call+0x6b/0xa0 cpuidle_idle_call+0x1af/0x1f0 do_idle+0xbc/0x130 cpu_startup_entry+0x33/0x40 rest_init+0x11f/0x210 start_kernel+0x39a/0x420 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x97/0xa0 common_startup_64+0x13e/0x141 Allocated by task 595: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x87/0x90 kmem_cache_alloc_noprof+0x12b/0x3f0 copy_net_ns+0x94/0x380 create_new_namespaces+0x24c/0x500 unshare_nsproxy_namespaces+0x75/0xf0 ksys_unshare+0x24e/0x4f0 __x64_sys_unshare+0x1f/0x30 do_syscall_64+0x70/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 100: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x54/0x70 kmem_cache_free+0x156/0x5d0 cleanup_net+0x5d3/0x670 process_one_work+0x776/0xa90 worker_thread+0x2e2/0x560 kthread+0x1a8/0x1f0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Reproduction script: mkdir -p /mnt/nfsshare mkdir -p /mnt/nfs/netns_1 mkfs.ext4 /dev/sdb mount /dev/sdb /mnt/nfsshare systemctl restart nfs-server chmod 777 /mnt/nfsshare exportfs -i -o rw,no_root_squash *:/mnt/nfsshare ip netns add netns_1 ip link add name veth_1_peer type veth peer veth_1 ifconfig veth_1_peer 11.11.0.254 up ip link set veth_1 netns netns_1 ip netns exec netns_1 ifconfig veth_1 11.11.0.1 ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \ --tcp-flags FIN FIN -j DROP (note: In my environment, a DESTROY_CLIENTID operation is always sent immediately, breaking the nfs tcp connection.) ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \ 11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1 ip netns del netns_1 The reason here is that the tcp socket in netns_1 (nfs side) has been shutdown and closed (done in xs_destroy), but the FIN message (with ack) is discarded, and the nfsd side keeps sending retransmission messages. As a result, when the tcp sock in netns_1 processes the received message, it sends the message (FIN message) in the sending queue, and the tcp timer is re-established. When the network namespace is deleted, the net structure accessed by tcp's timer handler function causes problems. To fix this problem, let's hold netns refcnt for the tcp kernel socket as done in other modules. This is an ugly hack which can easily be backported to earlier kernels. A proper fix which cleans up the interfaces will follow, but may not be so easy to backport.
7.8
High
CVE-2024-53142 2024-12-06 09h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
7.8
High
CVE-2024-53141 2024-12-06 09h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: add missing range check in bitmap_ip_uadt When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists, the values of ip and ip_to are slightly swapped. Therefore, the range check for ip should be done later, but this part is missing and it seems that the vulnerability occurs. So we should add missing range checks and remove unnecessary range checks.
7.8
High
CVE-2024-53140 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: netlink: terminate outstanding dump on socket close Netlink supports iterative dumping of data. It provides the families the following ops: - start - (optional) kicks off the dumping process - dump - actual dump helper, keeps getting called until it returns 0 - done - (optional) pairs with .start, can be used for cleanup The whole process is asynchronous and the repeated calls to .dump don't actually happen in a tight loop, but rather are triggered in response to recvmsg() on the socket. This gives the user full control over the dump, but also means that the user can close the socket without getting to the end of the dump. To make sure .start is always paired with .done we check if there is an ongoing dump before freeing the socket, and if so call .done. The complication is that sockets can get freed from BH and .done is allowed to sleep. So we use a workqueue to defer the call, when needed. Unfortunately this does not work correctly. What we defer is not the cleanup but rather releasing a reference on the socket. We have no guarantee that we own the last reference, if someone else holds the socket they may release it in BH and we're back to square one. The whole dance, however, appears to be unnecessary. Only the user can interact with dumps, so we can clean up when socket is closed. And close always happens in process context. Some async code may still access the socket after close, queue notification skbs to it etc. but no dumps can start, end or otherwise make progress. Delete the workqueue and flush the dump state directly from the release handler. Note that further cleanup is possible in -next, for instance we now always call .done before releasing the main module reference, so dump doesn't have to take a reference of its own.
5.5
Medium
CVE-2024-53138 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: kTLS, Fix incorrect page refcounting The kTLS tx handling code is using a mix of get_page() and page_ref_inc() APIs to increment the page reference. But on the release path (mlx5e_ktls_tx_handle_resync_dump_comp()), only put_page() is used. This is an issue when using pages from large folios: the get_page() references are stored on the folio page while the page_ref_inc() references are stored directly in the given page. On release the folio page will be dereferenced too many times. This was found while doing kTLS testing with sendfile() + ZC when the served file was read from NFS on a kernel with NFS large folios support (commit 49b29a573da8 ("nfs: add support for large folios")).
5.5
Medium
CVE-2024-53135 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKEN Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are myriad bugs in the implementation, some of which are fatal to the guest, and others which put the stability and health of the host at risk. For guest fatalities, the most glaring issue is that KVM fails to ensure tracing is disabled, and *stays* disabled prior to VM-Enter, which is necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing is enabled (enforced via a VMX consistency check). Per the SDM: If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load IA32_RTIT_CTL" VM-entry control must be 0. On the host side, KVM doesn't validate the guest CPUID configuration provided by userspace, and even worse, uses the guest configuration to decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring guest CPUID to enumerate more address ranges than are supported in hardware will result in KVM trying to passthrough, save, and load non-existent MSRs, which generates a variety of WARNs, ToPA ERRORs in the host, a potential deadlock, etc.
6.5
Medium
CVE-2024-53133 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Handle dml allocation failure to avoid crash [Why] In the case where a dml allocation fails for any reason, the current state's dml contexts would no longer be valid. Then subsequent calls dc_state_copy_internal would shallow copy invalid memory and if the new state was released, a double free would occur. [How] Reset dml pointers in new_state to NULL and avoid invalid pointer (cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c)
7.8
High
CVE-2024-53131 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint Patch series "nilfs2: fix null-ptr-deref bugs on block tracepoints". This series fixes null pointer dereference bugs that occur when using nilfs2 and two block-related tracepoints. This patch (of 2): It has been reported that when using "block:block_touch_buffer" tracepoint, touch_buffer() called from __nilfs_get_folio_block() causes a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because since the tracepoint was added in touch_buffer(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, the block_device structure is set after the function returns to the caller. Here, touch_buffer() is used to mark the folio/page that owns the buffer head as accessed, but the common search helper for folio/page used by the caller function was optimized to mark the folio/page as accessed when it was reimplemented a long time ago, eliminating the need to call touch_buffer() here in the first place. So this solves the issue by eliminating the touch_buffer() call itself.
5.5
Medium
CVE-2024-53130 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above. Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag.
5.5
Medium
CVE-2024-53128 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the object_is_on_stack() function may produce incorrect results due to the presence of tags in the obj pointer, while the stack pointer does not have tags. This discrepancy can lead to incorrect stack object detection and subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled. Example of the warning: ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated. ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364 Modules linked in: CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4 Hardware name: linux,dummy-virt (DT) pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __debug_object_init+0x330/0x364 lr : __debug_object_init+0x330/0x364 sp : ffff800082ea7b40 x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534 x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0 x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418 x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000 x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800 x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001 x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4 x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050 Call trace: __debug_object_init+0x330/0x364 debug_object_init_on_stack+0x30/0x3c schedule_hrtimeout_range_clock+0xac/0x26c schedule_hrtimeout+0x1c/0x30 wait_task_inactive+0x1d4/0x25c kthread_bind_mask+0x28/0x98 init_rescuer+0x1e8/0x280 workqueue_init+0x1a0/0x3cc kernel_init_freeable+0x118/0x200 kernel_init+0x28/0x1f0 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated. ------------[ cut here ]------------
5.5
Medium
CVE-2024-53126 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: vdpa: solidrun: Fix UB bug with devres In psnet_open_pf_bar() and snet_open_vf_bar() a string later passed to pcim_iomap_regions() is placed on the stack. Neither pcim_iomap_regions() nor the functions it calls copy that string. Should the string later ever be used, this, consequently, causes undefined behavior since the stack frame will by then have disappeared. Fix the bug by allocating the strings on the heap through devm_kasprintf().
7.8
High
CVE-2024-53124 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fix data-races around sk->sk_forward_alloc Syzkaller reported this warning: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 16 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x1c5/0x1e0 Modules linked in: CPU: 0 UID: 0 PID: 16 Comm: ksoftirqd/0 Not tainted 6.12.0-rc5 #26 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:inet_sock_destruct+0x1c5/0x1e0 Code: 24 12 4c 89 e2 5b 48 c7 c7 98 ec bb 82 41 5c e9 d1 18 17 ff 4c 89 e6 5b 48 c7 c7 d0 ec bb 82 41 5c e9 bf 18 17 ff 0f 0b eb 83 <0f> 0b eb 97 0f 0b eb 87 0f 0b e9 68 ff ff ff 66 66 2e 0f 1f 84 00 RSP: 0018:ffffc9000008bd90 EFLAGS: 00010206 RAX: 0000000000000300 RBX: ffff88810b172a90 RCX: 0000000000000007 RDX: 0000000000000002 RSI: 0000000000000300 RDI: ffff88810b172a00 RBP: ffff88810b172a00 R08: ffff888104273c00 R09: 0000000000100007 R10: 0000000000020000 R11: 0000000000000006 R12: ffff88810b172a00 R13: 0000000000000004 R14: 0000000000000000 R15: ffff888237c31f78 FS: 0000000000000000(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc63fecac8 CR3: 000000000342e000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn+0x88/0x130 ? inet_sock_destruct+0x1c5/0x1e0 ? report_bug+0x18e/0x1a0 ? handle_bug+0x53/0x90 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? inet_sock_destruct+0x1c5/0x1e0 __sk_destruct+0x2a/0x200 rcu_do_batch+0x1aa/0x530 ? rcu_do_batch+0x13b/0x530 rcu_core+0x159/0x2f0 handle_softirqs+0xd3/0x2b0 ? __pfx_smpboot_thread_fn+0x10/0x10 run_ksoftirqd+0x25/0x30 smpboot_thread_fn+0xdd/0x1d0 kthread+0xd3/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 ---[ end trace 0000000000000000 ]--- Its possible that two threads call tcp_v6_do_rcv()/sk_forward_alloc_add() concurrently when sk->sk_state == TCP_LISTEN with sk->sk_lock unlocked, which triggers a data-race around sk->sk_forward_alloc: tcp_v6_rcv tcp_v6_do_rcv skb_clone_and_charge_r sk_rmem_schedule __sk_mem_schedule sk_forward_alloc_add() skb_set_owner_r sk_mem_charge sk_forward_alloc_add() __kfree_skb skb_release_all skb_release_head_state sock_rfree sk_mem_uncharge sk_forward_alloc_add() sk_mem_reclaim // set local var reclaimable __sk_mem_reclaim sk_forward_alloc_add() In this syzkaller testcase, two threads call tcp_v6_do_rcv() with skb->truesize=768, the sk_forward_alloc changes like this: (cpu 1) | (cpu 2) | sk_forward_alloc ... | ... | 0 __sk_mem_schedule() | | +4096 = 4096 | __sk_mem_schedule() | +4096 = 8192 sk_mem_charge() | | -768 = 7424 | sk_mem_charge() | -768 = 6656 ... | ... | sk_mem_uncharge() | | +768 = 7424 reclaimable=7424 | | | sk_mem_uncharge() | +768 = 8192 | reclaimable=8192 | __sk_mem_reclaim() | | -4096 = 4096 | __sk_mem_reclaim() | -8192 = -4096 != 0 The skb_clone_and_charge_r() should not be called in tcp_v6_do_rcv() when sk->sk_state is TCP_LISTEN, it happens later in tcp_v6_syn_recv_sock(). Fix the same issue in dccp_v6_do_rcv().
4.7
Medium
CVE-2024-53122 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: cope racing subflow creation in mptcp_rcv_space_adjust Additional active subflows - i.e. created by the in kernel path manager - are included into the subflow list before starting the 3whs. A racing recvmsg() spooling data received on an already established subflow would unconditionally call tcp_cleanup_rbuf() on all the current subflows, potentially hitting a divide by zero error on the newly created ones. Explicitly check that the subflow is in a suitable state before invoking tcp_cleanup_rbuf().
5.5
Medium
CVE-2024-53121 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, lock FTE when checking if active The referenced commits introduced a two-step process for deleting FTEs: - Lock the FTE, delete it from hardware, set the hardware deletion function to NULL and unlock the FTE. - Lock the parent flow group, delete the software copy of the FTE, and remove it from the xarray. However, this approach encounters a race condition if a rule with the same match value is added simultaneously. In this scenario, fs_core may set the hardware deletion function to NULL prematurely, causing a panic during subsequent rule deletions. To prevent this, ensure the active flag of the FTE is checked under a lock, which will prevent the fs_core layer from attaching a new steering rule to an FTE that is in the process of deletion. [ 438.967589] MOSHE: 2496 mlx5_del_flow_rules del_hw_func [ 438.968205] ------------[ cut here ]------------ [ 438.968654] refcount_t: decrement hit 0; leaking memory. [ 438.969249] WARNING: CPU: 0 PID: 8957 at lib/refcount.c:31 refcount_warn_saturate+0xfb/0x110 [ 438.970054] Modules linked in: act_mirred cls_flower act_gact sch_ingress openvswitch nsh mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core zram zsmalloc fuse [last unloaded: cls_flower] [ 438.973288] CPU: 0 UID: 0 PID: 8957 Comm: tc Not tainted 6.12.0-rc1+ #8 [ 438.973888] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 438.974874] RIP: 0010:refcount_warn_saturate+0xfb/0x110 [ 438.975363] Code: 40 66 3b 82 c6 05 16 e9 4d 01 01 e8 1f 7c a0 ff 0f 0b c3 cc cc cc cc 48 c7 c7 10 66 3b 82 c6 05 fd e8 4d 01 01 e8 05 7c a0 ff <0f> 0b c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 90 [ 438.976947] RSP: 0018:ffff888124a53610 EFLAGS: 00010286 [ 438.977446] RAX: 0000000000000000 RBX: ffff888119d56de0 RCX: 0000000000000000 [ 438.978090] RDX: ffff88852c828700 RSI: ffff88852c81b3c0 RDI: ffff88852c81b3c0 [ 438.978721] RBP: ffff888120fa0e88 R08: 0000000000000000 R09: ffff888124a534b0 [ 438.979353] R10: 0000000000000001 R11: 0000000000000001 R12: ffff888119d56de0 [ 438.979979] R13: ffff888120fa0ec0 R14: ffff888120fa0ee8 R15: ffff888119d56de0 [ 438.980607] FS: 00007fe6dcc0f800(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000 [ 438.983984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 438.984544] CR2: 00000000004275e0 CR3: 0000000186982001 CR4: 0000000000372eb0 [ 438.985205] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 438.985842] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 438.986507] Call Trace: [ 438.986799] [ 438.987070] ? __warn+0x7d/0x110 [ 438.987426] ? refcount_warn_saturate+0xfb/0x110 [ 438.987877] ? report_bug+0x17d/0x190 [ 438.988261] ? prb_read_valid+0x17/0x20 [ 438.988659] ? handle_bug+0x53/0x90 [ 438.989054] ? exc_invalid_op+0x14/0x70 [ 438.989458] ? asm_exc_invalid_op+0x16/0x20 [ 438.989883] ? refcount_warn_saturate+0xfb/0x110 [ 438.990348] mlx5_del_flow_rules+0x2f7/0x340 [mlx5_core] [ 438.990932] __mlx5_eswitch_del_rule+0x49/0x170 [mlx5_core] [ 438.991519] ? mlx5_lag_is_sriov+0x3c/0x50 [mlx5_core] [ 438.992054] ? xas_load+0x9/0xb0 [ 438.992407] mlx5e_tc_rule_unoffload+0x45/0xe0 [mlx5_core] [ 438.993037] mlx5e_tc_del_fdb_flow+0x2a6/0x2e0 [mlx5_core] [ 438.993623] mlx5e_flow_put+0x29/0x60 [mlx5_core] [ 438.994161] mlx5e_delete_flower+0x261/0x390 [mlx5_core] [ 438.994728] tc_setup_cb_destroy+0xb9/0x190 [ 438.995150] fl_hw_destroy_filter+0x94/0xc0 [cls_flower] [ 438.995650] fl_change+0x11a4/0x13c0 [cls_flower] [ 438.996105] tc_new_tfilter+0x347/0xbc0 [ 438.996503] ? __ ---truncated---
5.5
Medium
CVE-2024-53120 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: CT: Fix null-ptr-deref in add rule err flow In error flow of mlx5_tc_ct_entry_add_rule(), in case ct_rule_add() callback returns error, zone_rule->attr is used uninitiated. Fix it to use attr which has the needed pointer value. Kernel log: BUG: kernel NULL pointer dereference, address: 0000000000000110 RIP: 0010:mlx5_tc_ct_entry_add_rule+0x2b1/0x2f0 [mlx5_core] … Call Trace: ? __die+0x20/0x70 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x140 ? asm_exc_page_fault+0x22/0x30 ? mlx5_tc_ct_entry_add_rule+0x2b1/0x2f0 [mlx5_core] ? mlx5_tc_ct_entry_add_rule+0x1d5/0x2f0 [mlx5_core] mlx5_tc_ct_block_flow_offload+0xc6a/0xf90 [mlx5_core] ? nf_flow_offload_tuple+0xd8/0x190 [nf_flow_table] nf_flow_offload_tuple+0xd8/0x190 [nf_flow_table] flow_offload_work_handler+0x142/0x320 [nf_flow_table] ? finish_task_switch.isra.0+0x15b/0x2b0 process_one_work+0x16c/0x320 worker_thread+0x28c/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xb8/0xf0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53119 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio/vsock: Fix accept_queue memory leak As the final stages of socket destruction may be delayed, it is possible that virtio_transport_recv_listen() will be called after the accept_queue has been flushed, but before the SOCK_DONE flag has been set. As a result, sockets enqueued after the flush would remain unremoved, leading to a memory leak. vsock_release __vsock_release lock virtio_transport_release virtio_transport_close schedule_delayed_work(close_work) sk_shutdown = SHUTDOWN_MASK (!) flush accept_queue release virtio_transport_recv_pkt vsock_find_bound_socket lock if flag(SOCK_DONE) return virtio_transport_recv_listen child = vsock_create_connected (!) vsock_enqueue_accept(child) release close_work lock virtio_transport_do_close set_flag(SOCK_DONE) virtio_transport_remove_sock vsock_remove_sock vsock_remove_bound release Introduce a sk_shutdown check to disallow vsock_enqueue_accept() during socket destruction. unreferenced object 0xffff888109e3f800 (size 2040): comm "kworker/5:2", pid 371, jiffies 4294940105 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 28 00 0b 40 00 00 00 00 00 00 00 00 00 00 00 00 (..@............ backtrace (crc 9e5f4e84): [] kmem_cache_alloc_noprof+0x2c1/0x360 [] sk_prot_alloc+0x30/0x120 [] sk_alloc+0x2c/0x4b0 [] __vsock_create.constprop.0+0x2a/0x310 [] virtio_transport_recv_pkt+0x4dc/0x9a0 [] vsock_loopback_work+0xfd/0x140 [] process_one_work+0x20c/0x570 [] worker_thread+0x1bf/0x3a0 [] kthread+0xdd/0x110 [] ret_from_fork+0x2d/0x50 [] ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53114 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client A number of Zen4 client SoCs advertise the ability to use virtualized VMLOAD/VMSAVE, but using these instructions is reported to be a cause of a random host reboot. These instructions aren't intended to be advertised on Zen4 client so clear the capability.
5.5
Medium
CVE-2024-53113 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: fix NULL pointer dereference in alloc_pages_bulk_noprof We triggered a NULL pointer dereference for ac.preferred_zoneref->zone in alloc_pages_bulk_noprof() when the task is migrated between cpusets. When cpuset is enabled, in prepare_alloc_pages(), ac->nodemask may be ¤t->mems_allowed. when first_zones_zonelist() is called to find preferred_zoneref, the ac->nodemask may be modified concurrently if the task is migrated between different cpusets. Assuming we have 2 NUMA Node, when traversing Node1 in ac->zonelist, the nodemask is 2, and when traversing Node2 in ac->zonelist, the nodemask is 1. As a result, the ac->preferred_zoneref points to NULL zone. In alloc_pages_bulk_noprof(), for_each_zone_zonelist_nodemask() finds a allowable zone and calls zonelist_node_idx(ac.preferred_zoneref), leading to NULL pointer dereference. __alloc_pages_noprof() fixes this issue by checking NULL pointer in commit ea57485af8f4 ("mm, page_alloc: fix check for NULL preferred_zone") and commit df76cee6bbeb ("mm, page_alloc: remove redundant checks from alloc fastpath"). To fix it, check NULL pointer for preferred_zoneref->zone.
5.5
Medium
CVE-2024-53112 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: uncache inode which has failed entering the group Syzbot has reported the following BUG: kernel BUG at fs/ocfs2/uptodate.c:509! ... Call Trace: ? __die_body+0x5f/0xb0 ? die+0x9e/0xc0 ? do_trap+0x15a/0x3a0 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? do_error_trap+0x1dc/0x2c0 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? __pfx_do_error_trap+0x10/0x10 ? handle_invalid_op+0x34/0x40 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? exc_invalid_op+0x38/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? ocfs2_set_new_buffer_uptodate+0x2e/0x160 ? ocfs2_set_new_buffer_uptodate+0x144/0x160 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ocfs2_group_add+0x39f/0x15a0 ? __pfx_ocfs2_group_add+0x10/0x10 ? __pfx_lock_acquire+0x10/0x10 ? mnt_get_write_access+0x68/0x2b0 ? __pfx_lock_release+0x10/0x10 ? rcu_read_lock_any_held+0xb7/0x160 ? __pfx_rcu_read_lock_any_held+0x10/0x10 ? smack_log+0x123/0x540 ? mnt_get_write_access+0x68/0x2b0 ? mnt_get_write_access+0x68/0x2b0 ? mnt_get_write_access+0x226/0x2b0 ocfs2_ioctl+0x65e/0x7d0 ? __pfx_ocfs2_ioctl+0x10/0x10 ? smack_file_ioctl+0x29e/0x3a0 ? __pfx_smack_file_ioctl+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x43d/0x780 ? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10 ? __pfx_ocfs2_ioctl+0x10/0x10 __se_sys_ioctl+0xfb/0x170 do_syscall_64+0xf3/0x230 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... When 'ioctl(OCFS2_IOC_GROUP_ADD, ...)' has failed for the particular inode in 'ocfs2_verify_group_and_input()', corresponding buffer head remains cached and subsequent call to the same 'ioctl()' for the same inode issues the BUG() in 'ocfs2_set_new_buffer_uptodate()' (trying to cache the same buffer head of that inode). Fix this by uncaching the buffer head with 'ocfs2_remove_from_cache()' on error path in 'ocfs2_group_add()'.
5.5
Medium
CVE-2024-53108 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adjust VSDB parser for replay feature At some point, the IEEE ID identification for the replay check in the AMD EDID was added. However, this check causes the following out-of-bounds issues when using KASAN: [ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu] [ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383 ... [ 27.821207] Memory state around the buggy address: [ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821243] ^ [ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821268] ================================================================== This is caused because the ID extraction happens outside of the range of the edid lenght. This commit addresses this issue by considering the amd_vsdb_block size. (cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8)
7.1
High
CVE-2024-53100 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme: tcp: avoid race between queue_lock lock and destroy Commit 76d54bf20cdc ("nvme-tcp: don't access released socket during error recovery") added a mutex_lock() call for the queue->queue_lock in nvme_tcp_get_address(). However, the mutex_lock() races with mutex_destroy() in nvme_tcp_free_queue(), and causes the WARN below. DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 3 PID: 34077 at kernel/locking/mutex.c:587 __mutex_lock+0xcf0/0x1220 Modules linked in: nvmet_tcp nvmet nvme_tcp nvme_fabrics iw_cm ib_cm ib_core pktcdvd nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables qrtr sunrpc ppdev 9pnet_virtio 9pnet pcspkr netfs parport_pc parport e1000 i2c_piix4 i2c_smbus loop fuse nfnetlink zram bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper xfs drm sym53c8xx floppy nvme scsi_transport_spi nvme_core nvme_auth serio_raw ata_generic pata_acpi dm_multipath qemu_fw_cfg [last unloaded: ib_uverbs] CPU: 3 UID: 0 PID: 34077 Comm: udisksd Not tainted 6.11.0-rc7 #319 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:__mutex_lock+0xcf0/0x1220 Code: 08 84 d2 0f 85 c8 04 00 00 8b 15 ef b6 c8 01 85 d2 0f 85 78 f4 ff ff 48 c7 c6 20 93 ee af 48 c7 c7 60 91 ee af e8 f0 a7 6d fd <0f> 0b e9 5e f4 ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 f2 48 c1 RSP: 0018:ffff88811305f760 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff88812c652058 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000001 RBP: ffff88811305f8b0 R08: 0000000000000001 R09: ffffed1075c36341 R10: ffff8883ae1b1a0b R11: 0000000000010498 R12: 0000000000000000 R13: 0000000000000000 R14: dffffc0000000000 R15: ffff88812c652058 FS: 00007f9713ae4980(0000) GS:ffff8883ae180000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcd78483c7c CR3: 0000000122c38000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn.cold+0x5b/0x1af ? __mutex_lock+0xcf0/0x1220 ? report_bug+0x1ec/0x390 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x13/0x40 ? asm_exc_invalid_op+0x16/0x20 ? __mutex_lock+0xcf0/0x1220 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx___mutex_lock+0x10/0x10 ? __lock_acquire+0xd6a/0x59e0 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx_nvme_tcp_get_address+0x10/0x10 [nvme_tcp] nvme_sysfs_show_address+0x81/0xc0 [nvme_core] dev_attr_show+0x42/0x80 ? __asan_memset+0x1f/0x40 sysfs_kf_seq_show+0x1f0/0x370 seq_read_iter+0x2cb/0x1130 ? rw_verify_area+0x3b1/0x590 ? __mutex_lock+0x433/0x1220 vfs_read+0x6a6/0xa20 ? lockdep_hardirqs_on+0x78/0x100 ? __pfx_vfs_read+0x10/0x10 ksys_read+0xf7/0x1d0 ? __pfx_ksys_read+0x10/0x10 ? __x64_sys_openat+0x105/0x1d0 do_syscall_64+0x93/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? __pfx_ksys_read+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? do_syscall_64+0x9f/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f9713f55cfa Code: 55 48 89 e5 48 83 ec 20 48 89 55 e8 48 89 75 f0 89 7d f8 e8 e8 74 f8 ff 48 8b 55 e8 48 8b 75 f0 4 ---truncated---
4.7
Medium
CVE-2024-53099 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Check validity of link->type in bpf_link_show_fdinfo() If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing bpf_link_type_strs[link->type] may result in an out-of-bounds access. To spot such missed invocations early in the future, checking the validity of link->type in bpf_link_show_fdinfo() and emitting a warning when such invocations are missed.
7.1
High
CVE-2024-53098 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/ufence: Prefetch ufence addr to catch bogus address access_ok() only checks for addr overflow so also try to read the addr to catch invalid addr sent from userspace. (cherry picked from commit 9408c4508483ffc60811e910a93d6425b8e63928)
7.8
High
CVE-2024-53095 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free of network namespace. Recently, we got a customer report that CIFS triggers oops while reconnecting to a server. [0] The workload runs on Kubernetes, and some pods mount CIFS servers in non-root network namespaces. The problem rarely happened, but it was always while the pod was dying. The root cause is wrong reference counting for network namespace. CIFS uses kernel sockets, which do not hold refcnt of the netns that the socket belongs to. That means CIFS must ensure the socket is always freed before its netns; otherwise, use-after-free happens. The repro steps are roughly: 1. mount CIFS in a non-root netns 2. drop packets from the netns 3. destroy the netns 4. unmount CIFS We can reproduce the issue quickly with the script [1] below and see the splat [2] if CONFIG_NET_NS_REFCNT_TRACKER is enabled. When the socket is TCP, it is hard to guarantee the netns lifetime without holding refcnt due to async timers. Let's hold netns refcnt for each socket as done for SMC in commit 9744d2bf1976 ("smc: Fix use-after-free in tcp_write_timer_handler()."). Note that we need to move put_net() from cifs_put_tcp_session() to clean_demultiplex_info(); otherwise, __sock_create() still could touch a freed netns while cifsd tries to reconnect from cifs_demultiplex_thread(). Also, maybe_get_net() cannot be put just before __sock_create() because the code is not under RCU and there is a small chance that the same address happened to be reallocated to another netns. [0]: CIFS: VFS: \\XXXXXXXXXXX has not responded in 15 seconds. Reconnecting... CIFS: Serverclose failed 4 times, giving up Unable to handle kernel paging request at virtual address 14de99e461f84a07 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 [14de99e461f84a07] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP Modules linked in: cls_bpf sch_ingress nls_utf8 cifs cifs_arc4 cifs_md4 dns_resolver tcp_diag inet_diag veth xt_state xt_connmark nf_conntrack_netlink xt_nat xt_statistic xt_MASQUERADE xt_mark xt_addrtype ipt_REJECT nf_reject_ipv4 nft_chain_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_comment nft_compat nf_tables nfnetlink overlay nls_ascii nls_cp437 sunrpc vfat fat aes_ce_blk aes_ce_cipher ghash_ce sm4_ce_cipher sm4 sm3_ce sm3 sha3_ce sha512_ce sha512_arm64 sha1_ce ena button sch_fq_codel loop fuse configfs dmi_sysfs sha2_ce sha256_arm64 dm_mirror dm_region_hash dm_log dm_mod dax efivarfs CPU: 5 PID: 2690970 Comm: cifsd Not tainted 6.1.103-109.184.amzn2023.aarch64 #1 Hardware name: Amazon EC2 r7g.4xlarge/, BIOS 1.0 11/1/2018 pstate: 00400005 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : fib_rules_lookup+0x44/0x238 lr : __fib_lookup+0x64/0xbc sp : ffff8000265db790 x29: ffff8000265db790 x28: 0000000000000000 x27: 000000000000bd01 x26: 0000000000000000 x25: ffff000b4baf8000 x24: ffff00047b5e4580 x23: ffff8000265db7e0 x22: 0000000000000000 x21: ffff00047b5e4500 x20: ffff0010e3f694f8 x19: 14de99e461f849f7 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 3f92800abd010002 x11: 0000000000000001 x10: ffff0010e3f69420 x9 : ffff800008a6f294 x8 : 0000000000000000 x7 : 0000000000000006 x6 : 0000000000000000 x5 : 0000000000000001 x4 : ffff001924354280 x3 : ffff8000265db7e0 x2 : 0000000000000000 x1 : ffff0010e3f694f8 x0 : ffff00047b5e4500 Call trace: fib_rules_lookup+0x44/0x238 __fib_lookup+0x64/0xbc ip_route_output_key_hash_rcu+0x2c4/0x398 ip_route_output_key_hash+0x60/0x8c tcp_v4_connect+0x290/0x488 __inet_stream_connect+0x108/0x3d0 inet_stream_connect+0x50/0x78 kernel_connect+0x6c/0xac generic_ip_conne ---truncated---
7.8
High
CVE-2024-53094 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Add sendpage_ok() check to disable MSG_SPLICE_PAGES While running ISER over SIW, the initiator machine encounters a warning from skb_splice_from_iter() indicating that a slab page is being used in send_page. To address this, it is better to add a sendpage_ok() check within the driver itself, and if it returns 0, then MSG_SPLICE_PAGES flag should be disabled before entering the network stack. A similar issue has been discussed for NVMe in this thread: https://lore.kernel.org/all/[email protected]/ WARNING: CPU: 0 PID: 5342 at net/core/skbuff.c:7140 skb_splice_from_iter+0x173/0x320 Call Trace: tcp_sendmsg_locked+0x368/0xe40 siw_tx_hdt+0x695/0xa40 [siw] siw_qp_sq_process+0x102/0xb00 [siw] siw_sq_resume+0x39/0x110 [siw] siw_run_sq+0x74/0x160 [siw] kthread+0xd2/0x100 ret_from_fork+0x34/0x40 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53093 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: defer partition scanning We need to suppress the partition scan from occuring within the controller's scan_work context. If a path error occurs here, the IO will wait until a path becomes available or all paths are torn down, but that action also occurs within scan_work, so it would deadlock. Defer the partion scan to a different context that does not block scan_work.
5.5
Medium
CVE-2024-53091 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx As the introduction of the support for vsock and unix sockets in sockmap, tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK. vsock and af_unix sockets have vsock_sock and unix_sock instead of inet_connection_sock. For these sockets, tls_get_ctx may return an invalid pointer and cause page fault in function tls_sw_ctx_rx. BUG: unable to handle page fault for address: 0000000000040030 Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:sk_psock_strp_data_ready+0x23/0x60 Call Trace: ? __die+0x81/0xc3 ? no_context+0x194/0x350 ? do_page_fault+0x30/0x110 ? async_page_fault+0x3e/0x50 ? sk_psock_strp_data_ready+0x23/0x60 virtio_transport_recv_pkt+0x750/0x800 ? update_load_avg+0x7e/0x620 vsock_loopback_work+0xd0/0x100 process_one_work+0x1a7/0x360 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? __kthread_cancel_work+0x40/0x40 ret_from_fork+0x1f/0x40 v2: - Add IS_ICSK check v3: - Update the commits in Fixes
5.5
Medium
CVE-2024-53090 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: afs: Fix lock recursion afs_wake_up_async_call() can incur lock recursion. The problem is that it is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to take a ref on the afs_call struct in order to pass it to a work queue - but if the afs_call is already queued, we then have an extraneous ref that must be put... calling afs_put_call() may call back down into AF_RXRPC through rxrpc_kernel_shutdown_call(), however, which might try taking the ->notify_lock again. This case isn't very common, however, so defer it to a workqueue. The oops looks something like: BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646 lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0 CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Call Trace: dump_stack_lvl+0x47/0x70 do_raw_spin_lock+0x3c/0x90 rxrpc_kernel_shutdown_call+0x83/0xb0 afs_put_call+0xd7/0x180 rxrpc_notify_socket+0xa0/0x190 rxrpc_input_split_jumbo+0x198/0x1d0 rxrpc_input_data+0x14b/0x1e0 ? rxrpc_input_call_packet+0xc2/0x1f0 rxrpc_input_call_event+0xad/0x6b0 rxrpc_input_packet_on_conn+0x1e1/0x210 rxrpc_input_packet+0x3f2/0x4d0 rxrpc_io_thread+0x243/0x410 ? __pfx_rxrpc_io_thread+0x10/0x10 kthread+0xcf/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x24/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53089 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Mark hrtimer to expire in hard interrupt context Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft interrupt expiry mode by default. Then the timers are canceled from an preempt-notifier which is invoked with disabled preemption which is not allowed on PREEMPT_RT. The timer callback is short so in could be invoked in hard-IRQ context. So let the timer expire on hard-IRQ context even on -RT. This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels: BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002 Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774 Tainted: [W]=WARN Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000 90000001167475a0 0000000000000000 90000001167475a8 9000000005644830 90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001 0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140 00000000000003fe 0000000000000001 000000000000000d 0000000000000003 0000000000000030 00000000000003f3 000000000790c000 9000000116747830 90000000057ef000 0000000000000000 9000000005644830 0000000000000004 0000000000000000 90000000057f4b58 0000000000000001 9000000116747868 900000000451b600 9000000005644830 9000000003a13998 0000000010000020 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003a13998>] show_stack+0x38/0x180 [<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0 [<9000000003a71708>] __schedule_bug+0x48/0x60 [<9000000004e45734>] __schedule+0x1114/0x1660 [<9000000004e46040>] schedule_rtlock+0x20/0x60 [<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0 [<9000000004e4f038>] rt_spin_lock+0x58/0x80 [<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0 [<9000000003b02e30>] hrtimer_cancel+0x70/0x80 [] kvm_restore_timer+0x50/0x1a0 [kvm] [] kvm_arch_vcpu_load+0x68/0x2a0 [kvm] [] kvm_sched_in+0x34/0x60 [kvm] [<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0 [<9000000004e44a70>] __schedule+0x450/0x1660 [<9000000004e45cb0>] schedule+0x30/0x180 [] kvm_vcpu_block+0x70/0x120 [kvm] [] kvm_vcpu_halt+0x60/0x3e0 [kvm] [] kvm_handle_gspr+0x3f4/0x4e0 [kvm] [] kvm_handle_exit+0x1c8/0x260 [kvm]
5.5
Medium
CVE-2024-53084 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Break an object reference loop When remaining resources are being cleaned up on driver close, outstanding VM mappings may result in resources being leaked, due to an object reference loop, as shown below, with each object (or set of objects) referencing the object below it: PVR GEM Object GPU scheduler "finished" fence GPU scheduler “scheduled” fence PVR driver “done” fence PVR Context PVR VM Context PVR VM Mappings PVR GEM Object The reference that the PVR VM Context has on the VM mappings is a soft one, in the sense that the freeing of outstanding VM mappings is done as part of VM context destruction; no reference counts are involved, as is the case for all the other references in the loop. To break the reference loop during cleanup, free the outstanding VM mappings before destroying the PVR Context associated with the VM context.
5.5
Medium
CVE-2024-53079 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/thp: fix deferred split unqueue naming and locking Recent changes are putting more pressure on THP deferred split queues: under load revealing long-standing races, causing list_del corruptions, "Bad page state"s and worse (I keep BUGs in both of those, so usually don't get to see how badly they end up without). The relevant recent changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin, improved swap allocation, and underused THP splitting. Before fixing locking: rename misleading folio_undo_large_rmappable(), which does not undo large_rmappable, to folio_unqueue_deferred_split(), which is what it does. But that and its out-of-line __callee are mm internals of very limited usability: add comment and WARN_ON_ONCEs to check usage; and return a bool to say if a deferred split was unqueued, which can then be used in WARN_ON_ONCEs around safety checks (sparing callers the arcane conditionals in __folio_unqueue_deferred_split()). Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all of whose callers now call it beforehand (and if any forget then bad_page() will tell) - except for its caller put_pages_list(), which itself no longer has any callers (and will be deleted separately). Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0 without checking and unqueueing a THP folio from deferred split list; which is unfortunate, since the split_queue_lock depends on the memcg (when memcg is enabled); so swapout has been unqueueing such THPs later, when freeing the folio, using the pgdat's lock instead: potentially corrupting the memcg's list. __remove_mapping() has frozen refcount to 0 here, so no problem with calling folio_unqueue_deferred_split() before resetting memcg_data. That goes back to 5.4 commit 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware"): which included a check on swapcache before adding to deferred queue, but no check on deferred queue before adding THP to swapcache. That worked fine with the usual sequence of events in reclaim (though there were a couple of rare ways in which a THP on deferred queue could have been swapped out), but 6.12 commit dafff3f4c850 ("mm: split underused THPs") avoids splitting underused THPs in reclaim, which makes swapcache THPs on deferred queue commonplace. Keep the check on swapcache before adding to deferred queue? Yes: it is no longer essential, but preserves the existing behaviour, and is likely to be a worthwhile optimization (vmstat showed much more traffic on the queue under swapping load if the check was removed); update its comment. Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing folio->memcg_data without checking and unqueueing a THP folio from the deferred list, sometimes corrupting "from" memcg's list, like swapout. Refcount is non-zero here, so folio_unqueue_deferred_split() can only be used in a WARN_ON_ONCE to validate the fix, which must be done earlier: mem_cgroup_move_charge_pte_range() first try to split the THP (splitting of course unqueues), or skip it if that fails. Not ideal, but moving charge has been requested, and khugepaged should repair the THP later: nobody wants new custom unqueueing code just for this deprecated case. The 87eaceb3faa5 commit did have the code to move from one deferred list to another (but was not conscious of its unsafety while refcount non-0); but that was removed by 5.6 commit fac0516b5534 ("mm: thp: don't need care deferred split queue in memcg charge move path"), which argued that the existence of a PMD mapping guarantees that the THP cannot be on a deferred list. As above, false in rare cases, and now commonly false. Backport to 6.11 should be straightforward. Earlier backports must take care that other _deferred_list fixes and dependencies are included. There is not a strong case for backports, but they can fix cornercases.
5.5
Medium
CVE-2024-53068 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix slab-use-after-free in scmi_bus_notifier() The scmi_dev->name is released prematurely in __scmi_device_destroy(), which causes slab-use-after-free when accessing scmi_dev->name in scmi_bus_notifier(). So move the release of scmi_dev->name to scmi_device_release() to avoid slab-use-after-free. | BUG: KASAN: slab-use-after-free in strncmp+0xe4/0xec | Read of size 1 at addr ffffff80a482bcc0 by task swapper/0/1 | | CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.6.38-debug #1 | Hardware name: Qualcomm Technologies, Inc. SA8775P Ride (DT) | Call trace: | dump_backtrace+0x94/0x114 | show_stack+0x18/0x24 | dump_stack_lvl+0x48/0x60 | print_report+0xf4/0x5b0 | kasan_report+0xa4/0xec | __asan_report_load1_noabort+0x20/0x2c | strncmp+0xe4/0xec | scmi_bus_notifier+0x5c/0x54c | notifier_call_chain+0xb4/0x31c | blocking_notifier_call_chain+0x68/0x9c | bus_notify+0x54/0x78 | device_del+0x1bc/0x840 | device_unregister+0x20/0xb4 | __scmi_device_destroy+0xac/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Allocated by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_alloc_info+0x24/0x34 | __kasan_kmalloc+0xa0/0xb8 | __kmalloc_node_track_caller+0x6c/0x104 | kstrdup+0x48/0x84 | kstrdup_const+0x34/0x40 | __scmi_device_create.part.0+0x8c/0x408 | scmi_device_create+0x104/0x370 | scmi_chan_setup+0x2a0/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Freed by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_free_info+0x38/0x5c | __kasan_slab_free+0xe8/0x164 | __kmem_cache_free+0x11c/0x230 | kfree+0x70/0x130 | kfree_const+0x20/0x40 | __scmi_device_destroy+0x70/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20
7.8
High
CVE-2024-53051 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability Sometimes during hotplug scenario or suspend/resume scenario encoder is not always initialized when intel_hdcp_get_capability add a check to avoid kernel null pointer dereference.
5.5
Medium
CVE-2024-53050 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in hdcp2_get_capability Add encoder check in intel_hdcp2_get_capability to avoid null pointer error.
5.5
Medium
CVE-2024-50304 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_find() The per-netns IP tunnel hash table is protected by the RTNL mutex and ip_tunnel_find() is only called from the control path where the mutex is taken. Add a lockdep expression to hlist_for_each_entry_rcu() in ip_tunnel_find() in order to validate that the mutex is held and to silence the suspicious RCU usage warning [1]. [1] WARNING: suspicious RCU usage 6.12.0-rc3-custom-gd95d9a31aceb #139 Not tainted ----------------------------- net/ipv4/ip_tunnel.c:221 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by ip/362: #0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60 stack backtrace: CPU: 12 UID: 0 PID: 362 Comm: ip Not tainted 6.12.0-rc3-custom-gd95d9a31aceb #139 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack_lvl+0xba/0x110 lockdep_rcu_suspicious.cold+0x4f/0xd6 ip_tunnel_find+0x435/0x4d0 ip_tunnel_newlink+0x517/0x7a0 ipgre_newlink+0x14c/0x170 __rtnl_newlink+0x1173/0x19c0 rtnl_newlink+0x6c/0xa0 rtnetlink_rcv_msg+0x3cc/0xf60 netlink_rcv_skb+0x171/0x450 netlink_unicast+0x539/0x7f0 netlink_sendmsg+0x8c1/0xd80 ____sys_sendmsg+0x8f9/0xc20 ___sys_sendmsg+0x197/0x1e0 __sys_sendmsg+0x122/0x1f0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-50298 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: enetc: allocate vf_state during PF probes In the previous implementation, vf_state is allocated memory only when VF is enabled. However, net_device_ops::ndo_set_vf_mac() may be called before VF is enabled to configure the MAC address of VF. If this is the case, enetc_pf_set_vf_mac() will access vf_state, resulting in access to a null pointer. The simplified error log is as follows. root@ls1028ardb:~# ip link set eno0 vf 1 mac 00:0c:e7:66:77:89 [ 173.543315] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 [ 173.637254] pc : enetc_pf_set_vf_mac+0x3c/0x80 Message from sy [ 173.641973] lr : do_setlink+0x4a8/0xec8 [ 173.732292] Call trace: [ 173.734740] enetc_pf_set_vf_mac+0x3c/0x80 [ 173.738847] __rtnl_newlink+0x530/0x89c [ 173.742692] rtnl_newlink+0x50/0x7c [ 173.746189] rtnetlink_rcv_msg+0x128/0x390 [ 173.750298] netlink_rcv_skb+0x60/0x130 [ 173.754145] rtnetlink_rcv+0x18/0x24 [ 173.757731] netlink_unicast+0x318/0x380 [ 173.761665] netlink_sendmsg+0x17c/0x3c8
5.5
Medium
CVE-2024-50286 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-use-after-free in ksmbd_smb2_session_create There is a race condition between ksmbd_smb2_session_create and ksmbd_expire_session. This patch add missing sessions_table_lock while adding/deleting session from global session table.
7.8
High
CVE-2024-50285 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: check outstanding simultaneous SMB operations If Client send simultaneous SMB operations to ksmbd, It exhausts too much memory through the "ksmbd_work_cache”. It will cause OOM issue. ksmbd has a credit mechanism but it can't handle this problem. This patch add the check if it exceeds max credits to prevent this problem by assuming that one smb request consumes at least one credit.
5.5
Medium
CVE-2024-50283 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-use-after-free in smb3_preauth_hash_rsp ksmbd_user_session_put should be called under smb3_preauth_hash_rsp(). It will avoid freeing session before calling smb3_preauth_hash_rsp().
7.8
High
CVE-2024-50280 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm cache: fix flushing uninitialized delayed_work on cache_ctr error An unexpected WARN_ON from flush_work() may occur when cache creation fails, caused by destroying the uninitialized delayed_work waker in the error path of cache_create(). For example, the warning appears on the superblock checksum error. Reproduce steps: dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/urandom of=/dev/mapper/cmeta bs=4k count=1 oflag=direct dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" Kernel logs: (snip) WARNING: CPU: 0 PID: 84 at kernel/workqueue.c:4178 __flush_work+0x5d4/0x890 Fix by pulling out the cancel_delayed_work_sync() from the constructor's error path. This patch doesn't affect the use-after-free fix for concurrent dm_resume and dm_destroy (commit 6a459d8edbdb ("dm cache: Fix UAF in destroy()")) as cache_dtr is not changed.
7.8
High
CVE-2024-50277 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm: fix a crash if blk_alloc_disk fails If blk_alloc_disk fails, the variable md->disk is set to an error value. cleanup_mapped_device will see that md->disk is non-NULL and it will attempt to access it, causing a crash on this statement "md->disk->private_data = NULL;".
4.7
Medium
CVE-2024-50275 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: arm64/sve: Discard stale CPU state when handling SVE traps The logic for handling SVE traps manipulates saved FPSIMD/SVE state incorrectly, and a race with preemption can result in a task having TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state is stale (e.g. with SVE traps enabled). This has been observed to result in warnings from do_sve_acc() where SVE traps are not expected while TIF_SVE is set: | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ Warnings of this form have been reported intermittently, e.g. https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/ https://lore.kernel.org/linux-arm-kernel/[email protected]/ The race can occur when the SVE trap handler is preempted before and after manipulating the saved FPSIMD/SVE state, starting and ending on the same CPU, e.g. | void do_sve_acc(unsigned long esr, struct pt_regs *regs) | { | // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled | // task->fpsimd_cpu is 0. | // per_cpu_ptr(&fpsimd_last_state, 0) is task. | | ... | | // Preempted; migrated from CPU 0 to CPU 1. | // TIF_FOREIGN_FPSTATE is set. | | get_cpu_fpsimd_context(); | | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ | | sve_init_regs() { | if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { | ... | } else { | fpsimd_to_sve(current); | current->thread.fp_type = FP_STATE_SVE; | } | } | | put_cpu_fpsimd_context(); | | // Preempted; migrated from CPU 1 to CPU 0. | // task->fpsimd_cpu is still 0 | // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then: | // - Stale HW state is reused (with SVE traps enabled) | // - TIF_FOREIGN_FPSTATE is cleared | // - A return to userspace skips HW state restore | } Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set by calling fpsimd_flush_task_state() to detach from the saved CPU state. This ensures that a subsequent context switch will not reuse the stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the new state to be reloaded from memory prior to a return to userspace.
7
High
CVE-2024-50272 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: filemap: Fix bounds checking in filemap_read() If the caller supplies an iocb->ki_pos value that is close to the filesystem upper limit, and an iterator with a count that causes us to overflow that limit, then filemap_read() enters an infinite loop. This behaviour was discovered when testing xfstests generic/525 with the "localio" optimisation for loopback NFS mounts.
5.5
Medium
CVE-2024-50271 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: signal: restore the override_rlimit logic Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of signals. However now it's enforced unconditionally, even if override_rlimit is set. This behavior change caused production issues. For example, if the limit is reached and a process receives a SIGSEGV signal, sigqueue_alloc fails to allocate the necessary resources for the signal delivery, preventing the signal from being delivered with siginfo. This prevents the process from correctly identifying the fault address and handling the error. From the user-space perspective, applications are unaware that the limit has been reached and that the siginfo is effectively 'corrupted'. This can lead to unpredictable behavior and crashes, as we observed with java applications. Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip the comparison to max there if override_rlimit is set. This effectively restores the old behavior.
5.5
Medium
CVE-2023-52921 2024-11-19 01h26 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix possible UAF in amdgpu_cs_pass1() Since the gang_size check is outside of chunk parsing loop, we need to reset i before we free the chunk data. Suggested by Ye Zhang (@VAR10CK) of Baidu Security.
7.8
High
CVE-2023-4134 2024-11-14 10h44 +00:00 A use-after-free vulnerability was found in the cyttsp4_core driver in the Linux kernel. This issue occurs in the device cleanup routine due to a possible rearming of the watchdog_timer from the workqueue. This could allow a local user to crash the system, causing a denial of service.
5.5
Medium
CVE-2024-50258 2024-11-09 10h15 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fix crash when config small gso_max_size/gso_ipv4_max_size Config a small gso_max_size/gso_ipv4_max_size will lead to an underflow in sk_dst_gso_max_size(), which may trigger a BUG_ON crash, because sk->sk_gso_max_size would be much bigger than device limits. Call Trace: tcp_write_xmit tso_segs = tcp_init_tso_segs(skb, mss_now); tcp_set_skb_tso_segs tcp_skb_pcount_set // skb->len = 524288, mss_now = 8 // u16 tso_segs = 524288/8 = 65535 -> 0 tso_segs = DIV_ROUND_UP(skb->len, mss_now) BUG_ON(!tso_segs) Add check for the minimum value of gso_max_size and gso_ipv4_max_size.
5.5
Medium
CVE-2024-50256 2024-11-09 10h15 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_reject_ipv6: fix potential crash in nf_send_reset6() I got a syzbot report without a repro [1] crashing in nf_send_reset6() I think the issue is that dev->hard_header_len is zero, and we attempt later to push an Ethernet header. Use LL_MAX_HEADER, as other functions in net/ipv6/netfilter/nf_reject_ipv6.c. [1] skbuff: skb_under_panic: text:ffffffff89b1d008 len:74 put:14 head:ffff88803123aa00 data:ffff88803123a9f2 tail:0x3c end:0x140 dev:syz_tun kernel BUG at net/core/skbuff.c:206 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 UID: 0 PID: 7373 Comm: syz.1.568 Not tainted 6.12.0-rc2-syzkaller-00631-g6d858708d465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:skb_panic net/core/skbuff.c:206 [inline] RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216 Code: 0d 8d 48 c7 c6 60 a6 29 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 ba 30 38 02 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 RSP: 0018:ffffc900045269b0 EFLAGS: 00010282 RAX: 0000000000000088 RBX: dffffc0000000000 RCX: cd66dacdc5d8e800 RDX: 0000000000000000 RSI: 0000000000000200 RDI: 0000000000000000 RBP: ffff88802d39a3d0 R08: ffffffff8174afec R09: 1ffff920008a4ccc R10: dffffc0000000000 R11: fffff520008a4ccd R12: 0000000000000140 R13: ffff88803123aa00 R14: ffff88803123a9f2 R15: 000000000000003c FS: 00007fdbee5ff6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000005d322000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: skb_push+0xe5/0x100 net/core/skbuff.c:2636 eth_header+0x38/0x1f0 net/ethernet/eth.c:83 dev_hard_header include/linux/netdevice.h:3208 [inline] nf_send_reset6+0xce6/0x1270 net/ipv6/netfilter/nf_reject_ipv6.c:358 nft_reject_inet_eval+0x3b9/0x690 net/netfilter/nft_reject_inet.c:48 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_inet+0x418/0x6b0 net/netfilter/nft_chain_filter.c:161 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] br_nf_pre_routing_ipv6+0x63e/0x770 net/bridge/br_netfilter_ipv6.c:184 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_bridge_pre net/bridge/br_input.c:277 [inline] br_handle_frame+0x9fd/0x1530 net/bridge/br_input.c:424 __netif_receive_skb_core+0x13e8/0x4570 net/core/dev.c:5562 __netif_receive_skb_one_core net/core/dev.c:5666 [inline] __netif_receive_skb+0x12f/0x650 net/core/dev.c:5781 netif_receive_skb_internal net/core/dev.c:5867 [inline] netif_receive_skb+0x1e8/0x890 net/core/dev.c:5926 tun_rx_batched+0x1b7/0x8f0 drivers/net/tun.c:1550 tun_get_user+0x3056/0x47e0 drivers/net/tun.c:2007 tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2053 new_sync_write fs/read_write.c:590 [inline] vfs_write+0xa6d/0xc90 fs/read_write.c:683 ksys_write+0x183/0x2b0 fs/read_write.c:736 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fdbeeb7d1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 c9 8d 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 1c 8e 02 00 48 RSP: 002b:00007fdbee5ff000 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fdbeed36058 RCX: 00007fdbeeb7d1ff RDX: 000000000000008e RSI: 0000000020000040 RDI: 00000000000000c8 RBP: 00007fdbeebf12be R08: 0000000 ---truncated---
5.5
Medium
CVE-2024-50248 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: ntfs3: Add bounds checking to mi_enum_attr() Added bounds checking to make sure that every attr don't stray beyond valid memory region.
5.5
Medium
CVE-2024-50246 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Add rough attr alloc_size check
7.8
High
CVE-2024-50243 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix general protection fault in run_is_mapped_full Fixed deleating of a non-resident attribute in ntfs_create_inode() rollback.
5.5
Medium
CVE-2024-50242 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Additional check in ntfs_file_release
7.8
High
CVE-2024-50217 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids() Mounting btrfs from two images (which have the same one fsid and two different dev_uuids) in certain executing order may trigger an UAF for variable 'device->bdev_file' in __btrfs_free_extra_devids(). And following are the details: 1. Attach image_1 to loop0, attach image_2 to loop1, and scan btrfs devices by ioctl(BTRFS_IOC_SCAN_DEV): / btrfs_device_1 → loop0 fs_device \ btrfs_device_2 → loop1 2. mount /dev/loop0 /mnt btrfs_open_devices btrfs_device_1->bdev_file = btrfs_get_bdev_and_sb(loop0) btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree fail: btrfs_close_devices // -ENOMEM btrfs_close_bdev(btrfs_device_1) fput(btrfs_device_1->bdev_file) // btrfs_device_1->bdev_file is freed btrfs_close_bdev(btrfs_device_2) fput(btrfs_device_2->bdev_file) 3. mount /dev/loop1 /mnt btrfs_open_devices btrfs_get_bdev_and_sb(&bdev_file) // EIO, btrfs_device_1->bdev_file is not assigned, // which points to a freed memory area btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree btrfs_free_extra_devids if (btrfs_device_1->bdev_file) fput(btrfs_device_1->bdev_file) // UAF ! Fix it by setting 'device->bdev_file' as 'NULL' after closing the btrfs_device in btrfs_close_one_device().
7.8
High
CVE-2024-50211 2024-11-08 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: udf: refactor inode_bmap() to handle error Refactor inode_bmap() to handle error since udf_next_aext() can return error now. On situations like ftruncate, udf_extend_file() can now detect errors and bail out early without resorting to checking for particular offsets and assuming internal behavior of these functions.
3.3
Low
CVE-2024-50187 2024-11-08 05h38 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/vc4: Stop the active perfmon before being destroyed Upon closing the file descriptor, the active performance monitor is not stopped. Although all perfmons are destroyed in `vc4_perfmon_close_file()`, the active performance monitor's pointer (`vc4->active_perfmon`) is still retained. If we open a new file descriptor and submit a few jobs with performance monitors, the driver will attempt to stop the active performance monitor using the stale pointer in `vc4->active_perfmon`. However, this pointer is no longer valid because the previous process has already terminated, and all performance monitors associated with it have been destroyed and freed. To fix this, when the active performance monitor belongs to a given process, explicitly stop it before destroying and freeing it.
5.5
Medium
CVE-2024-50183 2024-11-08 05h38 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Ensure DA_ID handling completion before deleting an NPIV instance Deleting an NPIV instance requires all fabric ndlps to be released before an NPIV's resources can be torn down. Failure to release fabric ndlps beforehand opens kref imbalance race conditions. Fix by forcing the DA_ID to complete synchronously with usage of wait_queue.
4.7
Medium
CVE-2024-50178 2024-11-08 05h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: loongson3: Use raw_smp_processor_id() in do_service_request() Use raw_smp_processor_id() instead of plain smp_processor_id() in do_service_request(), otherwise we may get some errors with the driver enabled: BUG: using smp_processor_id() in preemptible [00000000] code: (udev-worker)/208 caller is loongson3_cpufreq_probe+0x5c/0x250 [loongson3_cpufreq]
5.5
Medium
CVE-2024-50177 2024-11-08 05h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a UBSAN warning in DML2.1 When programming phantom pipe, since cursor_width is explicity set to 0, this causes calculation logic to trigger overflow for an unsigned int triggering the kernel's UBSAN check as below: [ 40.962845] UBSAN: shift-out-of-bounds in /tmp/amd.EfpumTkO/amd/amdgpu/../display/dc/dml2/dml21/src/dml2_core/dml2_core_dcn4_calcs.c:3312:34 [ 40.962849] shift exponent 4294967170 is too large for 32-bit type 'unsigned int' [ 40.962852] CPU: 1 PID: 1670 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 40.962854] Hardware name: Gigabyte Technology Co., Ltd. X670E AORUS PRO X/X670E AORUS PRO X, BIOS F21 01/10/2024 [ 40.962856] Call Trace: [ 40.962857] [ 40.962860] dump_stack_lvl+0x48/0x70 [ 40.962870] dump_stack+0x10/0x20 [ 40.962872] __ubsan_handle_shift_out_of_bounds+0x1ac/0x360 [ 40.962878] calculate_cursor_req_attributes.cold+0x1b/0x28 [amdgpu] [ 40.963099] dml_core_mode_support+0x6b91/0x16bc0 [amdgpu] [ 40.963327] ? srso_alias_return_thunk+0x5/0x7f [ 40.963331] ? CalculateWatermarksMALLUseAndDRAMSpeedChangeSupport+0x18b8/0x2790 [amdgpu] [ 40.963534] ? srso_alias_return_thunk+0x5/0x7f [ 40.963536] ? dml_core_mode_support+0xb3db/0x16bc0 [amdgpu] [ 40.963730] dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.963906] ? srso_alias_return_thunk+0x5/0x7f [ 40.963909] ? dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.964078] core_dcn4_mode_support+0x72/0xbf0 [amdgpu] [ 40.964247] dml2_top_optimization_perform_optimization_phase+0x1d3/0x2a0 [amdgpu] [ 40.964420] dml2_build_mode_programming+0x23d/0x750 [amdgpu] [ 40.964587] dml21_validate+0x274/0x770 [amdgpu] [ 40.964761] ? srso_alias_return_thunk+0x5/0x7f [ 40.964763] ? resource_append_dpp_pipes_for_plane_composition+0x27c/0x3b0 [amdgpu] [ 40.964942] dml2_validate+0x504/0x750 [amdgpu] [ 40.965117] ? dml21_copy+0x95/0xb0 [amdgpu] [ 40.965291] ? srso_alias_return_thunk+0x5/0x7f [ 40.965295] dcn401_validate_bandwidth+0x4e/0x70 [amdgpu] [ 40.965491] update_planes_and_stream_state+0x38d/0x5c0 [amdgpu] [ 40.965672] update_planes_and_stream_v3+0x52/0x1e0 [amdgpu] [ 40.965845] ? srso_alias_return_thunk+0x5/0x7f [ 40.965849] dc_update_planes_and_stream+0x71/0xb0 [amdgpu] Fix this by adding a guard for checking cursor width before triggering the size calculation.
5.5
Medium
CVE-2024-50166 2024-11-07 09h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: fsl/fman: Fix refcount handling of fman-related devices In mac_probe() there are multiple calls to of_find_device_by_node(), fman_bind() and fman_port_bind() which takes references to of_dev->dev. Not all references taken by these calls are released later on error path in mac_probe() and in mac_remove() which lead to reference leaks. Add references release.
5.5
Medium
CVE-2024-50146 2024-11-07 09h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Don't call cleanup on profile rollback failure When profile rollback fails in mlx5e_netdev_change_profile, the netdev profile var is left set to NULL. Avoid a crash when unloading the driver by not calling profile->cleanup in such a case. This was encountered while testing, with the original trigger that the wq rescuer thread creation got interrupted (presumably due to Ctrl+C-ing modprobe), which gets converted to ENOMEM (-12) by mlx5e_priv_init, the profile rollback also fails for the same reason (signal still active) so the profile is left as NULL, leading to a crash later in _mlx5e_remove. [ 732.473932] mlx5_core 0000:08:00.1: E-Switch: Unload vfs: mode(OFFLOADS), nvfs(2), necvfs(0), active vports(2) [ 734.525513] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR [ 734.557372] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12 [ 734.559187] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: new profile init failed, -12 [ 734.560153] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR [ 734.589378] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12 [ 734.591136] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 [ 745.537492] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 745.538222] #PF: supervisor read access in kernel mode [ 745.551290] Call Trace: [ 745.551590] [ 745.551866] ? __die+0x20/0x60 [ 745.552218] ? page_fault_oops+0x150/0x400 [ 745.555307] ? exc_page_fault+0x79/0x240 [ 745.555729] ? asm_exc_page_fault+0x22/0x30 [ 745.556166] ? mlx5e_remove+0x6b/0xb0 [mlx5_core] [ 745.556698] auxiliary_bus_remove+0x18/0x30 [ 745.557134] device_release_driver_internal+0x1df/0x240 [ 745.557654] bus_remove_device+0xd7/0x140 [ 745.558075] device_del+0x15b/0x3c0 [ 745.558456] mlx5_rescan_drivers_locked.part.0+0xb1/0x2f0 [mlx5_core] [ 745.559112] mlx5_unregister_device+0x34/0x50 [mlx5_core] [ 745.559686] mlx5_uninit_one+0x46/0xf0 [mlx5_core] [ 745.560203] remove_one+0x4e/0xd0 [mlx5_core] [ 745.560694] pci_device_remove+0x39/0xa0 [ 745.561112] device_release_driver_internal+0x1df/0x240 [ 745.561631] driver_detach+0x47/0x90 [ 745.562022] bus_remove_driver+0x84/0x100 [ 745.562444] pci_unregister_driver+0x3b/0x90 [ 745.562890] mlx5_cleanup+0xc/0x1b [mlx5_core] [ 745.563415] __x64_sys_delete_module+0x14d/0x2f0 [ 745.563886] ? kmem_cache_free+0x1b0/0x460 [ 745.564313] ? lockdep_hardirqs_on_prepare+0xe2/0x190 [ 745.564825] do_syscall_64+0x6d/0x140 [ 745.565223] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [ 745.565725] RIP: 0033:0x7f1579b1288b
5.5
Medium
CVE-2024-50138 2024-11-05 17h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Use raw_spinlock_t in ringbuf The function __bpf_ringbuf_reserve is invoked from a tracepoint, which disables preemption. Using spinlock_t in this context can lead to a "sleep in atomic" warning in the RT variant. This issue is illustrated in the example below: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 556208, name: test_progs preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 INFO: lockdep is turned off. Preemption disabled at: [] migrate_enable+0xc0/0x39c CPU: 7 PID: 556208 Comm: test_progs Tainted: G Hardware name: Qualcomm SA8775P Ride (DT) Call trace: dump_backtrace+0xac/0x130 show_stack+0x1c/0x30 dump_stack_lvl+0xac/0xe8 dump_stack+0x18/0x30 __might_resched+0x3bc/0x4fc rt_spin_lock+0x8c/0x1a4 __bpf_ringbuf_reserve+0xc4/0x254 bpf_ringbuf_reserve_dynptr+0x5c/0xdc bpf_prog_ac3d15160d62622a_test_read_write+0x104/0x238 trace_call_bpf+0x238/0x774 perf_call_bpf_enter.isra.0+0x104/0x194 perf_syscall_enter+0x2f8/0x510 trace_sys_enter+0x39c/0x564 syscall_trace_enter+0x220/0x3c0 do_el0_svc+0x138/0x1dc el0_svc+0x54/0x130 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Switch the spinlock to raw_spinlock_t to avoid this error.
5.5
Medium
CVE-2024-50135 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix race condition between reset and nvme_dev_disable() nvme_dev_disable() modifies the dev->online_queues field, therefore nvme_pci_update_nr_queues() should avoid racing against it, otherwise we could end up passing invalid values to blk_mq_update_nr_hw_queues(). WARNING: CPU: 39 PID: 61303 at drivers/pci/msi/api.c:347 pci_irq_get_affinity+0x187/0x210 Workqueue: nvme-reset-wq nvme_reset_work [nvme] RIP: 0010:pci_irq_get_affinity+0x187/0x210 Call Trace: ? blk_mq_pci_map_queues+0x87/0x3c0 ? pci_irq_get_affinity+0x187/0x210 blk_mq_pci_map_queues+0x87/0x3c0 nvme_pci_map_queues+0x189/0x460 [nvme] blk_mq_update_nr_hw_queues+0x2a/0x40 nvme_reset_work+0x1be/0x2a0 [nvme] Fix the bug by locking the shutdown_lock mutex before using dev->online_queues. Give up if nvme_dev_disable() is running or if it has been executed already.
4.7
Medium
CVE-2024-50125 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix UAF on sco_sock_timeout conn->sk maybe have been unlinked/freed while waiting for sco_conn_lock so this checks if the conn->sk is still valid by checking if it part of sco_sk_list.
7.8
High
CVE-2024-50121 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: cancel nfsd_shrinker_work using sync mode in nfs4_state_shutdown_net In the normal case, when we excute `echo 0 > /proc/fs/nfsd/threads`, the function `nfs4_state_destroy_net` in `nfs4_state_shutdown_net` will release all resources related to the hashed `nfs4_client`. If the `nfsd_client_shrinker` is running concurrently, the `expire_client` function will first unhash this client and then destroy it. This can lead to the following warning. Additionally, numerous use-after-free errors may occur as well. nfsd_client_shrinker echo 0 > /proc/fs/nfsd/threads expire_client nfsd_shutdown_net unhash_client ... nfs4_state_shutdown_net /* won't wait shrinker exit */ /* cancel_work(&nn->nfsd_shrinker_work) * nfsd_file for this /* won't destroy unhashed client1 */ * client1 still alive nfs4_state_destroy_net */ nfsd_file_cache_shutdown /* trigger warning */ kmem_cache_destroy(nfsd_file_slab) kmem_cache_destroy(nfsd_file_mark_slab) /* release nfsd_file and mark */ __destroy_client ==================================================================== BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on __kmem_cache_shutdown() -------------------------------------------------------------------- CPU: 4 UID: 0 PID: 764 Comm: sh Not tainted 6.12.0-rc3+ #1 dump_stack_lvl+0x53/0x70 slab_err+0xb0/0xf0 __kmem_cache_shutdown+0x15c/0x310 kmem_cache_destroy+0x66/0x160 nfsd_file_cache_shutdown+0xac/0x210 [nfsd] nfsd_destroy_serv+0x251/0x2a0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e ==================================================================== BUG nfsd_file_mark (Tainted: G B W ): Objects remaining nfsd_file_mark on __kmem_cache_shutdown() -------------------------------------------------------------------- dump_stack_lvl+0x53/0x70 slab_err+0xb0/0xf0 __kmem_cache_shutdown+0x15c/0x310 kmem_cache_destroy+0x66/0x160 nfsd_file_cache_shutdown+0xc8/0x210 [nfsd] nfsd_destroy_serv+0x251/0x2a0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e To resolve this issue, cancel `nfsd_shrinker_work` using synchronous mode in nfs4_state_shutdown_net.
7.8
High
CVE-2024-50112 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/lam: Disable ADDRESS_MASKING in most cases Linear Address Masking (LAM) has a weakness related to transient execution as described in the SLAM paper[1]. Unless Linear Address Space Separation (LASS) is enabled this weakness may be exploitable. Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST, or when speculation mitigations have been disabled at compile time, otherwise keep LAM disabled. There are no processors in market that support LAM yet, so currently nobody is affected by this issue. [1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf [2] LASS: https://lore.kernel.org/lkml/[email protected]/ [ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
7.8
High
CVE-2024-50111 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Enable IRQ if do_ale() triggered in irq-enabled context Unaligned access exception can be triggered in irq-enabled context such as user mode, in this case do_ale() may call get_user() which may cause sleep. Then we will get: BUG: sleeping function called from invalid context at arch/loongarch/kernel/access-helper.h:7 in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 129, name: modprobe preempt_count: 0, expected: 0 RCU nest depth: 0, expected: 0 CPU: 0 UID: 0 PID: 129 Comm: modprobe Tainted: G W 6.12.0-rc1+ #1723 Tainted: [W]=WARN Stack : 9000000105e0bd48 0000000000000000 9000000003803944 9000000105e08000 9000000105e0bc70 9000000105e0bc78 0000000000000000 0000000000000000 9000000105e0bc78 0000000000000001 9000000185e0ba07 9000000105e0b890 ffffffffffffffff 9000000105e0bc78 73924b81763be05b 9000000100194500 000000000000020c 000000000000000a 0000000000000000 0000000000000003 00000000000023f0 00000000000e1401 00000000072f8000 0000007ffbb0e260 0000000000000000 0000000000000000 9000000005437650 90000000055d5000 0000000000000000 0000000000000003 0000007ffbb0e1f0 0000000000000000 0000005567b00490 0000000000000000 9000000003803964 0000007ffbb0dfec 00000000000000b0 0000000000000007 0000000000000003 0000000000071c1d ... Call Trace: [<9000000003803964>] show_stack+0x64/0x1a0 [<9000000004c57464>] dump_stack_lvl+0x74/0xb0 [<9000000003861ab4>] __might_resched+0x154/0x1a0 [<900000000380c96c>] emulate_load_store_insn+0x6c/0xf60 [<9000000004c58118>] do_ale+0x78/0x180 [<9000000003801bc8>] handle_ale+0x128/0x1e0 So enable IRQ if unaligned access exception is triggered in irq-enabled context to fix it.
5.5
Medium
CVE-2024-50108 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable PSR-SU on Parade 08-01 TCON too Stuart Hayhurst has found that both at bootup and fullscreen VA-API video is leading to black screens for around 1 second and kernel WARNING [1] traces when calling dmub_psr_enable() with Parade 08-01 TCON. These symptoms all go away with PSR-SU disabled for this TCON, so disable it for now while DMUB traces [2] from the failure can be analyzed and the failure state properly root caused. (cherry picked from commit afb634a6823d8d9db23c5fb04f79c5549349628b)
5.5
Medium
CVE-2024-50106 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: fix race between laundromat and free_stateid There is a race between laundromat handling of revoked delegations and a client sending free_stateid operation. Laundromat thread finds that delegation has expired and needs to be revoked so it marks the delegation stid revoked and it puts it on a reaper list but then it unlock the state lock and the actual delegation revocation happens without the lock. Once the stid is marked revoked a racing free_stateid processing thread does the following (1) it calls list_del_init() which removes it from the reaper list and (2) frees the delegation stid structure. The laundromat thread ends up not calling the revoke_delegation() function for this particular delegation but that means it will no release the lock lease that exists on the file. Now, a new open for this file comes in and ends up finding that lease list isn't empty and calls nfsd_breaker_owns_lease() which ends up trying to derefence a freed delegation stateid. Leading to the followint use-after-free KASAN warning: kernel: ================================================================== kernel: BUG: KASAN: slab-use-after-free in nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: Read of size 8 at addr ffff0000e73cd0c8 by task nfsd/6205 kernel: kernel: CPU: 2 UID: 0 PID: 6205 Comm: nfsd Kdump: loaded Not tainted 6.11.0-rc7+ #9 kernel: Hardware name: Apple Inc. Apple Virtualization Generic Platform, BIOS 2069.0.0.0.0 08/03/2024 kernel: Call trace: kernel: dump_backtrace+0x98/0x120 kernel: show_stack+0x1c/0x30 kernel: dump_stack_lvl+0x80/0xe8 kernel: print_address_description.constprop.0+0x84/0x390 kernel: print_report+0xa4/0x268 kernel: kasan_report+0xb4/0xf8 kernel: __asan_report_load8_noabort+0x1c/0x28 kernel: nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: nfsd_file_do_acquire+0xb3c/0x11d0 [nfsd] kernel: nfsd_file_acquire_opened+0x84/0x110 [nfsd] kernel: nfs4_get_vfs_file+0x634/0x958 [nfsd] kernel: nfsd4_process_open2+0xa40/0x1a40 [nfsd] kernel: nfsd4_open+0xa08/0xe80 [nfsd] kernel: nfsd4_proc_compound+0xb8c/0x2130 [nfsd] kernel: nfsd_dispatch+0x22c/0x718 [nfsd] kernel: svc_process_common+0x8e8/0x1960 [sunrpc] kernel: svc_process+0x3d4/0x7e0 [sunrpc] kernel: svc_handle_xprt+0x828/0xe10 [sunrpc] kernel: svc_recv+0x2cc/0x6a8 [sunrpc] kernel: nfsd+0x270/0x400 [nfsd] kernel: kthread+0x288/0x310 kernel: ret_from_fork+0x10/0x20 This patch proposes a fixed that's based on adding 2 new additional stid's sc_status values that help coordinate between the laundromat and other operations (nfsd4_free_stateid() and nfsd4_delegreturn()). First to make sure, that once the stid is marked revoked, it is not removed by the nfsd4_free_stateid(), the laundromat take a reference on the stateid. Then, coordinating whether the stid has been put on the cl_revoked list or we are processing FREE_STATEID and need to make sure to remove it from the list, each check that state and act accordingly. If laundromat has added to the cl_revoke list before the arrival of FREE_STATEID, then nfsd4_free_stateid() knows to remove it from the list. If nfsd4_free_stateid() finds that operations arrived before laundromat has placed it on cl_revoke list, it marks the state freed and then laundromat will no longer add it to the list. Also, for nfsd4_delegreturn() when looking for the specified stid, we need to access stid that are marked removed or freeable, it means the laundromat has started processing it but hasn't finished and this delegreturn needs to return nfserr_deleg_revoked and not nfserr_bad_stateid. The latter will not trigger a FREE_STATEID and the lack of it will leave this stid on the cl_revoked list indefinitely.
7.8
High
CVE-2024-50098 2024-11-05 17h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Set SDEV_OFFLINE when UFS is shut down There is a history of deadlock if reboot is performed at the beginning of booting. SDEV_QUIESCE was set for all LU's scsi_devices by UFS shutdown, and at that time the audio driver was waiting on blk_mq_submit_bio() holding a mutex_lock while reading the fw binary. After that, a deadlock issue occurred while audio driver shutdown was waiting for mutex_unlock of blk_mq_submit_bio(). To solve this, set SDEV_OFFLINE for all LUs except WLUN, so that any I/O that comes down after a UFS shutdown will return an error. [ 31.907781]I[0: swapper/0: 0] 1 130705007 1651079834 11289729804 0 D( 2) 3 ffffff882e208000 * init [device_shutdown] [ 31.907793]I[0: swapper/0: 0] Mutex: 0xffffff8849a2b8b0: owner[0xffffff882e28cb00 kworker/6:0 :49] [ 31.907806]I[0: swapper/0: 0] Call trace: [ 31.907810]I[0: swapper/0: 0] __switch_to+0x174/0x338 [ 31.907819]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc [ 31.907826]I[0: swapper/0: 0] schedule+0x7c/0xe8 [ 31.907834]I[0: swapper/0: 0] schedule_preempt_disabled+0x24/0x40 [ 31.907842]I[0: swapper/0: 0] __mutex_lock+0x408/0xdac [ 31.907849]I[0: swapper/0: 0] __mutex_lock_slowpath+0x14/0x24 [ 31.907858]I[0: swapper/0: 0] mutex_lock+0x40/0xec [ 31.907866]I[0: swapper/0: 0] device_shutdown+0x108/0x280 [ 31.907875]I[0: swapper/0: 0] kernel_restart+0x4c/0x11c [ 31.907883]I[0: swapper/0: 0] __arm64_sys_reboot+0x15c/0x280 [ 31.907890]I[0: swapper/0: 0] invoke_syscall+0x70/0x158 [ 31.907899]I[0: swapper/0: 0] el0_svc_common+0xb4/0xf4 [ 31.907909]I[0: swapper/0: 0] do_el0_svc+0x2c/0xb0 [ 31.907918]I[0: swapper/0: 0] el0_svc+0x34/0xe0 [ 31.907928]I[0: swapper/0: 0] el0t_64_sync_handler+0x68/0xb4 [ 31.907937]I[0: swapper/0: 0] el0t_64_sync+0x1a0/0x1a4 [ 31.908774]I[0: swapper/0: 0] 49 0 11960702 11236868007 0 D( 2) 6 ffffff882e28cb00 * kworker/6:0 [__bio_queue_enter] [ 31.908783]I[0: swapper/0: 0] Call trace: [ 31.908788]I[0: swapper/0: 0] __switch_to+0x174/0x338 [ 31.908796]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc [ 31.908803]I[0: swapper/0: 0] schedule+0x7c/0xe8 [ 31.908811]I[0: swapper/0: 0] __bio_queue_enter+0xb8/0x178 [ 31.908818]I[0: swapper/0: 0] blk_mq_submit_bio+0x194/0x67c [ 31.908827]I[0: swapper/0: 0] __submit_bio+0xb8/0x19c
5.5
Medium
CVE-2024-50091 2024-11-05 17h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm vdo: don't refer to dedupe_context after releasing it Clear the dedupe_context pointer in a data_vio whenever ownership of the context is lost, so that vdo can't examine it accidentally.
5.5
Medium
CVE-2024-50090 2024-11-05 17h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix overflow in oa batch buffer By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch buffer, this is not a problem if batch buffer is only used once but oa reuses the batch buffer for the same metric and at each call it appends a MI_BATCH_BUFFER_END, printing the warning below and then overflowing. [ 381.072016] ------------[ cut here ]------------ [ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed! platform: LUNARLAKE subplatform: 1 graphics: Xe2_LPG / Xe2_HPG 20.04 step B0 media: Xe2_LPM / Xe2_HPM 20.00 step B0 tile: 0 VRAM 0 B GT: 0 type 1 So here checking if batch buffer already have MI_BATCH_BUFFER_END if not append it. v2: - simply fix, suggestion from Ashutosh (cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a)
5.5
Medium
CVE-2023-52920 2024-11-05 10h09 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) -------------------------------------- ------------- --------- --------- ------------- ---------- ---------- ------------- test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/[email protected]/
5.5
Medium
CVE-2024-50086 2024-10-29 00h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix user-after-free from session log off There is racy issue between smb2 session log off and smb2 session setup. It will cause user-after-free from session log off. This add session_lock when setting SMB2_SESSION_EXPIRED and referece count to session struct not to free session while it is being used.
7
High
CVE-2024-50073 2024-10-29 00h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: Fix use-after-free in gsm_cleanup_mux BUG: KASAN: slab-use-after-free in gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] Read of size 8 at addr ffff88815fe99c00 by task poc/3379 CPU: 0 UID: 0 PID: 3379 Comm: poc Not tainted 6.11.0+ #56 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] __pfx_gsm_cleanup_mux+0x10/0x10 drivers/tty/n_gsm.c:3124 [n_gsm] __pfx_sched_clock_cpu+0x10/0x10 kernel/sched/clock.c:389 update_load_avg+0x1c1/0x27b0 kernel/sched/fair.c:4500 __pfx_min_vruntime_cb_rotate+0x10/0x10 kernel/sched/fair.c:846 __rb_insert_augmented+0x492/0xbf0 lib/rbtree.c:161 gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm] _raw_spin_lock_irqsave+0x92/0xf0 arch/x86/include/asm/atomic.h:107 __pfx_gsmld_ioctl+0x10/0x10 drivers/tty/n_gsm.c:3822 [n_gsm] ktime_get+0x5e/0x140 kernel/time/timekeeping.c:195 ldsem_down_read+0x94/0x4e0 arch/x86/include/asm/atomic64_64.h:79 __pfx_ldsem_down_read+0x10/0x10 drivers/tty/tty_ldsem.c:338 __pfx_do_vfs_ioctl+0x10/0x10 fs/ioctl.c:805 tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818 Allocated by task 65: gsm_data_alloc.constprop.0+0x27/0x190 drivers/tty/n_gsm.c:926 [n_gsm] gsm_send+0x2c/0x580 drivers/tty/n_gsm.c:819 [n_gsm] gsm1_receive+0x547/0xad0 drivers/tty/n_gsm.c:3038 [n_gsm] gsmld_receive_buf+0x176/0x280 drivers/tty/n_gsm.c:3609 [n_gsm] tty_ldisc_receive_buf+0x101/0x1e0 drivers/tty/tty_buffer.c:391 tty_port_default_receive_buf+0x61/0xa0 drivers/tty/tty_port.c:39 flush_to_ldisc+0x1b0/0x750 drivers/tty/tty_buffer.c:445 process_scheduled_works+0x2b0/0x10d0 kernel/workqueue.c:3229 worker_thread+0x3dc/0x950 kernel/workqueue.c:3391 kthread+0x2a3/0x370 kernel/kthread.c:389 ret_from_fork+0x2d/0x70 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:257 Freed by task 3367: kfree+0x126/0x420 mm/slub.c:4580 gsm_cleanup_mux+0x36c/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm] gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm] tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818 [Analysis] gsm_msg on the tx_ctrl_list or tx_data_list of gsm_mux can be freed by multi threads through ioctl,which leads to the occurrence of uaf. Protect it by gsm tx lock.
7.8
High
CVE-2024-50067 2024-10-28 00h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: uprobe: avoid out-of-bounds memory access of fetching args Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include \#include \#include // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access.
7.8
High
CVE-2022-48998 2024-10-21 20h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/bpf/32: Fix Oops on tail call tests test_bpf tail call tests end up as: test_bpf: #0 Tail call leaf jited:1 85 PASS test_bpf: #1 Tail call 2 jited:1 111 PASS test_bpf: #2 Tail call 3 jited:1 145 PASS test_bpf: #3 Tail call 4 jited:1 170 PASS test_bpf: #4 Tail call load/store leaf jited:1 190 PASS test_bpf: #5 Tail call load/store jited:1 BUG: Unable to handle kernel data access on write at 0xf1b4e000 Faulting instruction address: 0xbe86b710 Oops: Kernel access of bad area, sig: 11 [#1] BE PAGE_SIZE=4K MMU=Hash PowerMac Modules linked in: test_bpf(+) CPU: 0 PID: 97 Comm: insmod Not tainted 6.1.0-rc4+ #195 Hardware name: PowerMac3,1 750CL 0x87210 PowerMac NIP: be86b710 LR: be857e88 CTR: be86b704 REGS: f1b4df20 TRAP: 0300 Not tainted (6.1.0-rc4+) MSR: 00009032 CR: 28008242 XER: 00000000 DAR: f1b4e000 DSISR: 42000000 GPR00: 00000001 f1b4dfe0 c11d2280 00000000 00000000 00000000 00000002 00000000 GPR08: f1b4e000 be86b704 f1b4e000 00000000 00000000 100d816a f2440000 fe73baa8 GPR16: f2458000 00000000 c1941ae4 f1fe2248 00000045 c0de0000 f2458030 00000000 GPR24: 000003e8 0000000f f2458000 f1b4dc90 3e584b46 00000000 f24466a0 c1941a00 NIP [be86b710] 0xbe86b710 LR [be857e88] __run_one+0xec/0x264 [test_bpf] Call Trace: [f1b4dfe0] [00000002] 0x2 (unreliable) Instruction dump: XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX ---[ end trace 0000000000000000 ]--- This is a tentative to write above the stack. The problem is encoutered with tests added by commit 38608ee7b690 ("bpf, tests: Add load store test case for tail call") This happens because tail call is done to a BPF prog with a different stack_depth. At the time being, the stack is kept as is when the caller tail calls its callee. But at exit, the callee restores the stack based on its own properties. Therefore here, at each run, r1 is erroneously increased by 32 - 16 = 16 bytes. This was done that way in order to pass the tail call count from caller to callee through the stack. As powerpc32 doesn't have a red zone in the stack, it was necessary the maintain the stack as is for the tail call. But it was not anticipated that the BPF frame size could be different. Let's take a new approach. Use register r4 to carry the tail call count during the tail call, and save it into the stack at function entry if required. This means the input parameter must be in r3, which is more correct as it is a 32 bits parameter, then tail call better match with normal BPF function entry, the down side being that we move that input parameter back and forth between r3 and r4. That can be optimised later. Doing that also has the advantage of maximising the common parts between tail calls and a normal function exit. With the fix, tail call tests are now successfull: test_bpf: #0 Tail call leaf jited:1 53 PASS test_bpf: #1 Tail call 2 jited:1 115 PASS test_bpf: #2 Tail call 3 jited:1 154 PASS test_bpf: #3 Tail call 4 jited:1 165 PASS test_bpf: #4 Tail call load/store leaf jited:1 101 PASS test_bpf: #5 Tail call load/store jited:1 141 PASS test_bpf: #6 Tail call error path, max count reached jited:1 994 PASS test_bpf: #7 Tail call count preserved across function calls jited:1 140975 PASS test_bpf: #8 Tail call error path, NULL target jited:1 110 PASS test_bpf: #9 Tail call error path, index out of range jited:1 69 PASS test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]
7.8
High
CVE-2022-48990 2024-10-21 20h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free during gpu recovery [Why] [ 754.862560] refcount_t: underflow; use-after-free. [ 754.862898] Call Trace: [ 754.862903] [ 754.862913] amdgpu_job_free_cb+0xc2/0xe1 [amdgpu] [ 754.863543] drm_sched_main.cold+0x34/0x39 [amd_sched] [How] The fw_fence may be not init, check whether dma_fence_init is performed before job free
7.8
High
CVE-2022-48979 2024-10-21 20h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix array index out of bound error in DCN32 DML [Why&How] LinkCapacitySupport array is indexed with the number of voltage states and not the number of max DPPs. Fix the error by changing the array declaration to use the correct (larger) array size of total number of voltage states.
5.5
Medium
CVE-2022-48976 2024-10-21 20h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable_offload: fix using __this_cpu_add in preemptible flow_offload_queue_work() can be called in workqueue without bh disabled, like the call trace showed in my act_ct testing, calling NF_FLOW_TABLE_STAT_INC() there would cause a call trace: BUG: using __this_cpu_add() in preemptible [00000000] code: kworker/u4:0/138560 caller is flow_offload_queue_work+0xec/0x1b0 [nf_flow_table] Workqueue: act_ct_workqueue tcf_ct_flow_table_cleanup_work [act_ct] Call Trace: dump_stack_lvl+0x33/0x46 check_preemption_disabled+0xc3/0xf0 flow_offload_queue_work+0xec/0x1b0 [nf_flow_table] nf_flow_table_iterate+0x138/0x170 [nf_flow_table] nf_flow_table_free+0x140/0x1a0 [nf_flow_table] tcf_ct_flow_table_cleanup_work+0x2f/0x2b0 [act_ct] process_one_work+0x6a3/0x1030 worker_thread+0x8a/0xdf0 This patch fixes it by using NF_FLOW_TABLE_STAT_INC_ATOMIC() instead in flow_offload_queue_work(). Note that for FLOW_CLS_REPLACE branch in flow_offload_queue_work(), it may not be called in preemptible path, but it's good to use NF_FLOW_TABLE_STAT_INC_ATOMIC() for all cases in flow_offload_queue_work().
5.5
Medium
CVE-2024-50063 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.
7.8
High
CVE-2024-50061 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.
7
High
CVE-2024-50058 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: protect uart_port_dtr_rts() in uart_shutdown() too Commit af224ca2df29 (serial: core: Prevent unsafe uart port access, part 3) added few uport == NULL checks. It added one to uart_shutdown(), so the commit assumes, uport can be NULL in there. But right after that protection, there is an unprotected "uart_port_dtr_rts(uport, false);" call. That is invoked only if HUPCL is set, so I assume that is the reason why we do not see lots of these reports. Or it cannot be NULL at this point at all for some reason :P. Until the above is investigated, stay on the safe side and move this dereference to the if too. I got this inconsistency from Coverity under CID 1585130. Thanks.
5.5
Medium
CVE-2024-50057 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Free IRQ only if it was requested before In polling mode, if no IRQ was requested there is no need to free it. Call devm_free_irq() only if client->irq is set. This fixes the warning caused by the tps6598x module removal: WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c ... ... Call trace: devm_free_irq+0x80/0x8c tps6598x_remove+0x28/0x88 [tps6598x] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x50/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x] __arm64_sys_delete_module+0x184/0x264 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc8/0xe8 do_el0_svc+0x20/0x2c el0_svc+0x28/0x98 el0t_64_sync_handler+0x13c/0x158 el0t_64_sync+0x190/0x194
3.3
Low
CVE-2024-50055 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: driver core: bus: Fix double free in driver API bus_register() For bus_register(), any error which happens after kset_register() will cause that @priv are freed twice, fixed by setting @priv with NULL after the first free.
7.8
High
CVE-2024-50048 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: fbcon: Fix a NULL pointer dereference issue in fbcon_putcs syzbot has found a NULL pointer dereference bug in fbcon. Here is the simplified C reproducer: struct param { uint8_t type; struct tiocl_selection ts; }; int main() { struct fb_con2fbmap con2fb; struct param param; int fd = open("/dev/fb1", 0, 0); con2fb.console = 0x19; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); param.type = 2; param.ts.xs = 0; param.ts.ys = 0; param.ts.xe = 0; param.ts.ye = 0; param.ts.sel_mode = 0; int fd1 = open("/dev/tty1", O_RDWR, 0); ioctl(fd1, TIOCLINUX, ¶m); con2fb.console = 1; con2fb.framebuffer = 0; ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb); return 0; } After calling ioctl(fd1, TIOCLINUX, ¶m), the subsequent ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb) causes the kernel to follow a different execution path: set_con2fb_map -> con2fb_init_display -> fbcon_set_disp -> redraw_screen -> hide_cursor -> clear_selection -> highlight -> invert_screen -> do_update_region -> fbcon_putcs -> ops->putcs Since ops->putcs is a NULL pointer, this leads to a kernel panic. To prevent this, we need to call set_blitting_type() within set_con2fb_map() to properly initialize ops->putcs.
5.5
Medium
CVE-2024-50047 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix UAF in async decryption Doing an async decryption (large read) crashes with a slab-use-after-free way down in the crypto API. Reproducer: # mount.cifs -o ...,seal,esize=1 //srv/share /mnt # dd if=/mnt/largefile of=/dev/null ... [ 194.196391] ================================================================== [ 194.196844] BUG: KASAN: slab-use-after-free in gf128mul_4k_lle+0xc1/0x110 [ 194.197269] Read of size 8 at addr ffff888112bd0448 by task kworker/u77:2/899 [ 194.197707] [ 194.197818] CPU: 12 UID: 0 PID: 899 Comm: kworker/u77:2 Not tainted 6.11.0-lku-00028-gfca3ca14a17a-dirty #43 [ 194.198400] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014 [ 194.199046] Workqueue: smb3decryptd smb2_decrypt_offload [cifs] [ 194.200032] Call Trace: [ 194.200191] [ 194.200327] dump_stack_lvl+0x4e/0x70 [ 194.200558] ? gf128mul_4k_lle+0xc1/0x110 [ 194.200809] print_report+0x174/0x505 [ 194.201040] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 194.201352] ? srso_return_thunk+0x5/0x5f [ 194.201604] ? __virt_addr_valid+0xdf/0x1c0 [ 194.201868] ? gf128mul_4k_lle+0xc1/0x110 [ 194.202128] kasan_report+0xc8/0x150 [ 194.202361] ? gf128mul_4k_lle+0xc1/0x110 [ 194.202616] gf128mul_4k_lle+0xc1/0x110 [ 194.202863] ghash_update+0x184/0x210 [ 194.203103] shash_ahash_update+0x184/0x2a0 [ 194.203377] ? __pfx_shash_ahash_update+0x10/0x10 [ 194.203651] ? srso_return_thunk+0x5/0x5f [ 194.203877] ? crypto_gcm_init_common+0x1ba/0x340 [ 194.204142] gcm_hash_assoc_remain_continue+0x10a/0x140 [ 194.204434] crypt_message+0xec1/0x10a0 [cifs] [ 194.206489] ? __pfx_crypt_message+0x10/0x10 [cifs] [ 194.208507] ? srso_return_thunk+0x5/0x5f [ 194.209205] ? srso_return_thunk+0x5/0x5f [ 194.209925] ? srso_return_thunk+0x5/0x5f [ 194.210443] ? srso_return_thunk+0x5/0x5f [ 194.211037] decrypt_raw_data+0x15f/0x250 [cifs] [ 194.212906] ? __pfx_decrypt_raw_data+0x10/0x10 [cifs] [ 194.214670] ? srso_return_thunk+0x5/0x5f [ 194.215193] smb2_decrypt_offload+0x12a/0x6c0 [cifs] This is because TFM is being used in parallel. Fix this by allocating a new AEAD TFM for async decryption, but keep the existing one for synchronous READ cases (similar to what is done in smb3_calc_signature()). Also remove the calls to aead_request_set_callback() and crypto_wait_req() since it's always going to be a synchronous operation.
7.8
High
CVE-2024-50036 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: do not delay dst_entries_add() in dst_release() dst_entries_add() uses per-cpu data that might be freed at netns dismantle from ip6_route_net_exit() calling dst_entries_destroy() Before ip6_route_net_exit() can be called, we release all the dsts associated with this netns, via calls to dst_release(), which waits an rcu grace period before calling dst_destroy() dst_entries_add() use in dst_destroy() is racy, because dst_entries_destroy() could have been called already. Decrementing the number of dsts must happen sooner. Notes: 1) in CONFIG_XFRM case, dst_destroy() can call dst_release_immediate(child), this might also cause UAF if the child does not have DST_NOCOUNT set. IPSEC maintainers might take a look and see how to address this. 2) There is also discussion about removing this count of dst, which might happen in future kernels.
7
High
CVE-2024-50028 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal: core: Reference count the zone in thermal_zone_get_by_id() There are places in the thermal netlink code where nothing prevents the thermal zone object from going away while being accessed after it has been returned by thermal_zone_get_by_id(). To address this, make thermal_zone_get_by_id() get a reference on the thermal zone device object to be returned with the help of get_device(), under thermal_list_lock, and adjust all of its callers to this change with the help of the cleanup.h infrastructure.
5.5
Medium
CVE-2024-50017 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/mm/ident_map: Use gbpages only where full GB page should be mapped. When ident_pud_init() uses only GB pages to create identity maps, large ranges of addresses not actually requested can be included in the resulting table; a 4K request will map a full GB. This can include a lot of extra address space past that requested, including areas marked reserved by the BIOS. That allows processor speculation into reserved regions, that on UV systems can cause system halts. Only use GB pages when map creation requests include the full GB page of space. Fall back to using smaller 2M pages when only portions of a GB page are included in the request. No attempt is made to coalesce mapping requests. If a request requires a map entry at the 2M (pmd) level, subsequent mapping requests within the same 1G region will also be at the pmd level, even if adjacent or overlapping such requests could have been combined to map a full GB page. Existing usage starts with larger regions and then adds smaller regions, so this should not have any great consequence.
5.5
Medium
CVE-2024-50016 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow assignment in link_dp_cts sampling_rate is an uint8_t but is assigned an unsigned int, and thus it can overflow. As a result, sampling_rate is changed to uint32_t. Similarly, LINK_QUAL_PATTERN_SET has a size of 2 bits, and it should only be assigned to a value less or equal than 4. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity.
5.5
Medium
CVE-2024-50014 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: fix access to uninitialised lock in fc replay path The following kernel trace can be triggered with fstest generic/629 when executed against a filesystem with fast-commit feature enabled: INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. CPU: 0 PID: 866 Comm: mount Not tainted 6.10.0+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack_lvl+0x66/0x90 register_lock_class+0x759/0x7d0 __lock_acquire+0x85/0x2630 ? __find_get_block+0xb4/0x380 lock_acquire+0xd1/0x2d0 ? __ext4_journal_get_write_access+0xd5/0x160 _raw_spin_lock+0x33/0x40 ? __ext4_journal_get_write_access+0xd5/0x160 __ext4_journal_get_write_access+0xd5/0x160 ext4_reserve_inode_write+0x61/0xb0 __ext4_mark_inode_dirty+0x79/0x270 ? ext4_ext_replay_set_iblocks+0x2f8/0x450 ext4_ext_replay_set_iblocks+0x330/0x450 ext4_fc_replay+0x14c8/0x1540 ? jread+0x88/0x2e0 ? rcu_is_watching+0x11/0x40 do_one_pass+0x447/0xd00 jbd2_journal_recover+0x139/0x1b0 jbd2_journal_load+0x96/0x390 ext4_load_and_init_journal+0x253/0xd40 ext4_fill_super+0x2cc6/0x3180 ... In the replay path there's an attempt to lock sbi->s_bdev_wb_lock in function ext4_check_bdev_write_error(). Unfortunately, at this point this spinlock has not been initialized yet. Moving it's initialization to an earlier point in __ext4_fill_super() fixes this splat.
5.5
Medium
CVE-2024-50012 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: Avoid a bad reference count on CPU node In the parse_perf_domain function, if the call to of_parse_phandle_with_args returns an error, then the reference to the CPU device node that was acquired at the start of the function would not be properly decremented. Address this by declaring the variable with the __free(device_node) cleanup attribute.
5.5
Medium
CVE-2024-50010 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: exec: don't WARN for racy path_noexec check Both i_mode and noexec checks wrapped in WARN_ON stem from an artifact of the previous implementation. They used to legitimately check for the condition, but that got moved up in two commits: 633fb6ac3980 ("exec: move S_ISREG() check earlier") 0fd338b2d2cd ("exec: move path_noexec() check earlier") Instead of being removed said checks are WARN_ON'ed instead, which has some debug value. However, the spurious path_noexec check is racy, resulting in unwarranted warnings should someone race with setting the noexec flag. One can note there is more to perm-checking whether execve is allowed and none of the conditions are guaranteed to still hold after they were tested for. Additionally this does not validate whether the code path did any perm checking to begin with -- it will pass if the inode happens to be regular. Keep the redundant path_noexec() check even though it's mindless nonsense checking for guarantee that isn't given so drop the WARN. Reword the commentary and do small tidy ups while here. [brauner: keep redundant path_noexec() check]
4.7
Medium
CVE-2024-50009 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
5.5
Medium
CVE-2024-50004 2024-10-21 18h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: update DML2 policy EnhancedPrefetchScheduleAccelerationFinal DCN35 [WHY & HOW] Mismatch in DCN35 DML2 cause bw validation failed to acquire unexpected DPP pipe to cause grey screen and system hang. Remove EnhancedPrefetchScheduleAccelerationFinal value override to match HW spec. (cherry picked from commit 9dad21f910fcea2bdcff4af46159101d7f9cd8ba)
5.5
Medium
CVE-2024-49996 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: cifs: Fix buffer overflow when parsing NFS reparse points ReparseDataLength is sum of the InodeType size and DataBuffer size. So to get DataBuffer size it is needed to subtract InodeType's size from ReparseDataLength. Function cifs_strndup_from_utf16() is currentlly accessing buf->DataBuffer at position after the end of the buffer because it does not subtract InodeType size from the length. Fix this problem and correctly subtract variable len. Member InodeType is present only when reparse buffer is large enough. Check for ReparseDataLength before accessing InodeType to prevent another invalid memory access. Major and minor rdev values are present also only when reparse buffer is large enough. Check for reparse buffer size before calling reparse_mkdev().
7.8
High
CVE-2024-49994 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: block: fix integer overflow in BLKSECDISCARD I independently rediscovered commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155 block: fix overflow in blk_ioctl_discard() but for secure erase. Same problem: uint64_t r[2] = {512, 18446744073709551104ULL}; ioctl(fd, BLKSECDISCARD, r); will enter near infinite loop inside blkdev_issue_secure_erase(): a.out: attempt to access beyond end of device loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048 bio_check_eod: 3286214 callbacks suppressed
5.5
Medium
CVE-2024-49992 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/stm: Avoid use-after-free issues with crtc and plane ltdc_load() calls functions drm_crtc_init_with_planes(), drm_universal_plane_init() and drm_encoder_init(). These functions should not be called with parameters allocated with devm_kzalloc() to avoid use-after-free issues [1]. Use allocations managed by the DRM framework. Found by Linux Verification Center (linuxtesting.org). [1] https://lore.kernel.org/lkml/u366i76e3qhh3ra5oxrtngjtm2u5lterkekcz6y2jkndhuxzli@diujon4h7qwb/
7.8
High
CVE-2024-49991 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: amdkfd_free_gtt_mem clear the correct pointer Pass pointer reference to amdgpu_bo_unref to clear the correct pointer, otherwise amdgpu_bo_unref clear the local variable, the original pointer not set to NULL, this could cause use-after-free bug.
7.8
High
CVE-2024-49990 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/hdcp: Check GSC structure validity Sometimes xe_gsc is not initialized when checked at HDCP capability check. Add gsc structure check to avoid null pointer error.
5.5
Medium
CVE-2024-49989 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix double free issue during amdgpu module unload Flexible endpoints use DIGs from available inflexible endpoints, so only the encoders of inflexible links need to be freed. Otherwise, a double free issue may occur when unloading the amdgpu module. [ 279.190523] RIP: 0010:__slab_free+0x152/0x2f0 [ 279.190577] Call Trace: [ 279.190580] [ 279.190582] ? show_regs+0x69/0x80 [ 279.190590] ? die+0x3b/0x90 [ 279.190595] ? do_trap+0xc8/0xe0 [ 279.190601] ? do_error_trap+0x73/0xa0 [ 279.190605] ? __slab_free+0x152/0x2f0 [ 279.190609] ? exc_invalid_op+0x56/0x70 [ 279.190616] ? __slab_free+0x152/0x2f0 [ 279.190642] ? asm_exc_invalid_op+0x1f/0x30 [ 279.190648] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191096] ? __slab_free+0x152/0x2f0 [ 279.191102] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191469] kfree+0x260/0x2b0 [ 279.191474] dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191821] link_destroy+0xd7/0x130 [amdgpu] [ 279.192248] dc_destruct+0x90/0x270 [amdgpu] [ 279.192666] dc_destroy+0x19/0x40 [amdgpu] [ 279.193020] amdgpu_dm_fini+0x16e/0x200 [amdgpu] [ 279.193432] dm_hw_fini+0x26/0x40 [amdgpu] [ 279.193795] amdgpu_device_fini_hw+0x24c/0x400 [amdgpu] [ 279.194108] amdgpu_driver_unload_kms+0x4f/0x70 [amdgpu] [ 279.194436] amdgpu_pci_remove+0x40/0x80 [amdgpu] [ 279.194632] pci_device_remove+0x3a/0xa0 [ 279.194638] device_remove+0x40/0x70 [ 279.194642] device_release_driver_internal+0x1ad/0x210 [ 279.194647] driver_detach+0x4e/0xa0 [ 279.194650] bus_remove_driver+0x6f/0xf0 [ 279.194653] driver_unregister+0x33/0x60 [ 279.194657] pci_unregister_driver+0x44/0x90 [ 279.194662] amdgpu_exit+0x19/0x1f0 [amdgpu] [ 279.194939] __do_sys_delete_module.isra.0+0x198/0x2f0 [ 279.194946] __x64_sys_delete_module+0x16/0x20 [ 279.194950] do_syscall_64+0x58/0x120 [ 279.194954] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 279.194980]
7.8
High
CVE-2024-49988 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: add refcnt to ksmbd_conn struct When sending an oplock break request, opinfo->conn is used, But freed ->conn can be used on multichannel. This patch add a reference count to the ksmbd_conn struct so that it can be freed when it is no longer used.
5.5
Medium
CVE-2024-49987 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpftool: Fix undefined behavior in qsort(NULL, 0, ...) When netfilter has no entry to display, qsort is called with qsort(NULL, 0, ...). This results in undefined behavior, as UBSan reports: net.c:827:2: runtime error: null pointer passed as argument 1, which is declared to never be null Although the C standard does not explicitly state whether calling qsort with a NULL pointer when the size is 0 constitutes undefined behavior, Section 7.1.4 of the C standard (Use of library functions) mentions: "Each of the following statements applies unless explicitly stated otherwise in the detailed descriptions that follow: If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer outside the address space of the program, or a null pointer, or a pointer to non-modifiable storage when the corresponding parameter is not const-qualified) or a type (after promotion) not expected by a function with variable number of arguments, the behavior is undefined." To avoid this, add an early return when nf_link_info is NULL to prevent calling qsort with a NULL pointer.
5.5
Medium
CVE-2024-49978 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: gso: fix udp gso fraglist segmentation after pull from frag_list Detect gso fraglist skbs with corrupted geometry (see below) and pass these to skb_segment instead of skb_segment_list, as the first can segment them correctly. Valid SKB_GSO_FRAGLIST skbs - consist of two or more segments - the head_skb holds the protocol headers plus first gso_size - one or more frag_list skbs hold exactly one segment - all but the last must be gso_size Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can modify these skbs, breaking these invariants. In extreme cases they pull all data into skb linear. For UDP, this causes a NULL ptr deref in __udpv4_gso_segment_list_csum at udp_hdr(seg->next)->dest. Detect invalid geometry due to pull, by checking head_skb size. Don't just drop, as this may blackhole a destination. Convert to be able to pass to regular skb_segment.
5.5
Medium
CVE-2024-49974 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSD: Limit the number of concurrent async COPY operations Nothing appears to limit the number of concurrent async COPY operations that clients can start. In addition, AFAICT each async COPY can copy an unlimited number of 4MB chunks, so can run for a long time. Thus IMO async COPY can become a DoS vector. Add a restriction mechanism that bounds the number of concurrent background COPY operations. Start simple and try to be fair -- this patch implements a per-namespace limit. An async COPY request that occurs while this limit is exceeded gets NFS4ERR_DELAY. The requesting client can choose to send the request again after a delay or fall back to a traditional read/write style copy. If there is need to make the mechanism more sophisticated, we can visit that in future patches.
5.5
Medium
CVE-2024-49972 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Deallocate DML memory if allocation fails [Why] When DC state create DML memory allocation fails, memory is not deallocated subsequently, resulting in uninitialized structure that is not NULL. [How] Deallocate memory if DML memory allocation fails.
5.5
Medium
CVE-2024-49971 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Increase array size of dummy_boolean [WHY] dml2_core_shared_mode_support and dml_core_mode_support access the third element of dummy_boolean, i.e. hw_debug5 = &s->dummy_boolean[2], when dummy_boolean has size of 2. Any assignment to hw_debug5 causes an OVERRUN. [HOW] Increase dummy_boolean's array size to 3. This fixes 2 OVERRUN issues reported by Coverity.
5.5
Medium
CVE-2024-49970 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Implement bounds check for stream encoder creation in DCN401 'stream_enc_regs' array is an array of dcn10_stream_enc_registers structures. The array is initialized with four elements, corresponding to the four calls to stream_enc_regs() in the array initializer. This means that valid indices for this array are 0, 1, 2, and 3. The error message 'stream_enc_regs' 4 <= 5 below, is indicating that there is an attempt to access this array with an index of 5, which is out of bounds. This could lead to undefined behavior Here, eng_id is used as an index to access the stream_enc_regs array. If eng_id is 5, this would result in an out-of-bounds access on the stream_enc_regs array. Thus fixing Buffer overflow error in dcn401_stream_encoder_create Found by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn401/dcn401_resource.c:1209 dcn401_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5
5.5
Medium
CVE-2024-49968 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: filesystems without casefold feature cannot be mounted with siphash When mounting the ext4 filesystem, if the default hash version is set to DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting.
5.5
Medium
CVE-2024-49960 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: fix timer use-after-free on failed mount Syzbot has found an ODEBUG bug in ext4_fill_super The del_timer_sync function cancels the s_err_report timer, which reminds about filesystem errors daily. We should guarantee the timer is no longer active before kfree(sbi). When filesystem mounting fails, the flow goes to failed_mount3, where an error occurs when ext4_stop_mmpd is called, causing a read I/O failure. This triggers the ext4_handle_error function that ultimately re-arms the timer, leaving the s_err_report timer active before kfree(sbi) is called. Fix the issue by canceling the s_err_report timer after calling ext4_stop_mmpd.
7.8
High
CVE-2024-49950 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix uaf in l2cap_connect [Syzbot reported] BUG: KASAN: slab-use-after-free in l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949 Read of size 8 at addr ffff8880241e9800 by task kworker/u9:0/54 CPU: 0 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-00268-g788220eee30d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Workqueue: hci2 hci_rx_work Call Trace: __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:119 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949 l2cap_connect_req net/bluetooth/l2cap_core.c:4080 [inline] l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:4772 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:5543 [inline] l2cap_recv_frame+0xf0b/0x8eb0 net/bluetooth/l2cap_core.c:6825 l2cap_recv_acldata+0x9b4/0xb70 net/bluetooth/l2cap_core.c:7514 hci_acldata_packet net/bluetooth/hci_core.c:3791 [inline] hci_rx_work+0xaab/0x1610 net/bluetooth/hci_core.c:4028 process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 ... Freed by task 5245: kasan_save_stack+0x33/0x60 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:579 poison_slab_object+0xf7/0x160 mm/kasan/common.c:240 __kasan_slab_free+0x32/0x50 mm/kasan/common.c:256 kasan_slab_free include/linux/kasan.h:184 [inline] slab_free_hook mm/slub.c:2256 [inline] slab_free mm/slub.c:4477 [inline] kfree+0x12a/0x3b0 mm/slub.c:4598 l2cap_conn_free net/bluetooth/l2cap_core.c:1810 [inline] kref_put include/linux/kref.h:65 [inline] l2cap_conn_put net/bluetooth/l2cap_core.c:1822 [inline] l2cap_conn_del+0x59d/0x730 net/bluetooth/l2cap_core.c:1802 l2cap_connect_cfm+0x9e6/0xf80 net/bluetooth/l2cap_core.c:7241 hci_connect_cfm include/net/bluetooth/hci_core.h:1960 [inline] hci_conn_failed+0x1c3/0x370 net/bluetooth/hci_conn.c:1265 hci_abort_conn_sync+0x75a/0xb50 net/bluetooth/hci_sync.c:5583 abort_conn_sync+0x197/0x360 net/bluetooth/hci_conn.c:2917 hci_cmd_sync_work+0x1a4/0x410 net/bluetooth/hci_sync.c:328 process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
7.8
High
CVE-2024-49945 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/ncsi: Disable the ncsi work before freeing the associated structure The work function can run after the ncsi device is freed, resulting in use-after-free bugs or kernel panic.
5.5
Medium
CVE-2024-49940 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: l2tp: prevent possible tunnel refcount underflow When a session is created, it sets a backpointer to its tunnel. When the session refcount drops to 0, l2tp_session_free drops the tunnel refcount if session->tunnel is non-NULL. However, session->tunnel is set in l2tp_session_create, before the tunnel refcount is incremented by l2tp_session_register, which leaves a small window where session->tunnel is non-NULL when the tunnel refcount hasn't been bumped. Moving the assignment to l2tp_session_register is trivial but l2tp_session_create calls l2tp_session_set_header_len which uses session->tunnel to get the tunnel's encap. Add an encap arg to l2tp_session_set_header_len to avoid using session->tunnel. If l2tpv3 sessions have colliding IDs, it is possible for l2tp_v3_session_get to race with l2tp_session_register and fetch a session which doesn't yet have session->tunnel set. Add a check for this case.
5.5
Medium
CVE-2024-49939 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: avoid to add interface to list twice when SER If SER L2 occurs during the WoWLAN resume flow, the add interface flow is triggered by ieee80211_reconfig(). However, due to rtw89_wow_resume() return failure, it will cause the add interface flow to be executed again, resulting in a double add list and causing a kernel panic. Therefore, we have added a check to prevent double adding of the list. list_add double add: new=ffff99d6992e2010, prev=ffff99d6992e2010, next=ffff99d695302628. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:37! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W O 6.6.30-02659-gc18865c4dfbd #1 770df2933251a0e3c888ba69d1053a817a6376a7 Hardware name: HP Grunt/Grunt, BIOS Google_Grunt.11031.169.0 06/24/2021 Workqueue: events_freezable ieee80211_restart_work [mac80211] RIP: 0010:__list_add_valid_or_report+0x5e/0xb0 Code: c7 74 18 48 39 ce 74 13 b0 01 59 5a 5e 5f 41 58 41 59 41 5a 5d e9 e2 d6 03 00 cc 48 c7 c7 8d 4f 17 83 48 89 c2 e8 02 c0 00 00 <0f> 0b 48 c7 c7 aa 8c 1c 83 e8 f4 bf 00 00 0f 0b 48 c7 c7 c8 bc 12 RSP: 0018:ffffa91b8007bc50 EFLAGS: 00010246 RAX: 0000000000000058 RBX: ffff99d6992e0900 RCX: a014d76c70ef3900 RDX: ffffa91b8007bae8 RSI: 00000000ffffdfff RDI: 0000000000000001 RBP: ffffa91b8007bc88 R08: 0000000000000000 R09: ffffa91b8007bae0 R10: 00000000ffffdfff R11: ffffffff83a79800 R12: ffff99d695302060 R13: ffff99d695300900 R14: ffff99d6992e1be0 R15: ffff99d6992e2010 FS: 0000000000000000(0000) GS:ffff99d6aac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000078fbdba43480 CR3: 000000010e464000 CR4: 00000000001506f0 Call Trace: ? __die_body+0x1f/0x70 ? die+0x3d/0x60 ? do_trap+0xa4/0x110 ? __list_add_valid_or_report+0x5e/0xb0 ? do_error_trap+0x6d/0x90 ? __list_add_valid_or_report+0x5e/0xb0 ? handle_invalid_op+0x30/0x40 ? __list_add_valid_or_report+0x5e/0xb0 ? exc_invalid_op+0x3c/0x50 ? asm_exc_invalid_op+0x16/0x20 ? __list_add_valid_or_report+0x5e/0xb0 rtw89_ops_add_interface+0x309/0x310 [rtw89_core 7c32b1ee6854761c0321027c8a58c5160e41f48f] drv_add_interface+0x5c/0x130 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ieee80211_reconfig+0x241/0x13d0 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] ? finish_wait+0x3e/0x90 ? synchronize_rcu_expedited+0x174/0x260 ? sync_rcu_exp_done_unlocked+0x50/0x50 ? wake_bit_function+0x40/0x40 ieee80211_restart_work+0xf0/0x140 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc] process_scheduled_works+0x1e5/0x480 worker_thread+0xea/0x1e0 kthread+0xdb/0x110 ? move_linked_works+0x90/0x90 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork+0x3b/0x50 ? kthread_associate_blkcg+0xa0/0xa0 ret_from_fork_asm+0x11/0x20 Modules linked in: dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc rfcomm cmac uinput algif_hash algif_skcipher af_alg btusb btrtl iio_trig_hrtimer industrialio_sw_trigger btmtk industrialio_configfs btbcm btintel uvcvideo videobuf2_vmalloc iio_trig_sysfs videobuf2_memops videobuf2_v4l2 videobuf2_common uvc snd_hda_codec_hdmi veth snd_hda_intel snd_intel_dspcfg acpi_als snd_hda_codec industrialio_triggered_buffer kfifo_buf snd_hwdep industrialio i2c_piix4 snd_hda_core designware_i2s ip6table_nat snd_soc_max98357a xt_MASQUERADE xt_cgroup snd_soc_acp_rt5682_mach fuse rtw89_8922ae(O) rtw89_8922a(O) rtw89_pci(O) rtw89_core(O) 8021q mac80211(O) bluetooth ecdh_generic ecc cfg80211 r8152 mii joydev gsmi: Log Shutdown Reason 0x03 ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-49937 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Set correct chandef when starting CAC When starting CAC in a mode other than AP mode, it return a "WARNING: CPU: 0 PID: 63 at cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211]" caused by the chandef.chan being null at the end of CAC. Solution: Ensure the channel definition is set for the different modes when starting CAC to avoid getting a NULL 'chan' at the end of CAC. Call Trace: ? show_regs.part.0+0x14/0x16 ? __warn+0x67/0xc0 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? report_bug+0xa7/0x130 ? exc_overflow+0x30/0x30 ? handle_bug+0x27/0x50 ? exc_invalid_op+0x18/0x60 ? handle_exception+0xf6/0xf6 ? exc_overflow+0x30/0x30 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? exc_overflow+0x30/0x30 ? cfg80211_chandef_dfs_usable+0x20/0xaf [cfg80211] ? regulatory_propagate_dfs_state.cold+0x1b/0x4c [cfg80211] ? cfg80211_propagate_cac_done_wk+0x1a/0x30 [cfg80211] ? process_one_work+0x165/0x280 ? worker_thread+0x120/0x3f0 ? kthread+0xc2/0xf0 ? process_one_work+0x280/0x280 ? kthread_complete_and_exit+0x20/0x20 ? ret_from_fork+0x19/0x24 [shorten subject, remove OCB, reorder cases to match previous list]
5.5
Medium
CVE-2024-49934 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/inode: Prevent dump_mapping() accessing invalid dentry.d_name.name It's observed that a crash occurs during hot-remove a memory device, in which user is accessing the hugetlb. See calltrace as following: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 14045 at arch/x86/mm/fault.c:1278 do_user_addr_fault+0x2a0/0x790 Modules linked in: kmem device_dax cxl_mem cxl_pmem cxl_port cxl_pci dax_hmem dax_pmem nd_pmem cxl_acpi nd_btt cxl_core crc32c_intel nvme virtiofs fuse nvme_core nfit libnvdimm dm_multipath scsi_dh_rdac scsi_dh_emc s mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 14045 Comm: daxctl Not tainted 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:do_user_addr_fault+0x2a0/0x790 Code: 48 8b 00 a8 04 0f 84 b5 fe ff ff e9 1c ff ff ff 4c 89 e9 4c 89 e2 be 01 00 00 00 bf 02 00 00 00 e8 b5 ef 24 00 e9 42 fe ff ff <0f> 0b 48 83 c4 08 4c 89 ea 48 89 ee 4c 89 e7 5b 5d 41 5c 41 5d 41 RSP: 0000:ffffc90000a575f0 EFLAGS: 00010046 RAX: ffff88800c303600 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000001000 RSI: ffffffff82504162 RDI: ffffffff824b2c36 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffc90000a57658 R13: 0000000000001000 R14: ffff88800bc2e040 R15: 0000000000000000 FS: 00007f51cb57d880(0000) GS:ffff88807fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001000 CR3: 00000000072e2004 CR4: 00000000001706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn+0x8d/0x190 ? do_user_addr_fault+0x2a0/0x790 ? report_bug+0x1c3/0x1d0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? do_user_addr_fault+0x2a0/0x790 ? exc_page_fault+0x31/0x200 exc_page_fault+0x68/0x200 <...snip...> BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI ---[ end trace 0000000000000000 ]--- BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 14045 Comm: daxctl Kdump: loaded Tainted: G W 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:dentry_name+0x1f4/0x440 <...snip...> ? dentry_name+0x2fa/0x440 vsnprintf+0x1f3/0x4f0 vprintk_store+0x23a/0x540 vprintk_emit+0x6d/0x330 _printk+0x58/0x80 dump_mapping+0x10b/0x1a0 ? __pfx_free_object_rcu+0x10/0x10 __dump_page+0x26b/0x3e0 ? vprintk_emit+0xe0/0x330 ? _printk+0x58/0x80 ? dump_page+0x17/0x50 dump_page+0x17/0x50 do_migrate_range+0x2f7/0x7f0 ? do_migrate_range+0x42/0x7f0 ? offline_pages+0x2f4/0x8c0 offline_pages+0x60a/0x8c0 memory_subsys_offline+0x9f/0x1c0 ? lockdep_hardirqs_on+0x77/0x100 ? _raw_spin_unlock_irqrestore+0x38/0x60 device_offline+0xe3/0x110 state_store+0x6e/0xc0 kernfs_fop_write_iter+0x143/0x200 vfs_write+0x39f/0x560 ksys_write+0x65/0xf0 do_syscall_64+0x62/0x130 Previously, some sanity check have been done in dump_mapping() before the print facility parsing '%pd' though, it's still possible to run into an invalid dentry.d_name.name. Since dump_mapping() only needs to dump the filename only, retrieve it by itself in a safer way to prevent an unnecessary crash. Note that either retrieving the filename with '%pd' or strncpy_from_kernel_nofault(), the filename could be unreliable.
4.6
Medium
CVE-2024-49932 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel p ---truncated---
5.5
Medium
CVE-2024-49931 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix array out-of-bound access in SoC stats Currently, the ath12k_soc_dp_stats::hal_reo_error array is defined with a maximum size of DP_REO_DST_RING_MAX. However, the ath12k_dp_rx_process() function access ath12k_soc_dp_stats::hal_reo_error using the REO destination SRNG ring ID, which is incorrect. SRNG ring ID differ from normal ring ID, and this usage leads to out-of-bounds array access. To fix this issue, modify ath12k_dp_rx_process() to use the normal ring ID directly instead of the SRNG ring ID to avoid out-of-bounds array access. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
7.8
High
CVE-2024-49929 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: avoid NULL pointer dereference iwl_mvm_tx_skb_sta() and iwl_mvm_tx_mpdu() verify that the mvmvsta pointer is not NULL. It retrieves this pointer using iwl_mvm_sta_from_mac80211, which is dereferencing the ieee80211_sta pointer. If sta is NULL, iwl_mvm_sta_from_mac80211 will dereference a NULL pointer. Fix this by checking the sta pointer before retrieving the mvmsta from it. If sta is not NULL, then mvmsta isn't either.
5.5
Medium
CVE-2024-49928 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: avoid reading out of bounds when loading TX power FW elements Because the loop-expression will do one more time before getting false from cond-expression, the original code copied one more entry size beyond valid region. Fix it by moving the entry copy to loop-body.
7.1
High
CVE-2024-49926 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb() For kernels built with CONFIG_FORCE_NR_CPUS=y, the nr_cpu_ids is defined as NR_CPUS instead of the number of possible cpus, this will cause the following system panic: smpboot: Allowing 4 CPUs, 0 hotplug CPUs ... setup_percpu: NR_CPUS:512 nr_cpumask_bits:512 nr_cpu_ids:512 nr_node_ids:1 ... BUG: unable to handle page fault for address: ffffffff9911c8c8 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 15 Comm: rcu_tasks_trace Tainted: G W 6.6.21 #1 5dc7acf91a5e8e9ac9dcfc35bee0245691283ea6 RIP: 0010:rcu_tasks_need_gpcb+0x25d/0x2c0 RSP: 0018:ffffa371c00a3e60 EFLAGS: 00010082 CR2: ffffffff9911c8c8 CR3: 000000040fa20005 CR4: 00000000001706f0 Call Trace: ? __die+0x23/0x80 ? page_fault_oops+0xa4/0x180 ? exc_page_fault+0x152/0x180 ? asm_exc_page_fault+0x26/0x40 ? rcu_tasks_need_gpcb+0x25d/0x2c0 ? __pfx_rcu_tasks_kthread+0x40/0x40 rcu_tasks_one_gp+0x69/0x180 rcu_tasks_kthread+0x94/0xc0 kthread+0xe8/0x140 ? __pfx_kthread+0x40/0x40 ret_from_fork+0x34/0x80 ? __pfx_kthread+0x40/0x40 ret_from_fork_asm+0x1b/0x80 Considering that there may be holes in the CPU numbers, use the maximum possible cpu number, instead of nr_cpu_ids, for configuring enqueue and dequeue limits. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ]
5.5
Medium
CVE-2024-49925 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: fbdev: efifb: Register sysfs groups through driver core The driver core can register and cleanup sysfs groups already. Make use of that functionality to simplify the error handling and cleanup. Also avoid a UAF race during unregistering where the sysctl attributes were usable after the info struct was freed.
5.5
Medium
CVE-2024-49923 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Pass non-null to dcn20_validate_apply_pipe_split_flags [WHAT & HOW] "dcn20_validate_apply_pipe_split_flags" dereferences merge, and thus it cannot be a null pointer. Let's pass a valid pointer to avoid null dereference. This fixes 2 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49922 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before using them [WHAT & HOW] These pointers are null checked previously in the same function, indicating they might be null as reported by Coverity. As a result, they need to be checked when used again. This fixes 3 FORWARD_NULL issue reported by Coverity.
5.5
Medium
CVE-2024-49921 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before used [WHAT & HOW] Poniters, such as dc->clk_mgr, are null checked previously in the same function, so Coverity warns "implies that "dc->clk_mgr" might be null". As a result, these pointers need to be checked when used again. This fixes 10 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49920 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before multiple uses [WHAT & HOW] Poniters, such as stream_enc and dc->bw_vbios, are null checked previously in the same function, so Coverity warns "implies that stream_enc and dc->bw_vbios might be null". They are used multiple times in the subsequent code and need to be checked. This fixes 10 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49919 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn201_acquire_free_pipe_for_layer This commit addresses a potential null pointer dereference issue in the `dcn201_acquire_free_pipe_for_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn201/dcn201_resource.c:1016 dcn201_acquire_free_pipe_for_layer() error: we previously assumed 'head_pipe' could be null (see line 1010)
5.5
Medium
CVE-2024-49918 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn32_acquire_idle_pipe_for_head_pipe_in_layer This commit addresses a potential null pointer dereference issue in the `dcn32_acquire_idle_pipe_for_head_pipe_in_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn32/dcn32_resource.c:2690 dcn32_acquire_idle_pipe_for_head_pipe_in_layer() error: we previously assumed 'head_pipe' could be null (see line 2681)
5.5
Medium
CVE-2024-49917 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn30_init_hw This commit addresses a potential null pointer dereference issue in the `dcn30_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:789 dcn30_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 628)
5.5
Medium
CVE-2024-49916 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn401_init_hw This commit addresses a potential null pointer dereference issue in the `dcn401_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn401/dcn401_hwseq.c:416 dcn401_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 225)
5.5
Medium
CVE-2024-49915 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr in dcn32_init_hw This commit addresses a potential null pointer dereference issue in the `dcn32_init_hw` function. The issue could occur when `dc->clk_mgr` is null. The fix adds a check to ensure `dc->clk_mgr` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn32/dcn32_hwseq.c:961 dcn32_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 782)
5.5
Medium
CVE-2024-49914 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for pipe_ctx->plane_state in dcn20_program_pipe This commit addresses a null pointer dereference issue in the `dcn20_program_pipe` function. The issue could occur when `pipe_ctx->plane_state` is null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null before accessing. This prevents a null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn20/dcn20_hwseq.c:1925 dcn20_program_pipe() error: we previously assumed 'pipe_ctx->plane_state' could be null (see line 1877)
5.5
Medium
CVE-2024-49912 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Handle null 'stream_status' in 'planes_changed_for_existing_stream' This commit adds a null check for 'stream_status' in the function 'planes_changed_for_existing_stream'. Previously, the code assumed 'stream_status' could be null, but did not handle the case where it was actually null. This could lead to a null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/core/dc_resource.c:3784 planes_changed_for_existing_stream() error: we previously assumed 'stream_status' could be null (see line 3774)
5.5
Medium
CVE-2024-49911 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn20_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn20_set_output_transfer_func function. Previously, set_output_gamma was being checked for null at line 1030, but then it was being dereferenced without any null check at line 1048. This could potentially lead to a null pointer dereference error if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma at line 1048.
5.5
Medium
CVE-2024-49910 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn401_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn401_set_output_transfer_func function. Previously, set_output_gamma was being checked for null, but then it was being dereferenced without any null check. This could lead to a null pointer dereference if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma.
5.5
Medium
CVE-2024-49909 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn32_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn32_set_output_transfer_func function. Previously, set_output_gamma was being checked for null, but then it was being dereferenced without any null check. This could lead to a null pointer dereference if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma.
5.5
Medium
CVE-2024-49908 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for 'afb' in amdgpu_dm_update_cursor (v2) This commit adds a null check for the 'afb' variable in the amdgpu_dm_update_cursor function. Previously, 'afb' was assumed to be null at line 8388, but was used later in the code without a null check. This could potentially lead to a null pointer dereference. Changes since v1: - Moved the null check for 'afb' to the line where 'afb' is used. (Alex) Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm.c:8433 amdgpu_dm_update_cursor() error: we previously assumed 'afb' could be null (see line 8388)
5.5
Medium
CVE-2024-49906 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before try to access it [why & how] Change the order of the pipe_ctx->plane_state check to ensure that plane_state is not null before accessing it.
5.5
Medium
CVE-2024-49905 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for 'afb' in amdgpu_dm_plane_handle_cursor_update (v2) This commit adds a null check for the 'afb' variable in the amdgpu_dm_plane_handle_cursor_update function. Previously, 'afb' was assumed to be null, but was used later in the code without a null check. This could potentially lead to a null pointer dereference. Changes since v1: - Moved the null check for 'afb' to the line where 'afb' is used. (Alex) Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_plane.c:1298 amdgpu_dm_plane_handle_cursor_update() error: we previously assumed 'afb' could be null (see line 1252)
5.5
Medium
CVE-2024-49904 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add list empty check to avoid null pointer issue Add list empty check to avoid null pointer issues in some corner cases. - list_for_each_entry_safe()
5.5
Medium
CVE-2024-49901 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/adreno: Assign msm_gpu->pdev earlier to avoid nullptrs There are some cases, such as the one uncovered by Commit 46d4efcccc68 ("drm/msm/a6xx: Avoid a nullptr dereference when speedbin setting fails") where msm_gpu_cleanup() : platform_set_drvdata(gpu->pdev, NULL); is called on gpu->pdev == NULL, as the GPU device has not been fully initialized yet. Turns out that there's more than just the aforementioned path that causes this to happen (e.g. the case when there's speedbin data in the catalog, but opp-supported-hw is missing in DT). Assigning msm_gpu->pdev earlier seems like the least painful solution to this, therefore do so. Patchwork: https://patchwork.freedesktop.org/patch/602742/
5.5
Medium
CVE-2024-49899 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize denominators' default to 1 [WHAT & HOW] Variables used as denominators and maybe not assigned to other values, should not be 0. Change their default to 1 so they are never 0. This fixes 10 DIVIDE_BY_ZERO issues reported by Coverity.
5.5
Medium
CVE-2024-49898 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null-initialized variables [WHAT & HOW] drr_timing and subvp_pipe are initialized to null and they are not always assigned new values. It is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49897 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check phantom_stream before it is used dcn32_enable_phantom_stream can return null, so returned value must be checked before used. This fixes 1 NULL_RETURNS issue reported by Coverity.
5.5
Medium
CVE-2024-49893 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check stream_status before it is used [WHAT & HOW] dc_state_get_stream_status can return null, and therefore null must be checked before stream_status is used. This fixes 1 NULL_RETURNS issue reported by Coverity.
5.5
Medium
CVE-2024-49891 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Validate hdwq pointers before dereferencing in reset/errata paths When the HBA is undergoing a reset or is handling an errata event, NULL ptr dereference crashes may occur in routines such as lpfc_sli_flush_io_rings(), lpfc_dev_loss_tmo_callbk(), or lpfc_abort_handler(). Add NULL ptr checks before dereferencing hdwq pointers that may have been freed due to operations colliding with a reset or errata event handler.
5.5
Medium
CVE-2024-49888 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a sdiv overflow issue Zac Ecob reported a problem where a bpf program may cause kernel crash due to the following error: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI The failure is due to the below signed divide: LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808. LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808, but it is impossible since for 64-bit system, the maximum positive number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is LLONG_MIN. Further investigation found all the following sdiv/smod cases may trigger an exception when bpf program is running on x86_64 platform: - LLONG_MIN/-1 for 64bit operation - INT_MIN/-1 for 32bit operation - LLONG_MIN%-1 for 64bit operation - INT_MIN%-1 for 32bit operation where -1 can be an immediate or in a register. On arm64, there are no exceptions: - LLONG_MIN/-1 = LLONG_MIN - INT_MIN/-1 = INT_MIN - LLONG_MIN%-1 = 0 - INT_MIN%-1 = 0 where -1 can be an immediate or in a register. Insn patching is needed to handle the above cases and the patched codes produced results aligned with above arm64 result. The below are pseudo codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0 and the divisor is stored in a register. sdiv: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L2 if tmp == 0 goto L1 rY = 0 L1: rY = -rY; goto L3 L2: rY /= rX L3: smod: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L1 if tmp == 1 (is64 ? goto L2 : goto L3) rY = 0; goto L2 L1: rY %= rX L2: goto L4 // only when !is64 L3: wY = wY // only when !is64 L4: [1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/
5.5
Medium
CVE-2024-49861 2024-10-21 12h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix helper writes to read-only maps Lonial found an issue that despite user- and BPF-side frozen BPF map (like in case of .rodata), it was still possible to write into it from a BPF program side through specific helpers having ARG_PTR_TO_{LONG,INT} as arguments. In check_func_arg() when the argument is as mentioned, the meta->raw_mode is never set. Later, check_helper_mem_access(), under the case of PTR_TO_MAP_VALUE as register base type, it assumes BPF_READ for the subsequent call to check_map_access_type() and given the BPF map is read-only it succeeds. The helpers really need to be annotated as ARG_PTR_TO_{LONG,INT} | MEM_UNINIT when results are written into them as opposed to read out of them. The latter indicates that it's okay to pass a pointer to uninitialized memory as the memory is written to anyway. However, ARG_PTR_TO_{LONG,INT} is a special case of ARG_PTR_TO_FIXED_SIZE_MEM just with additional alignment requirement. So it is better to just get rid of the ARG_PTR_TO_{LONG,INT} special cases altogether and reuse the fixed size memory types. For this, add MEM_ALIGNED to additionally ensure alignment given these helpers write directly into the args via * = val. The .arg*_size has been initialized reflecting the actual sizeof(*). MEM_ALIGNED can only be used in combination with MEM_FIXED_SIZE annotated argument types, since in !MEM_FIXED_SIZE cases the verifier does not know the buffer size a priori and therefore cannot blindly write * = val.
7.1
High
CVE-2024-49859 2024-10-21 12h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to check atomic_file in f2fs ioctl interfaces Some f2fs ioctl interfaces like f2fs_ioc_set_pin_file(), f2fs_move_file_range(), and f2fs_defragment_range() missed to check atomic_write status, which may cause potential race issue, fix it.
4.7
Medium
CVE-2024-47745 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: call the security_mmap_file() LSM hook in remap_file_pages() The remap_file_pages syscall handler calls do_mmap() directly, which doesn't contain the LSM security check. And if the process has called personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for RW pages, this will actually result in remapping the pages to RWX, bypassing a W^X policy enforced by SELinux. So we should check prot by security_mmap_file LSM hook in the remap_file_pages syscall handler before do_mmap() is called. Otherwise, it potentially permits an attacker to bypass a W^X policy enforced by SELinux. The bypass is similar to CVE-2016-10044, which bypass the same thing via AIO and can be found in [1]. The PoC: $ cat > test.c int main(void) { size_t pagesz = sysconf(_SC_PAGE_SIZE); int mfd = syscall(SYS_memfd_create, "test", 0); const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0); unsigned int old = syscall(SYS_personality, 0xffffffff); syscall(SYS_personality, READ_IMPLIES_EXEC | old); syscall(SYS_remap_file_pages, buf, pagesz, 0, 2, 0); syscall(SYS_personality, old); // show the RWX page exists even if W^X policy is enforced int fd = open("/proc/self/maps", O_RDONLY); unsigned char buf2[1024]; while (1) { int ret = read(fd, buf2, 1024); if (ret <= 0) break; write(1, buf2, ret); } close(fd); } $ gcc test.c -o test $ ./test | grep rwx 7f1836c34000-7f1836c35000 rwxs 00002000 00:01 2050 /memfd:test (deleted) [PM: subject line tweaks]
7.8
High
CVE-2024-47738 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: don't use rate mask for offchannel TX either Like the commit ab9177d83c04 ("wifi: mac80211: don't use rate mask for scanning"), ignore incorrect settings to avoid no supported rate warning reported by syzbot. The syzbot did bisect and found cause is commit 9df66d5b9f45 ("cfg80211: fix default HE tx bitrate mask in 2G band"), which however corrects bitmask of HE MCS and recognizes correctly settings of empty legacy rate plus HE MCS rate instead of returning -EINVAL. As suggestions [1], follow the change of SCAN TX to consider this case of offchannel TX as well. [1] https://lore.kernel.org/linux-wireless/[email protected]/T/#m2ac2a6d2be06a37c9c47a3d8a44b4f647ed4f024
3.3
Low
CVE-2024-47736 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: erofs: handle overlapped pclusters out of crafted images properly syzbot reported a task hang issue due to a deadlock case where it is waiting for the folio lock of a cached folio that will be used for cache I/Os. After looking into the crafted fuzzed image, I found it's formed with several overlapped big pclusters as below: Ext: logical offset | length : physical offset | length 0: 0.. 16384 | 16384 : 151552.. 167936 | 16384 1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384 2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384 ... Here, extent 0/1 are physically overlapped although it's entirely _impossible_ for normal filesystem images generated by mkfs. First, managed folios containing compressed data will be marked as up-to-date and then unlocked immediately (unlike in-place folios) when compressed I/Os are complete. If physical blocks are not submitted in the incremental order, there should be separate BIOs to avoid dependency issues. However, the current code mis-arranges z_erofs_fill_bio_vec() and BIO submission which causes unexpected BIO waits. Second, managed folios will be connected to their own pclusters for efficient inter-queries. However, this is somewhat hard to implement easily if overlapped big pclusters exist. Again, these only appear in fuzzed images so let's simply fall back to temporary short-lived pages for correctness. Additionally, it justifies that referenced managed folios cannot be truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy up `struct z_erofs_bvec`") for simplicity although it shouldn't be any difference.
5.5
Medium
CVE-2024-47730 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/qm - inject error before stopping queue The master ooo cannot be completely closed when the accelerator core reports memory error. Therefore, the driver needs to inject the qm error to close the master ooo. Currently, the qm error is injected after stopping queue, memory may be released immediately after stopping queue, causing the device to access the released memory. Therefore, error is injected to close master ooo before stopping queue to ensure that the device does not access the released memory.
7.8
High
CVE-2024-47728 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error For all non-tracing helpers which formerly had ARG_PTR_TO_{LONG,INT} as input arguments, zero the value for the case of an error as otherwise it could leak memory. For tracing, it is not needed given CAP_PERFMON can already read all kernel memory anyway hence bpf_get_func_arg() and bpf_get_func_ret() is skipped in here. Also, the MTU helpers mtu_len pointer value is being written but also read. Technically, the MEM_UNINIT should not be there in order to always force init. Removing MEM_UNINIT needs more verifier rework though: MEM_UNINIT right now implies two things actually: i) write into memory, ii) memory does not have to be initialized. If we lift MEM_UNINIT, it then becomes: i) read into memory, ii) memory must be initialized. This means that for bpf_*_check_mtu() we're readding the issue we're trying to fix, that is, it would then be able to write back into things like .rodata BPF maps. Follow-up work will rework the MEM_UNINIT semantics such that the intent can be better expressed. For now just clear the *mtu_len on error path which can be lifted later again.
5.5
Medium
CVE-2024-47726 2024-10-21 12h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode.
6.5
Medium
CVE-2024-47707 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: avoid possible NULL deref in rt6_uncached_list_flush_dev() Blamed commit accidentally removed a check for rt->rt6i_idev being NULL, as spotted by syzbot: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 10998 Comm: syz-executor Not tainted 6.11.0-rc6-syzkaller-00208-g625403177711 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 RIP: 0010:rt6_uncached_list_flush_dev net/ipv6/route.c:177 [inline] RIP: 0010:rt6_disable_ip+0x33e/0x7e0 net/ipv6/route.c:4914 Code: 41 80 3c 04 00 74 0a e8 90 d0 9b f7 48 8b 7c 24 08 48 8b 07 48 89 44 24 10 4c 89 f0 48 c1 e8 03 48 b9 00 00 00 00 00 fc ff df <80> 3c 08 00 74 08 4c 89 f7 e8 64 d0 9b f7 48 8b 44 24 18 49 39 06 RSP: 0018:ffffc900047374e0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 1ffff1100fdf8f33 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffff88807efc78c0 RBP: ffffc900047375d0 R08: 0000000000000003 R09: fffff520008e6e8c R10: dffffc0000000000 R11: fffff520008e6e8c R12: 1ffff1100fdf8f18 R13: ffff88807efc7998 R14: 0000000000000000 R15: ffff88807efc7930 FS: 0000000000000000(0000) GS:ffff8880b8900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020002a80 CR3: 0000000022f62000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: addrconf_ifdown+0x15d/0x1bd0 net/ipv6/addrconf.c:3856 addrconf_notify+0x3cb/0x1020 notifier_call_chain+0x19f/0x3e0 kernel/notifier.c:93 call_netdevice_notifiers_extack net/core/dev.c:2032 [inline] call_netdevice_notifiers net/core/dev.c:2046 [inline] unregister_netdevice_many_notify+0xd81/0x1c40 net/core/dev.c:11352 unregister_netdevice_many net/core/dev.c:11414 [inline] unregister_netdevice_queue+0x303/0x370 net/core/dev.c:11289 unregister_netdevice include/linux/netdevice.h:3129 [inline] __tun_detach+0x6b9/0x1600 drivers/net/tun.c:685 tun_detach drivers/net/tun.c:701 [inline] tun_chr_close+0x108/0x1b0 drivers/net/tun.c:3510 __fput+0x24a/0x8a0 fs/file_table.c:422 task_work_run+0x24f/0x310 kernel/task_work.c:228 exit_task_work include/linux/task_work.h:40 [inline] do_exit+0xa2f/0x27f0 kernel/exit.c:882 do_group_exit+0x207/0x2c0 kernel/exit.c:1031 __do_sys_exit_group kernel/exit.c:1042 [inline] __se_sys_exit_group kernel/exit.c:1040 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1040 x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f1acc77def9 Code: Unable to access opcode bytes at 0x7f1acc77decf. RSP: 002b:00007ffeb26fa738 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1acc77def9 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000043 RBP: 00007f1acc7dd508 R08: 00007ffeb26f84d7 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 0000000000000003 R14: 00000000ffffffff R15: 00007ffeb26fa8e0 Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:rt6_uncached_list_flush_dev net/ipv6/route.c:177 [inline] RIP: 0010:rt6_disable_ip+0x33e/0x7e0 net/ipv6/route.c:4914 Code: 41 80 3c 04 00 74 0a e8 90 d0 9b f7 48 8b 7c 24 08 48 8b 07 48 89 44 24 10 4c 89 f0 48 c1 e8 03 48 b9 00 00 00 00 00 fc ff df <80> 3c 08 00 74 08 4c 89 f7 e8 64 d0 9b f7 48 8b 44 24 18 49 39 06 RSP: 0018:ffffc900047374e0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 1ffff1100fdf8f33 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffff88807efc78c0 R ---truncated---
5.5
Medium
CVE-2024-47704 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_res->hpo_dp_link_enc before using it [WHAT & HOW] Functions dp_enable_link_phy and dp_disable_link_phy can pass link_res without initializing hpo_dp_link_enc and it is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-47703 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned.
5.5
Medium
CVE-2024-47691 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread() syzbot reports a f2fs bug as below: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_report+0xe8/0x550 mm/kasan/report.c:491 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_fetch_add_relaxed include/linux/atomic/atomic-instrumented.h:252 [inline] __refcount_add include/linux/refcount.h:184 [inline] __refcount_inc include/linux/refcount.h:241 [inline] refcount_inc include/linux/refcount.h:258 [inline] get_task_struct include/linux/sched/task.h:118 [inline] kthread_stop+0xca/0x630 kernel/kthread.c:704 f2fs_stop_gc_thread+0x65/0xb0 fs/f2fs/gc.c:210 f2fs_do_shutdown+0x192/0x540 fs/f2fs/file.c:2283 f2fs_ioc_shutdown fs/f2fs/file.c:2325 [inline] __f2fs_ioctl+0x443a/0xbe60 fs/f2fs/file.c:4325 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The root cause is below race condition, it may cause use-after-free issue in sbi->gc_th pointer. - remount - f2fs_remount - f2fs_stop_gc_thread - kfree(gc_th) - f2fs_ioc_shutdown - f2fs_do_shutdown - f2fs_stop_gc_thread - kthread_stop(gc_th->f2fs_gc_task) : sbi->gc_thread = NULL; We will call f2fs_do_shutdown() in two paths: - for f2fs_ioc_shutdown() path, we should grab sb->s_umount semaphore for fixing. - for f2fs_shutdown() path, it's safe since caller has already grabbed sb->s_umount semaphore.
7.8
High
CVE-2024-47683 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not.
5.5
Medium
CVE-2024-47678 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: icmp: change the order of rate limits ICMP messages are ratelimited : After the blamed commits, the two rate limiters are applied in this order: 1) host wide ratelimit (icmp_global_allow()) 2) Per destination ratelimit (inetpeer based) In order to avoid side-channels attacks, we need to apply the per destination check first. This patch makes the following change : 1) icmp_global_allow() checks if the host wide limit is reached. But credits are not yet consumed. This is deferred to 3) 2) The per destination limit is checked/updated. This might add a new node in inetpeer tree. 3) icmp_global_consume() consumes tokens if prior operations succeeded. This means that host wide ratelimit is still effective in keeping inetpeer tree small even under DDOS. As a bonus, I removed icmp_global.lock as the fast path can use a lock-free operation.
5.5
Medium
CVE-2024-47673 2024-10-09 14h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: pause TCM when the firmware is stopped Not doing so will make us send a host command to the transport while the firmware is not alive, which will trigger a WARNING. bad state = 0 WARNING: CPU: 2 PID: 17434 at drivers/net/wireless/intel/iwlwifi/iwl-trans.c:115 iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi] RIP: 0010:iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi] Call Trace: iwl_mvm_send_cmd+0x40/0xc0 [iwlmvm] iwl_mvm_config_scan+0x198/0x260 [iwlmvm] iwl_mvm_recalc_tcm+0x730/0x11d0 [iwlmvm] iwl_mvm_tcm_work+0x1d/0x30 [iwlmvm] process_one_work+0x29e/0x640 worker_thread+0x2df/0x690 ? rescuer_thread+0x540/0x540 kthread+0x192/0x1e0 ? set_kthread_struct+0x90/0x90 ret_from_fork+0x22/0x30
5.5
Medium
CVE-2024-47672 2024-10-09 14h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: don't wait for tx queues if firmware is dead There is a WARNING in iwl_trans_wait_tx_queues_empty() (that was recently converted from just a message), that can be hit if we wait for TX queues to become empty after firmware died. Clearly, we can't expect anything from the firmware after it's declared dead. Don't call iwl_trans_wait_tx_queues_empty() in this case. While it could be a good idea to stop the flow earlier, the flush functions do some maintenance work that is not related to the firmware, so keep that part of the code running even when the firmware is not running. [edit commit message]
5.5
Medium
CVE-2024-47671 2024-10-09 14h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: usbtmc: prevent kernel-usb-infoleak The syzbot reported a kernel-usb-infoleak in usbtmc_write, we need to clear the structure before filling fields.
5.5
Medium
CVE-2024-47670 2024-10-09 14h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: add bounds checking to ocfs2_xattr_find_entry() Add a paranoia check to make sure it doesn't stray beyond valid memory region containing ocfs2 xattr entries when scanning for a match. It will prevent out-of-bound access in case of crafted images.
7.8
High
CVE-2024-47666 2024-10-09 14h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: pm80xx: Set phy->enable_completion only when we wait for it pm8001_phy_control() populates the enable_completion pointer with a stack address, sends a PHY_LINK_RESET / PHY_HARD_RESET, waits 300 ms, and returns. The problem arises when a phy control response comes late. After 300 ms the pm8001_phy_control() function returns and the passed enable_completion stack address is no longer valid. Late phy control response invokes complete() on a dangling enable_completion pointer which leads to a kernel crash.
5.5
Medium
CVE-2024-47664 2024-10-09 14h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: spi: hisi-kunpeng: Add verification for the max_frequency provided by the firmware If the value of max_speed_hz is 0, it may cause a division by zero error in hisi_calc_effective_speed(). The value of max_speed_hz is provided by firmware. Firmware is generally considered as a trusted domain. However, as division by zero errors can cause system failure, for defense measure, the value of max_speed is validated here. So 0 is regarded as invalid and an error code is returned.
5.5
Medium
CVE-2024-47662 2024-10-09 14h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Remove register from DCN35 DMCUB diagnostic collection [Why] These registers should not be read from driver and triggering the security violation when DMCUB work times out and diagnostics are collected blocks Z8 entry. [How] Remove the register read from DCN35.
5.5
Medium
CVE-2024-47661 2024-10-09 14h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow from uint32_t to uint8_t [WHAT & HOW] dmub_rb_cmd's ramping_boundary has size of uint8_t and it is assigned 0xFFFF. Fix it by changing it to uint8_t with value of 0xFF. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity.
5.5
Medium
CVE-2024-47658 2024-10-09 14h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: stm32/cryp - call finalize with bh disabled The finalize operation in interrupt mode produce a produces a spinlock recursion warning. The reason is the fact that BH must be disabled during this process.
5.5
Medium
CVE-2024-46871 2024-10-09 14h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Correct the defined value for AMDGPU_DMUB_NOTIFICATION_MAX [Why & How] It actually exposes '6' types in enum dmub_notification_type. Not 5. Using smaller number to create array dmub_callback & dmub_thread_offload has potential to access item out of array bound. Fix it.
7.8
High
CVE-2024-46870 2024-10-09 14h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable DMCUB timeout for DCN35 [Why] DMCUB can intermittently take longer than expected to process commands. Old ASIC policy was to continue while logging a diagnostic error - which works fine for ASIC without IPS, but with IPS this could lead to a race condition where we attempt to access DCN state while it's inaccessible, leading to a system hang when the NIU port is not disabled or register accesses that timeout and the display configuration in an undefined state. [How] We need to investigate why these accesses take longer than expected, but for now we should disable the timeout on DCN35 to avoid this race condition. Since the waits happen only at lower interrupt levels the risk of taking too long at higher IRQ and causing a system watchdog timeout are minimal.
4.7
Medium
CVE-2024-46863 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: soc-acpi-intel-lnl-match: add missing empty item There is no links_num in struct snd_soc_acpi_mach {}, and we test !link->num_adr as a condition to end the loop in hda_sdw_machine_select(). So an empty item in struct snd_soc_acpi_link_adr array is required.
5.5
Medium
CVE-2024-46861 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: usbnet: ipheth: do not stop RX on failing RX callback RX callbacks can fail for multiple reasons: * Payload too short * Payload formatted incorrecly (e.g. bad NCM framing) * Lack of memory None of these should cause the driver to seize up. Make such failures non-critical and continue processing further incoming URBs.
5.5
Medium
CVE-2024-46860 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix NULL pointer access in mt7921_ipv6_addr_change When disabling wifi mt7921_ipv6_addr_change() is called as a notifier. At this point mvif->phy is already NULL so we cannot use it here.
5.5
Medium
CVE-2024-46859 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: platform/x86: panasonic-laptop: Fix SINF array out of bounds accesses The panasonic laptop code in various places uses the SINF array with index values of 0 - SINF_CUR_BRIGHT(0x0d) without checking that the SINF array is big enough. Not all panasonic laptops have this many SINF array entries, for example the Toughbook CF-18 model only has 10 SINF array entries. So it only supports the AC+DC brightness entries and mute. Check that the SINF array has a minimum size which covers all AC+DC brightness entries and refuse to load if the SINF array is smaller. For higher SINF indexes hide the sysfs attributes when the SINF array does not contain an entry for that attribute, avoiding show()/store() accessing the array out of bounds and add bounds checking to the probe() and resume() code accessing these.
7.8
High
CVE-2024-46858 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: Fix uaf in __timer_delete_sync There are two paths to access mptcp_pm_del_add_timer, result in a race condition: CPU1 CPU2 ==== ==== net_rx_action napi_poll netlink_sendmsg __napi_poll netlink_unicast process_backlog netlink_unicast_kernel __netif_receive_skb genl_rcv __netif_receive_skb_one_core netlink_rcv_skb NF_HOOK genl_rcv_msg ip_local_deliver_finish genl_family_rcv_msg ip_protocol_deliver_rcu genl_family_rcv_msg_doit tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit tcp_v4_do_rcv mptcp_nl_remove_addrs_list tcp_rcv_established mptcp_pm_remove_addrs_and_subflows tcp_data_queue remove_anno_list_by_saddr mptcp_incoming_options mptcp_pm_del_add_timer mptcp_pm_del_add_timer kfree(entry) In remove_anno_list_by_saddr(running on CPU2), after leaving the critical zone protected by "pm.lock", the entry will be released, which leads to the occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1). Keeping a reference to add_timer inside the lock, and calling sk_stop_timer_sync() with this reference, instead of "entry->add_timer". Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock, do not directly access any members of the entry outside the pm lock, which can avoid similar "entry->x" uaf.
7
High
CVE-2024-46857 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix bridge mode operations when there are no VFs Currently, trying to set the bridge mode attribute when numvfs=0 leads to a crash: bridge link set dev eth2 hwmode vepa [ 168.967392] BUG: kernel NULL pointer dereference, address: 0000000000000030 [...] [ 168.969989] RIP: 0010:mlx5_add_flow_rules+0x1f/0x300 [mlx5_core] [...] [ 168.976037] Call Trace: [ 168.976188] [ 168.978620] _mlx5_eswitch_set_vepa_locked+0x113/0x230 [mlx5_core] [ 168.979074] mlx5_eswitch_set_vepa+0x7f/0xa0 [mlx5_core] [ 168.979471] rtnl_bridge_setlink+0xe9/0x1f0 [ 168.979714] rtnetlink_rcv_msg+0x159/0x400 [ 168.980451] netlink_rcv_skb+0x54/0x100 [ 168.980675] netlink_unicast+0x241/0x360 [ 168.980918] netlink_sendmsg+0x1f6/0x430 [ 168.981162] ____sys_sendmsg+0x3bb/0x3f0 [ 168.982155] ___sys_sendmsg+0x88/0xd0 [ 168.985036] __sys_sendmsg+0x59/0xa0 [ 168.985477] do_syscall_64+0x79/0x150 [ 168.987273] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 168.987773] RIP: 0033:0x7f8f7950f917 (esw->fdb_table.legacy.vepa_fdb is null) The bridge mode is only relevant when there are multiple functions per port. Therefore, prevent setting and getting this setting when there are no VFs. Note that after this change, there are no settings to change on the PF interface using `bridge link` when there are no VFs, so the interface no longer appears in the `bridge link` output.
5.5
Medium
CVE-2024-46855 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_socket: fix sk refcount leaks We must put 'sk' reference before returning.
5.5
Medium
CVE-2024-46854 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: dpaa: Pad packets to ETH_ZLEN When sending packets under 60 bytes, up to three bytes of the buffer following the data may be leaked. Avoid this by extending all packets to ETH_ZLEN, ensuring nothing is leaked in the padding. This bug can be reproduced by running $ ping -s 11 destination
7.1
High
CVE-2024-46853 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: spi: nxp-fspi: fix the KASAN report out-of-bounds bug Change the memcpy length to fix the out-of-bounds issue when writing the data that is not 4 byte aligned to TX FIFO. To reproduce the issue, write 3 bytes data to NOR chip. dd if=3b of=/dev/mtd0 [ 36.926103] ================================================================== [ 36.933409] BUG: KASAN: slab-out-of-bounds in nxp_fspi_exec_op+0x26ec/0x2838 [ 36.940514] Read of size 4 at addr ffff00081037c2a0 by task dd/455 [ 36.946721] [ 36.948235] CPU: 3 UID: 0 PID: 455 Comm: dd Not tainted 6.11.0-rc5-gc7b0e37c8434 #1070 [ 36.956185] Hardware name: Freescale i.MX8QM MEK (DT) [ 36.961260] Call trace: [ 36.963723] dump_backtrace+0x90/0xe8 [ 36.967414] show_stack+0x18/0x24 [ 36.970749] dump_stack_lvl+0x78/0x90 [ 36.974451] print_report+0x114/0x5cc [ 36.978151] kasan_report+0xa4/0xf0 [ 36.981670] __asan_report_load_n_noabort+0x1c/0x28 [ 36.986587] nxp_fspi_exec_op+0x26ec/0x2838 [ 36.990800] spi_mem_exec_op+0x8ec/0xd30 [ 36.994762] spi_mem_no_dirmap_read+0x190/0x1e0 [ 36.999323] spi_mem_dirmap_write+0x238/0x32c [ 37.003710] spi_nor_write_data+0x220/0x374 [ 37.007932] spi_nor_write+0x110/0x2e8 [ 37.011711] mtd_write_oob_std+0x154/0x1f0 [ 37.015838] mtd_write_oob+0x104/0x1d0 [ 37.019617] mtd_write+0xb8/0x12c [ 37.022953] mtdchar_write+0x224/0x47c [ 37.026732] vfs_write+0x1e4/0x8c8 [ 37.030163] ksys_write+0xec/0x1d0 [ 37.033586] __arm64_sys_write+0x6c/0x9c [ 37.037539] invoke_syscall+0x6c/0x258 [ 37.041327] el0_svc_common.constprop.0+0x160/0x22c [ 37.046244] do_el0_svc+0x44/0x5c [ 37.049589] el0_svc+0x38/0x78 [ 37.052681] el0t_64_sync_handler+0x13c/0x158 [ 37.057077] el0t_64_sync+0x190/0x194 [ 37.060775] [ 37.062274] Allocated by task 455: [ 37.065701] kasan_save_stack+0x2c/0x54 [ 37.069570] kasan_save_track+0x20/0x3c [ 37.073438] kasan_save_alloc_info+0x40/0x54 [ 37.077736] __kasan_kmalloc+0xa0/0xb8 [ 37.081515] __kmalloc_noprof+0x158/0x2f8 [ 37.085563] mtd_kmalloc_up_to+0x120/0x154 [ 37.089690] mtdchar_write+0x130/0x47c [ 37.093469] vfs_write+0x1e4/0x8c8 [ 37.096901] ksys_write+0xec/0x1d0 [ 37.100332] __arm64_sys_write+0x6c/0x9c [ 37.104287] invoke_syscall+0x6c/0x258 [ 37.108064] el0_svc_common.constprop.0+0x160/0x22c [ 37.112972] do_el0_svc+0x44/0x5c [ 37.116319] el0_svc+0x38/0x78 [ 37.119401] el0t_64_sync_handler+0x13c/0x158 [ 37.123788] el0t_64_sync+0x190/0x194 [ 37.127474] [ 37.128977] The buggy address belongs to the object at ffff00081037c2a0 [ 37.128977] which belongs to the cache kmalloc-8 of size 8 [ 37.141177] The buggy address is located 0 bytes inside of [ 37.141177] allocated 3-byte region [ffff00081037c2a0, ffff00081037c2a3) [ 37.153465] [ 37.154971] The buggy address belongs to the physical page: [ 37.160559] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x89037c [ 37.168596] flags: 0xbfffe0000000000(node=0|zone=2|lastcpupid=0x1ffff) [ 37.175149] page_type: 0xfdffffff(slab) [ 37.179021] raw: 0bfffe0000000000 ffff000800002500 dead000000000122 0000000000000000 [ 37.186788] raw: 0000000000000000 0000000080800080 00000001fdffffff 0000000000000000 [ 37.194553] page dumped because: kasan: bad access detected [ 37.200144] [ 37.201647] Memory state around the buggy address: [ 37.206460] ffff00081037c180: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc [ 37.213701] ffff00081037c200: fa fc fc fc 05 fc fc fc 03 fc fc fc 02 fc fc fc [ 37.220946] >ffff00081037c280: 06 fc fc fc 03 fc fc fc fc fc fc fc fc fc fc fc [ 37.228186] ^ [ 37.232473] ffff00081037c300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 37.239718] ffff00081037c380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 37.246962] ============================================================== ---truncated---
7.8
High
CVE-2024-46852 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: dma-buf: heaps: Fix off-by-one in CMA heap fault handler Until VM_DONTEXPAND was added in commit 1c1914d6e8c6 ("dma-buf: heaps: Don't track CMA dma-buf pages under RssFile") it was possible to obtain a mapping larger than the buffer size via mremap and bypass the overflow check in dma_buf_mmap_internal. When using such a mapping to attempt to fault past the end of the buffer, the CMA heap fault handler also checks the fault offset against the buffer size, but gets the boundary wrong by 1. Fix the boundary check so that we don't read off the end of the pages array and insert an arbitrary page in the mapping.
7.8
High
CVE-2024-46849 2024-09-27 12h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: meson: axg-card: fix 'use-after-free' Buffer 'card->dai_link' is reallocated in 'meson_card_reallocate_links()', so move 'pad' pointer initialization after this function when memory is already reallocated. Kasan bug report: ================================================================== BUG: KASAN: slab-use-after-free in axg_card_add_link+0x76c/0x9bc Read of size 8 at addr ffff000000e8b260 by task modprobe/356 CPU: 0 PID: 356 Comm: modprobe Tainted: G O 6.9.12-sdkernel #1 Call trace: dump_backtrace+0x94/0xec show_stack+0x18/0x24 dump_stack_lvl+0x78/0x90 print_report+0xfc/0x5c0 kasan_report+0xb8/0xfc __asan_load8+0x9c/0xb8 axg_card_add_link+0x76c/0x9bc [snd_soc_meson_axg_sound_card] meson_card_probe+0x344/0x3b8 [snd_soc_meson_card_utils] platform_probe+0x8c/0xf4 really_probe+0x110/0x39c __driver_probe_device+0xb8/0x18c driver_probe_device+0x108/0x1d8 __driver_attach+0xd0/0x25c bus_for_each_dev+0xe0/0x154 driver_attach+0x34/0x44 bus_add_driver+0x134/0x294 driver_register+0xa8/0x1e8 __platform_driver_register+0x44/0x54 axg_card_pdrv_init+0x20/0x1000 [snd_soc_meson_axg_sound_card] do_one_initcall+0xdc/0x25c do_init_module+0x10c/0x334 load_module+0x24c4/0x26cc init_module_from_file+0xd4/0x128 __arm64_sys_finit_module+0x1f4/0x41c invoke_syscall+0x60/0x188 el0_svc_common.constprop.0+0x78/0x13c do_el0_svc+0x30/0x40 el0_svc+0x38/0x78 el0t_64_sync_handler+0x100/0x12c el0t_64_sync+0x190/0x194
7.8
High
CVE-2024-46848 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Limit the period on Haswell Running the ltp test cve-2015-3290 concurrently reports the following warnings. perfevents: irq loop stuck! WARNING: CPU: 31 PID: 32438 at arch/x86/events/intel/core.c:3174 intel_pmu_handle_irq+0x285/0x370 Call Trace: ? __warn+0xa4/0x220 ? intel_pmu_handle_irq+0x285/0x370 ? __report_bug+0x123/0x130 ? intel_pmu_handle_irq+0x285/0x370 ? __report_bug+0x123/0x130 ? intel_pmu_handle_irq+0x285/0x370 ? report_bug+0x3e/0xa0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? irq_work_claim+0x1e/0x40 ? intel_pmu_handle_irq+0x285/0x370 perf_event_nmi_handler+0x3d/0x60 nmi_handle+0x104/0x330 Thanks to Thomas Gleixner's analysis, the issue is caused by the low initial period (1) of the frequency estimation algorithm, which triggers the defects of the HW, specifically erratum HSW11 and HSW143. (For the details, please refer https://lore.kernel.org/lkml/87plq9l5d2.ffs@tglx/) The HSW11 requires a period larger than 100 for the INST_RETIRED.ALL event, but the initial period in the freq mode is 1. The erratum is the same as the BDM11, which has been supported in the kernel. A minimum period of 128 is enforced as well on HSW. HSW143 is regarding that the fixed counter 1 may overcount 32 with the Hyper-Threading is enabled. However, based on the test, the hardware has more issues than it tells. Besides the fixed counter 1, the message 'interrupt took too long' can be observed on any counter which was armed with a period < 32 and two events expired in the same NMI. A minimum period of 32 is enforced for the rest of the events. The recommended workaround code of the HSW143 is not implemented. Because it only addresses the issue for the fixed counter. It brings extra overhead through extra MSR writing. No related overcounting issue has been reported so far.
5.5
Medium
CVE-2024-46843 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Remove SCSI host only if added If host tries to remove ufshcd driver from a UFS device it would cause a kernel panic if ufshcd_async_scan fails during ufshcd_probe_hba before adding a SCSI host with scsi_add_host and MCQ is enabled since SCSI host has been defered after MCQ configuration introduced by commit 0cab4023ec7b ("scsi: ufs: core: Defer adding host to SCSI if MCQ is supported"). To guarantee that SCSI host is removed only if it has been added, set the scsi_host_added flag to true after adding a SCSI host and check whether it is set or not before removing it.
5.5
Medium
CVE-2024-46842 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Handle mailbox timeouts in lpfc_get_sfp_info The MBX_TIMEOUT return code is not handled in lpfc_get_sfp_info and the routine unconditionally frees submitted mailbox commands regardless of return status. The issue is that for MBX_TIMEOUT cases, when firmware returns SFP information at a later time, that same mailbox memory region references previously freed memory in its cmpl routine. Fix by adding checks for the MBX_TIMEOUT return code. During mailbox resource cleanup, check the mbox flag to make sure that the wait did not timeout. If the MBOX_WAKE flag is not set, then do not free the resources because it will be freed when firmware completes the mailbox at a later time in its cmpl routine. Also, increase the timeout from 30 to 60 seconds to accommodate boot scripts requiring longer timeouts.
5.5
Medium
CVE-2024-46841 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON on ENOMEM from btrfs_lookup_extent_info() in walk_down_proc() We handle errors here properly, ENOMEM isn't fatal, return the error.
5.5
Medium
CVE-2024-46836 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: aspeed_udc: validate endpoint index for ast udc We should verify the bound of the array to assure that host may not manipulate the index to point past endpoint array. Found by static analysis.
7.8
High
CVE-2024-46835 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix smatch static checker warning adev->gfx.imu.funcs could be NULL
5.5
Medium
CVE-2024-46834 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: ethtool: fail closed if we can't get max channel used in indirection tables Commit 0d1b7d6c9274 ("bnxt: fix crashes when reducing ring count with active RSS contexts") proves that allowing indirection table to contain channels with out of bounds IDs may lead to crashes. Currently the max channel check in the core gets skipped if driver can't fetch the indirection table or when we can't allocate memory. Both of those conditions should be extremely rare but if they do happen we should try to be safe and fail the channel change.
5.5
Medium
CVE-2024-46833 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: void array out of bound when loop tnl_num When query reg inf of SSU, it loops tnl_num times. However, tnl_num comes from hardware and the length of array is a fixed value. To void array out of bound, make sure the loop time is not greater than the length of array
7.8
High
CVE-2024-46827 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix firmware crash due to invalid peer nss Currently, if the access point receives an association request containing an Extended HE Capabilities Information Element with an invalid MCS-NSS, it triggers a firmware crash. This issue arises when EHT-PHY capabilities shows support for a bandwidth and MCS-NSS set for that particular bandwidth is filled by zeros and due to this, driver obtains peer_nss as 0 and sending this value to firmware causes crash. Address this issue by implementing a validation step for the peer_nss value before passing it to the firmware. If the value is greater than zero, proceed with forwarding it to the firmware. However, if the value is invalid, reject the association request to prevent potential firmware crashes. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
5.5
Medium
CVE-2024-46826 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: ELF: fix kernel.randomize_va_space double read ELF loader uses "randomize_va_space" twice. It is sysctl and can change at any moment, so 2 loads could see 2 different values in theory with unpredictable consequences. Issue exactly one load for consistent value across one exec.
5.5
Medium
CVE-2024-46823 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: kunit/overflow: Fix UB in overflow_allocation_test The 'device_name' array doesn't exist out of the 'overflow_allocation_test' function scope. However, it is being used as a driver name when calling 'kunit_driver_create' from 'kunit_device_register'. It produces the kernel panic with KASAN enabled. Since this variable is used in one place only, remove it and pass the device name into kunit_device_register directly as an ascii string.
5.5
Medium
CVE-2024-46821 2024-09-27 12h36 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Fix negative array index read Avoid using the negative values for clk_idex as an index into an array pptable->DpmDescriptor. V2: fix clk_index return check (Tim Huang)
7.8
High
CVE-2024-46813 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_index before accessing dc->links[] [WHY & HOW] dc->links[] has max size of MAX_LINKS and NULL is return when trying to access with out-of-bound index. This fixes 3 OVERRUN and 1 RESOURCE_LEAK issues reported by Coverity.
7.8
High
CVE-2024-46811 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix index may exceed array range within fpu_update_bw_bounding_box [Why] Coverity reports OVERRUN warning. soc.num_states could be 40. But array range of bw_params->clk_table.entries is 8. [How] Assert if soc.num_states greater than 8.
7.8
High
CVE-2024-46809 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check BIOS images before it is used BIOS images may fail to load and null checks are added before they are used. This fixes 6 NULL_RETURNS issues reported by Coverity.
5.5
Medium
CVE-2024-46808 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add missing NULL pointer check within dpcd_extend_address_range [Why & How] ASSERT if return NULL from kcalloc.
5.5
Medium
CVE-2024-46806 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix the warning division or modulo by zero Checks the partition mode and returns an error for an invalid mode.
5.5
Medium
CVE-2024-46803 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Check debug trap enable before write dbg_ev_file In interrupt context, write dbg_ev_file will be run by work queue. It will cause write dbg_ev_file execution after debug_trap_disable, which will cause NULL pointer access. v2: cancel work "debug_event_workarea" before set dbg_ev_file as NULL.
5.5
Medium
CVE-2024-46802 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: added NULL check at start of dc_validate_stream [Why] prevent invalid memory access [How] check if dc and stream are NULL
5.5
Medium
CVE-2024-46794 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/tdx: Fix data leak in mmio_read() The mmio_read() function makes a TDVMCALL to retrieve MMIO data for an address from the VMM. Sean noticed that mmio_read() unintentionally exposes the value of an initialized variable (val) on the stack to the VMM. This variable is only needed as an output value. It did not need to be passed to the VMM in the first place. Do not send the original value of *val to the VMM. [ dhansen: clarify what 'val' is used for. ]
3.3
Low
CVE-2024-46787 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix checks for huge PMDs Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2. The pmd_trans_huge() code in mfill_atomic() is wrong in three different ways depending on kernel version: 1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit the right two race windows) - I've tested this in a kernel build with some extra mdelay() calls. See the commit message for a description of the race scenario. On older kernels (before 6.5), I think the same bug can even theoretically lead to accessing transhuge page contents as a page table if you hit the right 5 narrow race windows (I haven't tested this case). 2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for detecting PMDs that don't point to page tables. On older kernels (before 6.5), you'd just have to win a single fairly wide race to hit this. I've tested this on 6.1 stable by racing migration (with a mdelay() patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86 VM, that causes a kernel oops in ptlock_ptr(). 3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed to yank page tables out from under us (though I haven't tested that), so I think the BUG_ON() checks in mfill_atomic() are just wrong. I decided to write two separate fixes for these (one fix for bugs 1+2, one fix for bug 3), so that the first fix can be backported to kernels affected by bugs 1+2. This patch (of 2): This fixes two issues. I discovered that the following race can occur: mfill_atomic other thread ============ ============ pmdp_get_lockless() [reads none pmd] __pte_alloc [no-op] BUG_ON(pmd_none(*dst_pmd)) I have experimentally verified this in a kernel with extra mdelay() calls; the BUG_ON(pmd_none(*dst_pmd)) triggers. On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow pte_offset_map[_lock]() to fail"), this can't lead to anything worse than a BUG_ON(), since the page table access helpers are actually designed to deal with page tables concurrently disappearing; but on older kernels (<=6.4), I think we could probably theoretically race past the two BUG_ON() checks and end up treating a hugepage as a page table. The second issue is that, as Qi Zheng pointed out, there are other types of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs (in particular, migration PMDs). On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a PMD that contains a migration entry (which just requires winning a single, fairly wide race), it will pass the PMD to pte_offset_map_lock(), which assumes that the PMD points to a page table. Breakage follows: First, the kernel tries to take the PTE lock (which will crash or maybe worse if there is no "struct page" for the address bits in the migration entry PMD - I think at least on X86 there usually is no corresponding "struct page" thanks to the PTE inversion mitigation, amd64 looks different). If that didn't crash, the kernel would next try to write a PTE into what it wrongly thinks is a page table. As part of fixing these issues, get rid of the check for pmd_trans_huge() before __pte_alloc() - that's redundant, we're going to have to check for that after the __pte_alloc() anyway. Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.
4.7
Medium
CVE-2024-46784 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix error handling in mana_create_txq/rxq's NAPI cleanup Currently napi_disable() gets called during rxq and txq cleanup, even before napi is enabled and hrtimer is initialized. It causes kernel panic. ? page_fault_oops+0x136/0x2b0 ? page_counter_cancel+0x2e/0x80 ? do_user_addr_fault+0x2f2/0x640 ? refill_obj_stock+0xc4/0x110 ? exc_page_fault+0x71/0x160 ? asm_exc_page_fault+0x27/0x30 ? __mmdrop+0x10/0x180 ? __mmdrop+0xec/0x180 ? hrtimer_active+0xd/0x50 hrtimer_try_to_cancel+0x2c/0xf0 hrtimer_cancel+0x15/0x30 napi_disable+0x65/0x90 mana_destroy_rxq+0x4c/0x2f0 mana_create_rxq.isra.0+0x56c/0x6d0 ? mana_uncfg_vport+0x50/0x50 mana_alloc_queues+0x21b/0x320 ? skb_dequeue+0x5f/0x80
5.5
Medium
CVE-2024-46778 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check UnboundedRequestEnabled's value CalculateSwathAndDETConfiguration_params_st's UnboundedRequestEnabled is a pointer (i.e. dml_bool_t *UnboundedRequestEnabled), and thus if (p->UnboundedRequestEnabled) checks its address, not bool value. This fixes 1 REVERSE_INULL issue reported by Coverity.
5.5
Medium
CVE-2024-46776 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Run DC_LOG_DC after checking link->link_enc [WHAT] The DC_LOG_DC should be run after link->link_enc is checked, not before. This fixes 1 REVERSE_INULL issue reported by Coverity.
5.5
Medium
CVE-2024-46775 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Validate function returns [WHAT & HOW] Function return values must be checked before data can be used in subsequent functions. This fixes 4 CHECKED_RETURN issues reported by Coverity.
5.5
Medium
CVE-2024-46774 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas() Smatch warns: arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential spectre issue 'args.args' [r] (local cap) The 'nargs' and 'nret' locals come directly from a user-supplied buffer and are used as indexes into a small stack-based array and as inputs to copy_to_user() after they are subject to bounds checks. Use array_index_nospec() after the bounds checks to clamp these values for speculative execution.
7.1
High
CVE-2024-46773 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator pbn_div before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 1 DIVIDE_BY_ZERO issue reported by Coverity.
5.5
Medium
CVE-2024-46772 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator crb_pipes before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 2 DIVIDE_BY_ZERO issues reported by Coverity.
5.5
Medium
CVE-2024-46770 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: Add netif_device_attach/detach into PF reset flow Ethtool callbacks can be executed while reset is in progress and try to access deleted resources, e.g. getting coalesce settings can result in a NULL pointer dereference seen below. Reproduction steps: Once the driver is fully initialized, trigger reset: # echo 1 > /sys/class/net//device/reset when reset is in progress try to get coalesce settings using ethtool: # ethtool -c BUG: kernel NULL pointer dereference, address: 0000000000000020 PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 11 PID: 19713 Comm: ethtool Tainted: G S 6.10.0-rc7+ #7 RIP: 0010:ice_get_q_coalesce+0x2e/0xa0 [ice] RSP: 0018:ffffbab1e9bcf6a8 EFLAGS: 00010206 RAX: 000000000000000c RBX: ffff94512305b028 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9451c3f2e588 RDI: ffff9451c3f2e588 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff9451c3f2e580 R11: 000000000000001f R12: ffff945121fa9000 R13: ffffbab1e9bcf760 R14: 0000000000000013 R15: ffffffff9e65dd40 FS: 00007faee5fbe740(0000) GS:ffff94546fd80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000020 CR3: 0000000106c2e005 CR4: 00000000001706f0 Call Trace: ice_get_coalesce+0x17/0x30 [ice] coalesce_prepare_data+0x61/0x80 ethnl_default_doit+0xde/0x340 genl_family_rcv_msg_doit+0xf2/0x150 genl_rcv_msg+0x1b3/0x2c0 netlink_rcv_skb+0x5b/0x110 genl_rcv+0x28/0x40 netlink_unicast+0x19c/0x290 netlink_sendmsg+0x222/0x490 __sys_sendto+0x1df/0x1f0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x82/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7faee60d8e27 Calling netif_device_detach() before reset makes the net core not call the driver when ethtool command is issued, the attempt to execute an ethtool command during reset will result in the following message: netlink error: No such device instead of NULL pointer dereference. Once reset is done and ice_rebuild() is executing, the netif_device_attach() is called to allow for ethtool operations to occur again in a safe manner.
5.5
Medium
CVE-2024-46765 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: protect XDP configuration with a mutex The main threat to data consistency in ice_xdp() is a possible asynchronous PF reset. It can be triggered by a user or by TX timeout handler. XDP setup and PF reset code access the same resources in the following sections: * ice_vsi_close() in ice_prepare_for_reset() - already rtnl-locked * ice_vsi_rebuild() for the PF VSI - not protected * ice_vsi_open() - already rtnl-locked With an unfortunate timing, such accesses can result in a crash such as the one below: [ +1.999878] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 14 [ +2.002992] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 18 [Mar15 18:17] ice 0000:b1:00.0 ens801f0np0: NETDEV WATCHDOG: CPU: 38: transmit queue 14 timed out 80692736 ms [ +0.000093] ice 0000:b1:00.0 ens801f0np0: tx_timeout: VSI_num: 6, Q 14, NTC: 0x0, HW_HEAD: 0x0, NTU: 0x0, INT: 0x4000001 [ +0.000012] ice 0000:b1:00.0 ens801f0np0: tx_timeout recovery level 1, txqueue 14 [ +0.394718] ice 0000:b1:00.0: PTP reset successful [ +0.006184] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ +0.000045] #PF: supervisor read access in kernel mode [ +0.000023] #PF: error_code(0x0000) - not-present page [ +0.000023] PGD 0 P4D 0 [ +0.000018] Oops: 0000 [#1] PREEMPT SMP NOPTI [ +0.000023] CPU: 38 PID: 7540 Comm: kworker/38:1 Not tainted 6.8.0-rc7 #1 [ +0.000031] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0014.082620210524 08/26/2021 [ +0.000036] Workqueue: ice ice_service_task [ice] [ +0.000183] RIP: 0010:ice_clean_tx_ring+0xa/0xd0 [ice] [...] [ +0.000013] Call Trace: [ +0.000016] [ +0.000014] ? __die+0x1f/0x70 [ +0.000029] ? page_fault_oops+0x171/0x4f0 [ +0.000029] ? schedule+0x3b/0xd0 [ +0.000027] ? exc_page_fault+0x7b/0x180 [ +0.000022] ? asm_exc_page_fault+0x22/0x30 [ +0.000031] ? ice_clean_tx_ring+0xa/0xd0 [ice] [ +0.000194] ice_free_tx_ring+0xe/0x60 [ice] [ +0.000186] ice_destroy_xdp_rings+0x157/0x310 [ice] [ +0.000151] ice_vsi_decfg+0x53/0xe0 [ice] [ +0.000180] ice_vsi_rebuild+0x239/0x540 [ice] [ +0.000186] ice_vsi_rebuild_by_type+0x76/0x180 [ice] [ +0.000145] ice_rebuild+0x18c/0x840 [ice] [ +0.000145] ? delay_tsc+0x4a/0xc0 [ +0.000022] ? delay_tsc+0x92/0xc0 [ +0.000020] ice_do_reset+0x140/0x180 [ice] [ +0.000886] ice_service_task+0x404/0x1030 [ice] [ +0.000824] process_one_work+0x171/0x340 [ +0.000685] worker_thread+0x277/0x3a0 [ +0.000675] ? preempt_count_add+0x6a/0xa0 [ +0.000677] ? _raw_spin_lock_irqsave+0x23/0x50 [ +0.000679] ? __pfx_worker_thread+0x10/0x10 [ +0.000653] kthread+0xf0/0x120 [ +0.000635] ? __pfx_kthread+0x10/0x10 [ +0.000616] ret_from_fork+0x2d/0x50 [ +0.000612] ? __pfx_kthread+0x10/0x10 [ +0.000604] ret_from_fork_asm+0x1b/0x30 [ +0.000604] The previous way of handling this through returning -EBUSY is not viable, particularly when destroying AF_XDP socket, because the kernel proceeds with removal anyway. There is plenty of code between those calls and there is no need to create a large critical section that covers all of them, same as there is no need to protect ice_vsi_rebuild() with rtnl_lock(). Add xdp_state_lock mutex to protect ice_vsi_rebuild() and ice_xdp(). Leaving unprotected sections in between would result in two states that have to be considered: 1. when the VSI is closed, but not yet rebuild 2. when VSI is already rebuild, but not yet open The latter case is actually already handled through !netif_running() case, we just need to adjust flag checking a little. The former one is not as trivial, because between ice_vsi_close() and ice_vsi_rebuild(), a lot of hardware interaction happens, this can make adding/deleting rings exit with an error. Luckily, VSI rebuild is pending and can apply new configuration for us in a managed fashion. Therefore, add an additional VSI state flag ICE_VSI_REBUILD_PENDING to indicate that ice_x ---truncated---
5.5
Medium
CVE-2024-46762 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds.
5.5
Medium
CVE-2024-46760 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: usb: schedule rx work after everything is set up Right now it's possible to hit NULL pointer dereference in rtw_rx_fill_rx_status on hw object and/or its fields because initialization routine can start getting USB replies before rtw_dev is fully setup. The stack trace looks like this: rtw_rx_fill_rx_status rtw8821c_query_rx_desc rtw_usb_rx_handler ... queue_work rtw_usb_read_port_complete ... usb_submit_urb rtw_usb_rx_resubmit rtw_usb_init_rx rtw_usb_probe So while we do the async stuff rtw_usb_probe continues and calls rtw_register_hw, which does all kinds of initialization (e.g. via ieee80211_register_hw) that rtw_rx_fill_rx_status relies on. Fix this by moving the first usb_submit_urb after everything is set up. For me, this bug manifested as: [ 8.893177] rtw_8821cu 1-1:1.2: band wrong, packet dropped [ 8.910904] rtw_8821cu 1-1:1.2: hw->conf.chandef.chan NULL in rtw_rx_fill_rx_status because I'm using Larry's backport of rtw88 driver with the NULL checks in rtw_rx_fill_rx_status.
5.5
Medium
CVE-2024-46751 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON() when 0 reference count at btrfs_lookup_extent_info() Instead of doing a BUG_ON() handle the error by returning -EUCLEAN, aborting the transaction and logging an error message.
5.5
Medium
CVE-2024-46749 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btnxpuart: Fix Null pointer dereference in btnxpuart_flush() This adds a check before freeing the rx->skb in flush and close functions to handle the kernel crash seen while removing driver after FW download fails or before FW download completes. dmesg log: [ 54.634586] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000080 [ 54.643398] Mem abort info: [ 54.646204] ESR = 0x0000000096000004 [ 54.649964] EC = 0x25: DABT (current EL), IL = 32 bits [ 54.655286] SET = 0, FnV = 0 [ 54.658348] EA = 0, S1PTW = 0 [ 54.661498] FSC = 0x04: level 0 translation fault [ 54.666391] Data abort info: [ 54.669273] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 54.674768] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 54.674771] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 54.674775] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000048860000 [ 54.674780] [0000000000000080] pgd=0000000000000000, p4d=0000000000000000 [ 54.703880] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 54.710152] Modules linked in: btnxpuart(-) overlay fsl_jr_uio caam_jr caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine authenc libdes crct10dif_ce polyval_ce polyval_generic snd_soc_imx_spdif snd_soc_imx_card snd_soc_ak5558 snd_soc_ak4458 caam secvio error snd_soc_fsl_micfil snd_soc_fsl_spdif snd_soc_fsl_sai snd_soc_fsl_utils imx_pcm_dma gpio_ir_recv rc_core sch_fq_codel fuse [ 54.744357] CPU: 3 PID: 72 Comm: kworker/u9:0 Not tainted 6.6.3-otbr-g128004619037 #2 [ 54.744364] Hardware name: FSL i.MX8MM EVK board (DT) [ 54.744368] Workqueue: hci0 hci_power_on [ 54.757244] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 54.757249] pc : kfree_skb_reason+0x18/0xb0 [ 54.772299] lr : btnxpuart_flush+0x40/0x58 [btnxpuart] [ 54.782921] sp : ffff8000805ebca0 [ 54.782923] x29: ffff8000805ebca0 x28: ffffa5c6cf1869c0 x27: ffffa5c6cf186000 [ 54.782931] x26: ffff377b84852400 x25: ffff377b848523c0 x24: ffff377b845e7230 [ 54.782938] x23: ffffa5c6ce8dbe08 x22: ffffa5c6ceb65410 x21: 00000000ffffff92 [ 54.782945] x20: ffffa5c6ce8dbe98 x19: ffffffffffffffac x18: ffffffffffffffff [ 54.807651] x17: 0000000000000000 x16: ffffa5c6ce2824ec x15: ffff8001005eb857 [ 54.821917] x14: 0000000000000000 x13: ffffa5c6cf1a02e0 x12: 0000000000000642 [ 54.821924] x11: 0000000000000040 x10: ffffa5c6cf19d690 x9 : ffffa5c6cf19d688 [ 54.821931] x8 : ffff377b86000028 x7 : 0000000000000000 x6 : 0000000000000000 [ 54.821938] x5 : ffff377b86000000 x4 : 0000000000000000 x3 : 0000000000000000 [ 54.843331] x2 : 0000000000000000 x1 : 0000000000000002 x0 : ffffffffffffffac [ 54.857599] Call trace: [ 54.857601] kfree_skb_reason+0x18/0xb0 [ 54.863878] btnxpuart_flush+0x40/0x58 [btnxpuart] [ 54.863888] hci_dev_open_sync+0x3a8/0xa04 [ 54.872773] hci_power_on+0x54/0x2e4 [ 54.881832] process_one_work+0x138/0x260 [ 54.881842] worker_thread+0x32c/0x438 [ 54.881847] kthread+0x118/0x11c [ 54.881853] ret_from_fork+0x10/0x20 [ 54.896406] Code: a9be7bfd 910003fd f9000bf3 aa0003f3 (b940d400) [ 54.896410] ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-46742 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb/server: fix potential null-ptr-deref of lease_ctx_info in smb2_open() null-ptr-deref will occur when (req_op_level == SMB2_OPLOCK_LEVEL_LEASE) and parse_lease_state() return NULL. Fix this by check if 'lease_ctx_info' is NULL. Additionally, remove the redundant parentheses in parse_durable_handle_context().
5.5
Medium
CVE-2024-46730 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Ensure array index tg_inst won't be -1 [WHY & HOW] tg_inst will be a negative if timing_generator_count equals 0, which should be checked before used. This fixes 2 OVERRUN issues reported by Coverity.
5.5
Medium
CVE-2024-46728 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check index for aux_rd_interval before using aux_rd_interval has size of 7 and should be checked. This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity.
5.5
Medium
CVE-2024-46727 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add otg_master NULL check within resource_log_pipe_topology_update [Why] Coverity reports NULL_RETURN warning. [How] Add otg_master NULL check.
5.5
Medium
CVE-2024-46726 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Ensure index calculation will not overflow [WHY & HOW] Make sure vmid0p72_idx, vnom0p8_idx and vmax0p9_idx calculation will never overflow and exceess array size. This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity.
5.5
Medium
CVE-2024-46720 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix dereference after null check check the pointer hive before use.
5.5
Medium
CVE-2024-46715 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: driver: iio: add missing checks on iio_info's callback access Some callbacks from iio_info structure are accessed without any check, so if a driver doesn't implement them trying to access the corresponding sysfs entries produce a kernel oops such as: [ 2203.527791] Unable to handle kernel NULL pointer dereference at virtual address 00000000 when execute [...] [ 2203.783416] Call trace: [ 2203.783429] iio_read_channel_info_avail from dev_attr_show+0x18/0x48 [ 2203.789807] dev_attr_show from sysfs_kf_seq_show+0x90/0x120 [ 2203.794181] sysfs_kf_seq_show from seq_read_iter+0xd0/0x4e4 [ 2203.798555] seq_read_iter from vfs_read+0x238/0x2a0 [ 2203.802236] vfs_read from ksys_read+0xa4/0xd4 [ 2203.805385] ksys_read from ret_fast_syscall+0x0/0x54 [ 2203.809135] Exception stack(0xe0badfa8 to 0xe0badff0) [ 2203.812880] dfa0: 00000003 b6f10f80 00000003 b6eab000 00020000 00000000 [ 2203.819746] dfc0: 00000003 b6f10f80 7ff00000 00000003 00000003 00000000 00020000 00000000 [ 2203.826619] dfe0: b6e1bc88 bed80958 b6e1bc94 b6e1bcb0 [ 2203.830363] Code: bad PC value [ 2203.832695] ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-46705 2024-09-13 06h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: reset mmio mappings with devm Set our various mmio mappings to NULL. This should make it easier to catch something rogue trying to mess with mmio after device removal. For example, we might unmap everything and then start hitting some mmio address which has already been unmamped by us and then remapped by something else, causing all kinds of carnage.
5.5
Medium
CVE-2024-46700 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/mes: fix mes ring buffer overflow wait memory room until enough before writing mes packets to avoid ring buffer overflow. v2: squash in sched_hw_submission fix (cherry picked from commit 34e087e8920e635c62e2ed6a758b0cd27f836d13)
7.8
High
CVE-2024-46695 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: selinux,smack: don't bypass permissions check in inode_setsecctx hook Marek Gresko reports that the root user on an NFS client is able to change the security labels on files on an NFS filesystem that is exported with root squashing enabled. The end of the kerneldoc comment for __vfs_setxattr_noperm() states: * This function requires the caller to lock the inode's i_mutex before it * is executed. It also assumes that the caller will make the appropriate * permission checks. nfsd_setattr() does do permissions checking via fh_verify() and nfsd_permission(), but those don't do all the same permissions checks that are done by security_inode_setxattr() and its related LSM hooks do. Since nfsd_setattr() is the only consumer of security_inode_setsecctx(), simplest solution appears to be to replace the call to __vfs_setxattr_noperm() with a call to __vfs_setxattr_locked(). This fixes the above issue and has the added benefit of causing nfsd to recall conflicting delegations on a file when a client tries to change its security label.
4.4
Medium
CVE-2024-46681 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: pktgen: use cpus_read_lock() in pg_net_init() I have seen the WARN_ON(smp_processor_id() != cpu) firing in pktgen_thread_worker() during tests. We must use cpus_read_lock()/cpus_read_unlock() around the for_each_online_cpu(cpu) loop. While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood.
5.5
Medium
CVE-2024-46678 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: bonding: change ipsec_lock from spin lock to mutex In the cited commit, bond->ipsec_lock is added to protect ipsec_list, hence xdo_dev_state_add and xdo_dev_state_delete are called inside this lock. As ipsec_lock is a spin lock and such xfrmdev ops may sleep, "scheduling while atomic" will be triggered when changing bond's active slave. [ 101.055189] BUG: scheduling while atomic: bash/902/0x00000200 [ 101.055726] Modules linked in: [ 101.058211] CPU: 3 PID: 902 Comm: bash Not tainted 6.9.0-rc4+ #1 [ 101.058760] Hardware name: [ 101.059434] Call Trace: [ 101.059436] [ 101.060873] dump_stack_lvl+0x51/0x60 [ 101.061275] __schedule_bug+0x4e/0x60 [ 101.061682] __schedule+0x612/0x7c0 [ 101.062078] ? __mod_timer+0x25c/0x370 [ 101.062486] schedule+0x25/0xd0 [ 101.062845] schedule_timeout+0x77/0xf0 [ 101.063265] ? asm_common_interrupt+0x22/0x40 [ 101.063724] ? __bpf_trace_itimer_state+0x10/0x10 [ 101.064215] __wait_for_common+0x87/0x190 [ 101.064648] ? usleep_range_state+0x90/0x90 [ 101.065091] cmd_exec+0x437/0xb20 [mlx5_core] [ 101.065569] mlx5_cmd_do+0x1e/0x40 [mlx5_core] [ 101.066051] mlx5_cmd_exec+0x18/0x30 [mlx5_core] [ 101.066552] mlx5_crypto_create_dek_key+0xea/0x120 [mlx5_core] [ 101.067163] ? bonding_sysfs_store_option+0x4d/0x80 [bonding] [ 101.067738] ? kmalloc_trace+0x4d/0x350 [ 101.068156] mlx5_ipsec_create_sa_ctx+0x33/0x100 [mlx5_core] [ 101.068747] mlx5e_xfrm_add_state+0x47b/0xaa0 [mlx5_core] [ 101.069312] bond_change_active_slave+0x392/0x900 [bonding] [ 101.069868] bond_option_active_slave_set+0x1c2/0x240 [bonding] [ 101.070454] __bond_opt_set+0xa6/0x430 [bonding] [ 101.070935] __bond_opt_set_notify+0x2f/0x90 [bonding] [ 101.071453] bond_opt_tryset_rtnl+0x72/0xb0 [bonding] [ 101.071965] bonding_sysfs_store_option+0x4d/0x80 [bonding] [ 101.072567] kernfs_fop_write_iter+0x10c/0x1a0 [ 101.073033] vfs_write+0x2d8/0x400 [ 101.073416] ? alloc_fd+0x48/0x180 [ 101.073798] ksys_write+0x5f/0xe0 [ 101.074175] do_syscall_64+0x52/0x110 [ 101.074576] entry_SYSCALL_64_after_hwframe+0x4b/0x53 As bond_ipsec_add_sa_all and bond_ipsec_del_sa_all are only called from bond_change_active_slave, which requires holding the RTNL lock. And bond_ipsec_add_sa and bond_ipsec_del_sa are xfrm state xdo_dev_state_add and xdo_dev_state_delete APIs, which are in user context. So ipsec_lock doesn't have to be spin lock, change it to mutex, and thus the above issue can be resolved.
5.5
Medium
CVE-2024-45015 2024-09-11 15h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: move dpu_encoder's connector assignment to atomic_enable() For cases where the crtc's connectors_changed was set without enable/active getting toggled , there is an atomic_enable() call followed by an atomic_disable() but without an atomic_mode_set(). This results in a NULL ptr access for the dpu_encoder_get_drm_fmt() call in the atomic_enable() as the dpu_encoder's connector was cleared in the atomic_disable() but not re-assigned as there was no atomic_mode_set() call. Fix the NULL ptr access by moving the assignment for atomic_enable() and also use drm_atomic_get_new_connector_for_encoder() to get the connector from the atomic_state. Patchwork: https://patchwork.freedesktop.org/patch/606729/
5.5
Medium
CVE-2024-45010 2024-09-11 15h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: only mark 'subflow' endp as available Adding the following warning ... WARN_ON_ONCE(msk->pm.local_addr_used == 0) ... before decrementing the local_addr_used counter helped to find a bug when running the "remove single address" subtest from the mptcp_join.sh selftests. Removing a 'signal' endpoint will trigger the removal of all subflows linked to this endpoint via mptcp_pm_nl_rm_addr_or_subflow() with rm_type == MPTCP_MIB_RMSUBFLOW. This will decrement the local_addr_used counter, which is wrong in this case because this counter is linked to 'subflow' endpoints, and here it is a 'signal' endpoint that is being removed. Now, the counter is decremented, only if the ID is being used outside of mptcp_pm_nl_rm_addr_or_subflow(), only for 'subflow' endpoints, and if the ID is not 0 -- local_addr_used is not taking into account these ones. This marking of the ID as being available, and the decrement is done no matter if a subflow using this ID is currently available, because the subflow could have been closed before.
5.5
Medium
CVE-2024-44977 2024-09-04 19h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Validate TA binary size Add TA binary size validation to avoid OOB write. (cherry picked from commit c0a04e3570d72aaf090962156ad085e37c62e442)
7.8
High
CVE-2024-44974 2024-09-04 19h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: avoid possible UaF when selecting endp select_local_address() and select_signal_address() both select an endpoint entry from the list inside an RCU protected section, but return a reference to it, to be read later on. If the entry is dereferenced after the RCU unlock, reading info could cause a Use-after-Free. A simple solution is to copy the required info while inside the RCU protected section to avoid any risk of UaF later. The address ID might need to be modified later to handle the ID0 case later, so a copy seems OK to deal with.
7.8
High
CVE-2024-44972 2024-09-04 18h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: do not clear page dirty inside extent_write_locked_range() [BUG] For subpage + zoned case, the following workload can lead to rsv data leak at unmount time: # mkfs.btrfs -f -s 4k $dev # mount $dev $mnt # fsstress -w -n 8 -d $mnt -s 1709539240 0/0: fiemap - no filename 0/1: copyrange read - no filename 0/2: write - no filename 0/3: rename - no source filename 0/4: creat f0 x:0 0 0 0/4: creat add id=0,parent=-1 0/5: writev f0[259 1 0 0 0 0] [778052,113,965] 0 0/6: ioctl(FIEMAP) f0[259 1 0 0 224 887097] [1294220,2291618343991484791,0x10000] -1 0/7: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 224 887097] return 25, fallback to stat() 0/7: dwrite f0[259 1 0 0 224 887097] [696320,102400] 0 # umount $mnt The dmesg includes the following rsv leak detection warning (all call trace skipped): ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8653 btrfs_destroy_inode+0x1e0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8654 btrfs_destroy_inode+0x1a8/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8660 btrfs_destroy_inode+0x1a0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): last unmount of filesystem 1b4abba9-de34-4f07-9e7f-157cf12a18d6 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info DATA has 268218368 free, is not full BTRFS info (device sda): space_info total=268435456, used=204800, pinned=0, reserved=0, may_use=12288, readonly=0 zone_unusable=0 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info METADATA has 267796480 free, is not full BTRFS info (device sda): space_info total=268435456, used=131072, pinned=0, reserved=0, may_use=262144, readonly=0 zone_unusable=245760 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 Above $dev is a tcmu-runner emulated zoned HDD, which has a max zone append size of 64K, and the system has 64K page size. [CAUSE] I have added several trace_printk() to show the events (header skipped): > btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688 > btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288 > btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536 > btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864 The above lines show our buffered write has dirtied 3 pages of inode 259 of root 5: 704K 768K 832K 896K I |////I/////////////////I///////////| I 756K 868K |///| is the dirtied range using subpage bitmaps. and 'I' is the page boundary. Meanwhile all three pages (704K, 768K, 832K) have their PageDirty flag set. > btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400 Then direct IO writ ---truncated---
5.5
Medium
CVE-2024-44970 2024-09-04 18h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: SHAMPO, Fix invalid WQ linked list unlink When all the strides in a WQE have been consumed, the WQE is unlinked from the WQ linked list (mlx5_wq_ll_pop()). For SHAMPO, it is possible to receive CQEs with 0 consumed strides for the same WQE even after the WQE is fully consumed and unlinked. This triggers an additional unlink for the same wqe which corrupts the linked list. Fix this scenario by accepting 0 sized consumed strides without unlinking the WQE again.
5.5
Medium
CVE-2024-44963 2024-09-04 18h36 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: do not BUG_ON() when freeing tree block after error When freeing a tree block, at btrfs_free_tree_block(), if we fail to create a delayed reference we don't deal with the error and just do a BUG_ON(). The error most likely to happen is -ENOMEM, and we have a comment mentioning that only -ENOMEM can happen, but that is not true, because in case qgroups are enabled any error returned from btrfs_qgroup_trace_extent_post() (can be -EUCLEAN or anything returned from btrfs_search_slot() for example) can be propagated back to btrfs_free_tree_block(). So stop doing a BUG_ON() and return the error to the callers and make them abort the transaction to prevent leaking space. Syzbot was triggering this, likely due to memory allocation failure injection.
5.5
Medium
CVE-2024-44962 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btnxpuart: Shutdown timer and prevent rearming when driver unloading When unload the btnxpuart driver, its associated timer will be deleted. If the timer happens to be modified at this moment, it leads to the kernel call this timer even after the driver unloaded, resulting in kernel panic. Use timer_shutdown_sync() instead of del_timer_sync() to prevent rearming. panic log: Internal error: Oops: 0000000086000007 [#1] PREEMPT SMP Modules linked in: algif_hash algif_skcipher af_alg moal(O) mlan(O) crct10dif_ce polyval_ce polyval_generic snd_soc_imx_card snd_soc_fsl_asoc_card snd_soc_imx_audmux mxc_jpeg_encdec v4l2_jpeg snd_soc_wm8962 snd_soc_fsl_micfil snd_soc_fsl_sai flexcan snd_soc_fsl_utils ap130x rpmsg_ctrl imx_pcm_dma can_dev rpmsg_char pwm_fan fuse [last unloaded: btnxpuart] CPU: 5 PID: 723 Comm: memtester Tainted: G O 6.6.23-lts-next-06207-g4aef2658ac28 #1 Hardware name: NXP i.MX95 19X19 board (DT) pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : 0xffff80007a2cf464 lr : call_timer_fn.isra.0+0x24/0x80 ... Call trace: 0xffff80007a2cf464 __run_timers+0x234/0x280 run_timer_softirq+0x20/0x40 __do_softirq+0x100/0x26c ____do_softirq+0x10/0x1c call_on_irq_stack+0x24/0x4c do_softirq_own_stack+0x1c/0x2c irq_exit_rcu+0xc0/0xdc el0_interrupt+0x54/0xd8 __el0_irq_handler_common+0x18/0x24 el0t_64_irq_handler+0x10/0x1c el0t_64_irq+0x190/0x194 Code: ???????? ???????? ???????? ???????? (????????) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception in interrupt SMP: stopping secondary CPUs Kernel Offset: disabled CPU features: 0x0,c0000000,40028143,1000721b Memory Limit: none ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]---
5.5
Medium
CVE-2024-44961 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Forward soft recovery errors to userspace As we discussed before[1], soft recovery should be forwarded to userspace, or we can get into a really bad state where apps will keep submitting hanging command buffers cascading us to a hard reset. 1: https://lore.kernel.org/all/[email protected]/ (cherry picked from commit 434967aadbbbe3ad9103cc29e9a327de20fdba01)
5.5
Medium
CVE-2024-44957 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Switch from mutex to spinlock for irqfds irqfd_wakeup() gets EPOLLHUP, when it is called by eventfd_release() by way of wake_up_poll(&ctx->wqh, EPOLLHUP), which gets called under spin_lock_irqsave(). We can't use a mutex here as it will lead to a deadlock. Fix it by switching over to a spin lock.
5.5
Medium
CVE-2024-44956 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/preempt_fence: enlarge the fence critical section It is really easy to introduce subtle deadlocks in preempt_fence_work_func() since we operate on single global ordered-wq for signalling our preempt fences behind the scenes, so even though we signal a particular fence, everything in the callback should be in the fence critical section, since blocking in the callback will prevent other published fences from signalling. If we enlarge the fence critical section to cover the entire callback, then lockdep should be able to understand this better, and complain if we grab a sensitive lock like vm->lock, which is also held when waiting on preempt fences.
5.5
Medium
CVE-2024-44955 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Don't refer to dc_sink in is_dsc_need_re_compute [Why] When unplug one of monitors connected after mst hub, encounter null pointer dereference. It's due to dc_sink get released immediately in early_unregister() or detect_ctx(). When commit new state which directly referring to info stored in dc_sink will cause null pointer dereference. [how] Remove redundant checking condition. Relevant condition should already be covered by checking if dsc_aux is null or not. Also reset dsc_aux to NULL when the connector is disconnected.
5.5
Medium
CVE-2024-44950 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: fix invalid FIFO access with special register set When enabling access to the special register set, Receiver time-out and RHR interrupts can happen. In this case, the IRQ handler will try to read from the FIFO thru the RHR register at address 0x00, but address 0x00 is mapped to DLL register, resulting in erroneous FIFO reading. Call graph example: sc16is7xx_startup(): entry sc16is7xx_ms_proc(): entry sc16is7xx_set_termios(): entry sc16is7xx_set_baud(): DLH/DLL = $009C --> access special register set sc16is7xx_port_irq() entry --> IIR is 0x0C sc16is7xx_handle_rx() entry sc16is7xx_fifo_read(): --> unable to access FIFO (RHR) because it is mapped to DLL (LCR=LCR_CONF_MODE_A) sc16is7xx_set_baud(): exit --> Restore access to general register set Fix the problem by claiming the efr_lock mutex when accessing the Special register set.
5.5
Medium
CVE-2024-44949 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: parisc: fix a possible DMA corruption ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be possible that two unrelated 16-byte allocations share a cache line. If one of these allocations is written using DMA and the other is written using cached write, the value that was written with DMA may be corrupted. This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 - that's the largest possible cache line size. As different parisc microarchitectures have different cache line size, we define arch_slab_minalign(), cache_line_size() and dma_get_cache_alignment() so that the kernel may tune slab cache parameters dynamically, based on the detected cache line size.
7.8
High
CVE-2024-44946 2024-08-31 13h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: kcm: Serialise kcm_sendmsg() for the same socket. syzkaller reported UAF in kcm_release(). [0] The scenario is 1. Thread A builds a skb with MSG_MORE and sets kcm->seq_skb. 2. Thread A resumes building skb from kcm->seq_skb but is blocked by sk_stream_wait_memory() 3. Thread B calls sendmsg() concurrently, finishes building kcm->seq_skb and puts the skb to the write queue 4. Thread A faces an error and finally frees skb that is already in the write queue 5. kcm_release() does double-free the skb in the write queue When a thread is building a MSG_MORE skb, another thread must not touch it. Let's add a per-sk mutex and serialise kcm_sendmsg(). [0]: BUG: KASAN: slab-use-after-free in __skb_unlink include/linux/skbuff.h:2366 [inline] BUG: KASAN: slab-use-after-free in __skb_dequeue include/linux/skbuff.h:2385 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] BUG: KASAN: slab-use-after-free in __skb_queue_purge include/linux/skbuff.h:3181 [inline] BUG: KASAN: slab-use-after-free in kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 Read of size 8 at addr ffff0000ced0fc80 by task syz-executor329/6167 CPU: 1 PID: 6167 Comm: syz-executor329 Tainted: G B 6.8.0-rc5-syzkaller-g9abbc24128bc #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 Call trace: dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:291 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:298 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd0/0x124 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:377 [inline] print_report+0x178/0x518 mm/kasan/report.c:488 kasan_report+0xd8/0x138 mm/kasan/report.c:601 __asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381 __skb_unlink include/linux/skbuff.h:2366 [inline] __skb_dequeue include/linux/skbuff.h:2385 [inline] __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline] __skb_queue_purge include/linux/skbuff.h:3181 [inline] kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691 __sock_release net/socket.c:659 [inline] sock_close+0xa4/0x1e8 net/socket.c:1421 __fput+0x30c/0x738 fs/file_table.c:376 ____fput+0x20/0x30 fs/file_table.c:404 task_work_run+0x230/0x2e0 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x618/0x1f64 kernel/exit.c:871 do_group_exit+0x194/0x22c kernel/exit.c:1020 get_signal+0x1500/0x15ec kernel/signal.c:2893 do_signal+0x23c/0x3b44 arch/arm64/kernel/signal.c:1249 do_notify_resume+0x74/0x1f4 arch/arm64/kernel/entry-common.c:148 exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline] exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline] el0_svc+0xac/0x168 arch/arm64/kernel/entry-common.c:713 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 Allocated by task 6166: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x40/0x78 mm/kasan/common.c:68 kasan_save_alloc_info+0x70/0x84 mm/kasan/generic.c:626 unpoison_slab_object mm/kasan/common.c:314 [inline] __kasan_slab_alloc+0x74/0x8c mm/kasan/common.c:340 kasan_slab_alloc include/linux/kasan.h:201 [inline] slab_post_alloc_hook mm/slub.c:3813 [inline] slab_alloc_node mm/slub.c:3860 [inline] kmem_cache_alloc_node+0x204/0x4c0 mm/slub.c:3903 __alloc_skb+0x19c/0x3d8 net/core/skbuff.c:641 alloc_skb include/linux/skbuff.h:1296 [inline] kcm_sendmsg+0x1d3c/0x2124 net/kcm/kcmsock.c:783 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] sock_sendmsg+0x220/0x2c0 net/socket.c:768 splice_to_socket+0x7cc/0xd58 fs/splice.c:889 do_splice_from fs/splice.c:941 [inline] direct_splice_actor+0xec/0x1d8 fs/splice.c:1164 splice_direct_to_actor+0x438/0xa0c fs/splice.c:1108 do_splice_direct_actor ---truncated---
5.5
Medium
CVE-2024-44942 2024-08-26 11h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on F2FS_INLINE_DATA flag in inode during GC syzbot reports a f2fs bug as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/inline.c:258! CPU: 1 PID: 34 Comm: kworker/u8:2 Not tainted 6.9.0-rc6-syzkaller-00012-g9e4bc4bcae01 #0 RIP: 0010:f2fs_write_inline_data+0x781/0x790 fs/f2fs/inline.c:258 Call Trace: f2fs_write_single_data_page+0xb65/0x1d60 fs/f2fs/data.c:2834 f2fs_write_cache_pages fs/f2fs/data.c:3133 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3288 [inline] f2fs_write_data_pages+0x1efe/0x3a90 fs/f2fs/data.c:3315 do_writepages+0x35b/0x870 mm/page-writeback.c:2612 __writeback_single_inode+0x165/0x10b0 fs/fs-writeback.c:1650 writeback_sb_inodes+0x905/0x1260 fs/fs-writeback.c:1941 wb_writeback+0x457/0xce0 fs/fs-writeback.c:2117 wb_do_writeback fs/fs-writeback.c:2264 [inline] wb_workfn+0x410/0x1090 fs/fs-writeback.c:2304 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0xa12/0x17c0 kernel/workqueue.c:3335 worker_thread+0x86d/0xd70 kernel/workqueue.c:3416 kthread+0x2f2/0x390 kernel/kthread.c:388 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 The root cause is: inline_data inode can be fuzzed, so that there may be valid blkaddr in its direct node, once f2fs triggers background GC to migrate the block, it will hit f2fs_bug_on() during dirty page writeback. Let's add sanity check on F2FS_INLINE_DATA flag in inode during GC, so that, it can forbid migrating inline_data inode's data block for fixing.
7.8
High
CVE-2024-44941 2024-08-26 11h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to cover read extent cache access with lock syzbot reports a f2fs bug as below: BUG: KASAN: slab-use-after-free in sanity_check_extent_cache+0x370/0x410 fs/f2fs/extent_cache.c:46 Read of size 4 at addr ffff8880739ab220 by task syz-executor200/5097 CPU: 0 PID: 5097 Comm: syz-executor200 Not tainted 6.9.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 sanity_check_extent_cache+0x370/0x410 fs/f2fs/extent_cache.c:46 do_read_inode fs/f2fs/inode.c:509 [inline] f2fs_iget+0x33e1/0x46e0 fs/f2fs/inode.c:560 f2fs_nfs_get_inode+0x74/0x100 fs/f2fs/super.c:3237 generic_fh_to_dentry+0x9f/0xf0 fs/libfs.c:1413 exportfs_decode_fh_raw+0x152/0x5f0 fs/exportfs/expfs.c:444 exportfs_decode_fh+0x3c/0x80 fs/exportfs/expfs.c:584 do_handle_to_path fs/fhandle.c:155 [inline] handle_to_path fs/fhandle.c:210 [inline] do_handle_open+0x495/0x650 fs/fhandle.c:226 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f We missed to cover sanity_check_extent_cache() w/ extent cache lock, so, below race case may happen, result in use after free issue. - f2fs_iget - do_read_inode - f2fs_init_read_extent_tree : add largest extent entry in to cache - shrink - f2fs_shrink_read_extent_tree - __shrink_extent_tree - __detach_extent_node : drop largest extent entry - sanity_check_extent_cache : access et->largest w/o lock let's refactor sanity_check_extent_cache() to avoid extent cache access and call it before f2fs_init_read_extent_tree() to fix this issue.
7.8
High
CVE-2024-44940 2024-08-26 11h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: fou: remove warn in gue_gro_receive on unsupported protocol Drop the WARN_ON_ONCE inn gue_gro_receive if the encapsulated type is not known or does not have a GRO handler. Such a packet is easily constructed. Syzbot generates them and sets off this warning. Remove the warning as it is expected and not actionable. The warning was previously reduced from WARN_ON to WARN_ON_ONCE in commit 270136613bf7 ("fou: Do WARN_ON_ONCE in gue_gro_receive for bad proto callbacks").
7.8
High
CVE-2024-44939 2024-08-26 11h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: jfs: fix null ptr deref in dtInsertEntry [syzbot reported] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 5061 Comm: syz-executor404 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:dtInsertEntry+0xd0c/0x1780 fs/jfs/jfs_dtree.c:3713 ... [Analyze] In dtInsertEntry(), when the pointer h has the same value as p, after writing name in UniStrncpy_to_le(), p->header.flag will be cleared. This will cause the previously true judgment "p->header.flag & BT-LEAF" to change to no after writing the name operation, this leads to entering an incorrect branch and accessing the uninitialized object ih when judging this condition for the second time. [Fix] After got the page, check freelist first, if freelist == 0 then exit dtInsert() and return -EINVAL.
5.5
Medium
CVE-2024-44938 2024-08-26 11h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: jfs: Fix shift-out-of-bounds in dbDiscardAG When searching for the next smaller log2 block, BLKSTOL2() returned 0, causing shift exponent -1 to be negative. This patch fixes the issue by exiting the loop directly when negative shift is found.
5.5
Medium
CVE-2024-44931 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpio: prevent potential speculation leaks in gpio_device_get_desc() Userspace may trigger a speculative read of an address outside the gpio descriptor array. Users can do that by calling gpio_ioctl() with an offset out of range. Offset is copied from user and then used as an array index to get the gpio descriptor without sanitization in gpio_device_get_desc(). This change ensures that the offset is sanitized by using array_index_nospec() to mitigate any possibility of speculative information leaks. This bug was discovered and resolved using Coverity Static Analysis Security Testing (SAST) by Synopsys, Inc.
5.5
Medium
CVE-2024-43913 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme: apple: fix device reference counting Drivers must call nvme_uninit_ctrl after a successful nvme_init_ctrl. Split the allocation side out to make the error handling boundary easier to navigate. The apple driver had been doing this wrong, leaking the controller device memory on a tagset failure.
5.5
Medium
CVE-2024-43912 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: disallow setting special AP channel widths Setting the AP channel width is meant for use with the normal 20/40/... MHz channel width progression, and switching around in S1G or narrow channels isn't supported. Disallow that.
5.5
Medium
CVE-2024-43911 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix NULL dereference at band check in starting tx ba session In MLD connection, link_data/link_conf are dynamically allocated. They don't point to vif->bss_conf. So, there will be no chanreq assigned to vif->bss_conf and then the chan will be NULL. Tweak the code to check ht_supported/vht_supported/has_he/has_eht on sta deflink. Crash log (with rtw89 version under MLO development): [ 9890.526087] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 9890.526102] #PF: supervisor read access in kernel mode [ 9890.526105] #PF: error_code(0x0000) - not-present page [ 9890.526109] PGD 0 P4D 0 [ 9890.526114] Oops: 0000 [#1] PREEMPT SMP PTI [ 9890.526119] CPU: 2 PID: 6367 Comm: kworker/u16:2 Kdump: loaded Tainted: G OE 6.9.0 #1 [ 9890.526123] Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB3WW (2.73 ) 11/28/2018 [ 9890.526126] Workqueue: phy2 rtw89_core_ba_work [rtw89_core] [ 9890.526203] RIP: 0010:ieee80211_start_tx_ba_session (net/mac80211/agg-tx.c:618 (discriminator 1)) mac80211 [ 9890.526279] Code: f7 e8 d5 93 3e ea 48 83 c4 28 89 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 49 8b 84 24 e0 f1 ff ff 48 8b 80 90 1b 00 00 <83> 38 03 0f 84 37 fe ff ff bb ea ff ff ff eb cc 49 8b 84 24 10 f3 All code ======== 0: f7 e8 imul %eax 2: d5 (bad) 3: 93 xchg %eax,%ebx 4: 3e ea ds (bad) 6: 48 83 c4 28 add $0x28,%rsp a: 89 d8 mov %ebx,%eax c: 5b pop %rbx d: 41 5c pop %r12 f: 41 5d pop %r13 11: 41 5e pop %r14 13: 41 5f pop %r15 15: 5d pop %rbp 16: c3 retq 17: cc int3 18: cc int3 19: cc int3 1a: cc int3 1b: 49 8b 84 24 e0 f1 ff mov -0xe20(%r12),%rax 22: ff 23: 48 8b 80 90 1b 00 00 mov 0x1b90(%rax),%rax 2a:* 83 38 03 cmpl $0x3,(%rax) <-- trapping instruction 2d: 0f 84 37 fe ff ff je 0xfffffffffffffe6a 33: bb ea ff ff ff mov $0xffffffea,%ebx 38: eb cc jmp 0x6 3a: 49 rex.WB 3b: 8b .byte 0x8b 3c: 84 24 10 test %ah,(%rax,%rdx,1) 3f: f3 repz Code starting with the faulting instruction =========================================== 0: 83 38 03 cmpl $0x3,(%rax) 3: 0f 84 37 fe ff ff je 0xfffffffffffffe40 9: bb ea ff ff ff mov $0xffffffea,%ebx e: eb cc jmp 0xffffffffffffffdc 10: 49 rex.WB 11: 8b .byte 0x8b 12: 84 24 10 test %ah,(%rax,%rdx,1) 15: f3 repz [ 9890.526285] RSP: 0018:ffffb8db09013d68 EFLAGS: 00010246 [ 9890.526291] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9308e0d656c8 [ 9890.526295] RDX: 0000000000000000 RSI: ffffffffab99460b RDI: ffffffffab9a7685 [ 9890.526300] RBP: ffffb8db09013db8 R08: 0000000000000000 R09: 0000000000000873 [ 9890.526304] R10: ffff9308e0d64800 R11: 0000000000000002 R12: ffff9308e5ff6e70 [ 9890.526308] R13: ffff930952500e20 R14: ffff9309192a8c00 R15: 0000000000000000 [ 9890.526313] FS: 0000000000000000(0000) GS:ffff930b4e700000(0000) knlGS:0000000000000000 [ 9890.526316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9890.526318] CR2: 0000000000000000 CR3: 0000000391c58005 CR4: 00000000001706f0 [ 9890.526321] Call Trace: [ 9890.526324] [ 9890.526327] ? show_regs (arch/x86/kernel/dumpstack.c:479) [ 9890.526335] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434) [ 9890.526340] ? page_fault_oops (arch/x86/mm/fault.c:713) [ 9890.526347] ? search_module_extables (kernel/module/main.c:3256 (discriminator ---truncated---
5.5
Medium
CVE-2024-43906 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/admgpu: fix dereferencing null pointer context When user space sets an invalid ta type, the pointer context will be empty. So it need to check the pointer context before using it
5.5
Medium
CVE-2024-43905 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Fix the null pointer dereference for vega10_hwmgr Check return value and conduct null pointer handling to avoid null pointer dereference.
5.5
Medium
CVE-2024-43904 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null checks for 'stream' and 'plane' before dereferencing This commit adds null checks for the 'stream' and 'plane' variables in the dcn30_apply_idle_power_optimizations function. These variables were previously assumed to be null at line 922, but they were used later in the code without checking if they were null. This could potentially lead to a null pointer dereference, which would cause a crash. The null checks ensure that 'stream' and 'plane' are not null before they are used, preventing potential crashes. Fixes the below static smatch checker: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:938 dcn30_apply_idle_power_optimizations() error: we previously assumed 'stream' could be null (see line 922) drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:940 dcn30_apply_idle_power_optimizations() error: we previously assumed 'plane' could be null (see line 922)
5.5
Medium
CVE-2024-43901 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix NULL pointer dereference for DTN log in DCN401 When users run the command: cat /sys/kernel/debug/dri/0/amdgpu_dm_dtn_log The following NULL pointer dereference happens: [ +0.000003] BUG: kernel NULL pointer dereference, address: NULL [ +0.000005] #PF: supervisor instruction fetch in kernel mode [ +0.000002] #PF: error_code(0x0010) - not-present page [ +0.000002] PGD 0 P4D 0 [ +0.000004] Oops: 0010 [#1] PREEMPT SMP NOPTI [ +0.000003] RIP: 0010:0x0 [ +0.000008] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [...] [ +0.000002] PKRU: 55555554 [ +0.000002] Call Trace: [ +0.000002] [ +0.000003] ? show_regs+0x65/0x70 [ +0.000006] ? __die+0x24/0x70 [ +0.000004] ? page_fault_oops+0x160/0x470 [ +0.000006] ? do_user_addr_fault+0x2b5/0x690 [ +0.000003] ? prb_read_valid+0x1c/0x30 [ +0.000005] ? exc_page_fault+0x8c/0x1a0 [ +0.000005] ? asm_exc_page_fault+0x27/0x30 [ +0.000012] dcn10_log_color_state+0xf9/0x510 [amdgpu] [ +0.000306] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? vsnprintf+0x2fb/0x600 [ +0.000009] dcn10_log_hw_state+0xfd0/0xfe0 [amdgpu] [ +0.000218] ? __mod_memcg_lruvec_state+0xe8/0x170 [ +0.000008] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? debug_smp_processor_id+0x17/0x20 [ +0.000003] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? set_ptes.isra.0+0x2b/0x90 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? _raw_spin_unlock+0x19/0x40 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? do_anonymous_page+0x337/0x700 [ +0.000004] dtn_log_read+0x82/0x120 [amdgpu] [ +0.000207] full_proxy_read+0x66/0x90 [ +0.000007] vfs_read+0xb0/0x340 [ +0.000005] ? __count_memcg_events+0x79/0xe0 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? count_memcg_events.constprop.0+0x1e/0x40 [ +0.000003] ? handle_mm_fault+0xb2/0x370 [ +0.000003] ksys_read+0x6b/0xf0 [ +0.000004] __x64_sys_read+0x19/0x20 [ +0.000003] do_syscall_64+0x60/0x130 [ +0.000004] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ +0.000003] RIP: 0033:0x7fdf32f147e2 [...] This error happens when the color log tries to read the gamut remap information from DCN401 which is not initialized in the dcn401_dpp_funcs which leads to a null pointer dereference. This commit addresses this issue by adding a proper guard to access the gamut_remap callback in case the specific ASIC did not implement this function.
5.5
Medium
CVE-2024-43900 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: xc2028: avoid use-after-free in load_firmware_cb() syzkaller reported use-after-free in load_firmware_cb() [1]. The reason is because the module allocated a struct tuner in tuner_probe(), and then the module initialization failed, the struct tuner was released. A worker which created during module initialization accesses this struct tuner later, it caused use-after-free. The process is as follows: task-6504 worker_thread tuner_probe <= alloc dvb_frontend [2] ... request_firmware_nowait <= create a worker ... tuner_remove <= free dvb_frontend ... request_firmware_work_func <= the firmware is ready load_firmware_cb <= but now the dvb_frontend has been freed To fix the issue, check the dvd_frontend in load_firmware_cb(), if it is null, report a warning and just return. [1]: ================================================================== BUG: KASAN: use-after-free in load_firmware_cb+0x1310/0x17a0 Read of size 8 at addr ffff8000d7ca2308 by task kworker/2:3/6504 Call trace: load_firmware_cb+0x1310/0x17a0 request_firmware_work_func+0x128/0x220 process_one_work+0x770/0x1824 worker_thread+0x488/0xea0 kthread+0x300/0x430 ret_from_fork+0x10/0x20 Allocated by task 6504: kzalloc tuner_probe+0xb0/0x1430 i2c_device_probe+0x92c/0xaf0 really_probe+0x678/0xcd0 driver_probe_device+0x280/0x370 __device_attach_driver+0x220/0x330 bus_for_each_drv+0x134/0x1c0 __device_attach+0x1f4/0x410 device_initial_probe+0x20/0x30 bus_probe_device+0x184/0x200 device_add+0x924/0x12c0 device_register+0x24/0x30 i2c_new_device+0x4e0/0xc44 v4l2_i2c_new_subdev_board+0xbc/0x290 v4l2_i2c_new_subdev+0xc8/0x104 em28xx_v4l2_init+0x1dd0/0x3770 Freed by task 6504: kfree+0x238/0x4e4 tuner_remove+0x144/0x1c0 i2c_device_remove+0xc8/0x290 __device_release_driver+0x314/0x5fc device_release_driver+0x30/0x44 bus_remove_device+0x244/0x490 device_del+0x350/0x900 device_unregister+0x28/0xd0 i2c_unregister_device+0x174/0x1d0 v4l2_device_unregister+0x224/0x380 em28xx_v4l2_init+0x1d90/0x3770 The buggy address belongs to the object at ffff8000d7ca2000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 776 bytes inside of 2048-byte region [ffff8000d7ca2000, ffff8000d7ca2800) The buggy address belongs to the page: page:ffff7fe00035f280 count:1 mapcount:0 mapping:ffff8000c001f000 index:0x0 flags: 0x7ff800000000100(slab) raw: 07ff800000000100 ffff7fe00049d880 0000000300000003 ffff8000c001f000 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8000d7ca2200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8000d7ca2280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8000d7ca2300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8000d7ca2380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8000d7ca2400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== [2] Actually, it is allocated for struct tuner, and dvb_frontend is inside.
7.8
High
CVE-2024-43899 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix null pointer deref in dcn20_resource.c Fixes a hang thats triggered when MPV is run on a DCN401 dGPU: mpv --hwdec=vaapi --vo=gpu --hwdec-codecs=all and then enabling fullscreen playback (double click on the video) The following calltrace will be seen: [ 181.843989] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 181.843997] #PF: supervisor instruction fetch in kernel mode [ 181.844003] #PF: error_code(0x0010) - not-present page [ 181.844009] PGD 0 P4D 0 [ 181.844020] Oops: 0010 [#1] PREEMPT SMP NOPTI [ 181.844028] CPU: 6 PID: 1892 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 181.844038] Hardware name: System manufacturer System Product Name/CROSSHAIR VI HERO, BIOS 6302 10/23/2018 [ 181.844044] RIP: 0010:0x0 [ 181.844079] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [ 181.844084] RSP: 0018:ffffb593c2b8f7b0 EFLAGS: 00010246 [ 181.844093] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000004 [ 181.844099] RDX: ffffb593c2b8f804 RSI: ffffb593c2b8f7e0 RDI: ffff9e3c8e758400 [ 181.844105] RBP: ffffb593c2b8f7b8 R08: ffffb593c2b8f9c8 R09: ffffb593c2b8f96c [ 181.844110] R10: 0000000000000000 R11: 0000000000000000 R12: ffffb593c2b8f9c8 [ 181.844115] R13: 0000000000000001 R14: ffff9e3c88000000 R15: 0000000000000005 [ 181.844121] FS: 00007c6e323bb5c0(0000) GS:ffff9e3f85f80000(0000) knlGS:0000000000000000 [ 181.844128] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 181.844134] CR2: ffffffffffffffd6 CR3: 0000000140fbe000 CR4: 00000000003506e0 [ 181.844141] Call Trace: [ 181.844146] [ 181.844153] ? show_regs+0x6d/0x80 [ 181.844167] ? __die+0x24/0x80 [ 181.844179] ? page_fault_oops+0x99/0x1b0 [ 181.844192] ? do_user_addr_fault+0x31d/0x6b0 [ 181.844204] ? exc_page_fault+0x83/0x1b0 [ 181.844216] ? asm_exc_page_fault+0x27/0x30 [ 181.844237] dcn20_get_dcc_compression_cap+0x23/0x30 [amdgpu] [ 181.845115] amdgpu_dm_plane_validate_dcc.constprop.0+0xe5/0x180 [amdgpu] [ 181.845985] amdgpu_dm_plane_fill_plane_buffer_attributes+0x300/0x580 [amdgpu] [ 181.846848] fill_dc_plane_info_and_addr+0x258/0x350 [amdgpu] [ 181.847734] fill_dc_plane_attributes+0x162/0x350 [amdgpu] [ 181.848748] dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.849791] ? dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.850840] amdgpu_dm_atomic_check+0xdfe/0x1760 [amdgpu]
5.5
Medium
CVE-2024-43897 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: drop bad gso csum_start and offset in virtio_net_hdr Tighten csum_start and csum_offset checks in virtio_net_hdr_to_skb for GSO packets. The function already checks that a checksum requested with VIRTIO_NET_HDR_F_NEEDS_CSUM is in skb linear. But for GSO packets this might not hold for segs after segmentation. Syzkaller demonstrated to reach this warning in skb_checksum_help offset = skb_checksum_start_offset(skb); ret = -EINVAL; if (WARN_ON_ONCE(offset >= skb_headlen(skb))) By injecting a TSO packet: WARNING: CPU: 1 PID: 3539 at net/core/dev.c:3284 skb_checksum_help+0x3d0/0x5b0 ip_do_fragment+0x209/0x1b20 net/ipv4/ip_output.c:774 ip_finish_output_gso net/ipv4/ip_output.c:279 [inline] __ip_finish_output+0x2bd/0x4b0 net/ipv4/ip_output.c:301 iptunnel_xmit+0x50c/0x930 net/ipv4/ip_tunnel_core.c:82 ip_tunnel_xmit+0x2296/0x2c70 net/ipv4/ip_tunnel.c:813 __gre_xmit net/ipv4/ip_gre.c:469 [inline] ipgre_xmit+0x759/0xa60 net/ipv4/ip_gre.c:661 __netdev_start_xmit include/linux/netdevice.h:4850 [inline] netdev_start_xmit include/linux/netdevice.h:4864 [inline] xmit_one net/core/dev.c:3595 [inline] dev_hard_start_xmit+0x261/0x8c0 net/core/dev.c:3611 __dev_queue_xmit+0x1b97/0x3c90 net/core/dev.c:4261 packet_snd net/packet/af_packet.c:3073 [inline] The geometry of the bad input packet at tcp_gso_segment: [ 52.003050][ T8403] skb len=12202 headroom=244 headlen=12093 tailroom=0 [ 52.003050][ T8403] mac=(168,24) mac_len=24 net=(192,52) trans=244 [ 52.003050][ T8403] shinfo(txflags=0 nr_frags=1 gso(size=1552 type=3 segs=0)) [ 52.003050][ T8403] csum(0x60000c7 start=199 offset=1536 ip_summed=3 complete_sw=0 valid=0 level=0) Mitigate with stricter input validation. csum_offset: for GSO packets, deduce the correct value from gso_type. This is already done for USO. Extend it to TSO. Let UFO be: udp[46]_ufo_fragment ignores these fields and always computes the checksum in software. csum_start: finding the real offset requires parsing to the transport header. Do not add a parser, use existing segmentation parsing. Thanks to SKB_GSO_DODGY, that also catches bad packets that are hw offloaded. Again test both TSO and USO. Do not test UFO for the above reason, and do not test UDP tunnel offload. GSO packet are almost always CHECKSUM_PARTIAL. USO packets may be CHECKSUM_NONE since commit 10154dbded6d6 ("udp: Allow GSO transmit from devices with no checksum offload"), but then still these fields are initialized correctly in udp4_hwcsum/udp6_hwcsum_outgoing. So no need to test for ip_summed == CHECKSUM_PARTIAL first. This revises an existing fix mentioned in the Fixes tag, which broke small packets with GSO offload, as detected by kselftests.
5.5
Medium
CVE-2024-43895 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not. (cherry picked from commit 8151a6c13111b465dbabe07c19f572f7cbd16fef)
5.5
Medium
CVE-2024-43892 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: memcg: protect concurrent access to mem_cgroup_idr Commit 73f576c04b94 ("mm: memcontrol: fix cgroup creation failure after many small jobs") decoupled the memcg IDs from the CSS ID space to fix the cgroup creation failures. It introduced IDR to maintain the memcg ID space. The IDR depends on external synchronization mechanisms for modifications. For the mem_cgroup_idr, the idr_alloc() and idr_replace() happen within css callback and thus are protected through cgroup_mutex from concurrent modifications. However idr_remove() for mem_cgroup_idr was not protected against concurrency and can be run concurrently for different memcgs when they hit their refcnt to zero. Fix that. We have been seeing list_lru based kernel crashes at a low frequency in our fleet for a long time. These crashes were in different part of list_lru code including list_lru_add(), list_lru_del() and reparenting code. Upon further inspection, it looked like for a given object (dentry and inode), the super_block's list_lru didn't have list_lru_one for the memcg of that object. The initial suspicions were either the object is not allocated through kmem_cache_alloc_lru() or somehow memcg_list_lru_alloc() failed to allocate list_lru_one() for a memcg but returned success. No evidence were found for these cases. Looking more deeply, we started seeing situations where valid memcg's id is not present in mem_cgroup_idr and in some cases multiple valid memcgs have same id and mem_cgroup_idr is pointing to one of them. So, the most reasonable explanation is that these situations can happen due to race between multiple idr_remove() calls or race between idr_alloc()/idr_replace() and idr_remove(). These races are causing multiple memcgs to acquire the same ID and then offlining of one of them would cleanup list_lrus on the system for all of them. Later access from other memcgs to the list_lru cause crashes due to missing list_lru_one.
4.7
Medium
CVE-2024-43886 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check in resource_log_pipe_topology_update [WHY] When switching from "Extend" to "Second Display Only" we sometimes call resource_get_otg_master_for_stream on a stream for the eDP, which is disconnected. This leads to a null pointer dereference. [HOW] Added a null check in dc_resource.c/resource_log_pipe_topology_update.
5.5
Medium
CVE-2024-43884 2024-08-26 07h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Add error handling to pair_device() hci_conn_params_add() never checks for a NULL value and could lead to a NULL pointer dereference causing a crash. Fixed by adding error handling in the function.
5.5
Medium
CVE-2023-52913 2024-08-21 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915: Fix potential context UAFs gem_context_register() makes the context visible to userspace, and which point a separate thread can trigger the I915_GEM_CONTEXT_DESTROY ioctl. So we need to ensure that nothing uses the ctx ptr after this. And we need to ensure that adding the ctx to the xarray is the *last* thing that gem_context_register() does with the ctx pointer. [tursulin: Stable and fixes tags add/tidy.] (cherry picked from commit bed4b455cf5374e68879be56971c1da563bcd90c)
5.5
Medium
CVE-2023-52912 2024-08-21 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fixed bug on error when unloading amdgpu Fixed bug on error when unloading amdgpu. The error message is as follows: [ 377.706202] kernel BUG at drivers/gpu/drm/drm_buddy.c:278! [ 377.706215] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 377.706222] CPU: 4 PID: 8610 Comm: modprobe Tainted: G IOE 6.0.0-thomas #1 [ 377.706231] Hardware name: ASUS System Product Name/PRIME Z390-A, BIOS 2004 11/02/2021 [ 377.706238] RIP: 0010:drm_buddy_free_block+0x26/0x30 [drm_buddy] [ 377.706264] Code: 00 00 00 90 0f 1f 44 00 00 48 8b 0e 89 c8 25 00 0c 00 00 3d 00 04 00 00 75 10 48 8b 47 18 48 d3 e0 48 01 47 28 e9 fa fe ff ff <0f> 0b 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 54 55 48 89 f5 53 [ 377.706282] RSP: 0018:ffffad2dc4683cb8 EFLAGS: 00010287 [ 377.706289] RAX: 0000000000000000 RBX: ffff8b1743bd5138 RCX: 0000000000000000 [ 377.706297] RDX: ffff8b1743bd5160 RSI: ffff8b1743bd5c78 RDI: ffff8b16d1b25f70 [ 377.706304] RBP: ffff8b1743bd59e0 R08: 0000000000000001 R09: 0000000000000001 [ 377.706311] R10: ffff8b16c8572400 R11: ffffad2dc4683cf0 R12: ffff8b16d1b25f70 [ 377.706318] R13: ffff8b16d1b25fd0 R14: ffff8b1743bd59c0 R15: ffff8b16d1b25f70 [ 377.706325] FS: 00007fec56c72c40(0000) GS:ffff8b1836500000(0000) knlGS:0000000000000000 [ 377.706334] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 377.706340] CR2: 00007f9b88c1ba50 CR3: 0000000110450004 CR4: 00000000003706e0 [ 377.706347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 377.706354] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 377.706361] Call Trace: [ 377.706365] [ 377.706369] drm_buddy_free_list+0x2a/0x60 [drm_buddy] [ 377.706376] amdgpu_vram_mgr_fini+0xea/0x180 [amdgpu] [ 377.706572] amdgpu_ttm_fini+0x12e/0x1a0 [amdgpu] [ 377.706650] amdgpu_bo_fini+0x22/0x90 [amdgpu] [ 377.706727] gmc_v11_0_sw_fini+0x26/0x30 [amdgpu] [ 377.706821] amdgpu_device_fini_sw+0xa1/0x3c0 [amdgpu] [ 377.706897] amdgpu_driver_release_kms+0x12/0x30 [amdgpu] [ 377.706975] drm_dev_release+0x20/0x40 [drm] [ 377.707006] release_nodes+0x35/0xb0 [ 377.707014] devres_release_all+0x8b/0xc0 [ 377.707020] device_unbind_cleanup+0xe/0x70 [ 377.707027] device_release_driver_internal+0xee/0x160 [ 377.707033] driver_detach+0x44/0x90 [ 377.707039] bus_remove_driver+0x55/0xe0 [ 377.707045] pci_unregister_driver+0x3b/0x90 [ 377.707052] amdgpu_exit+0x11/0x6c [amdgpu] [ 377.707194] __x64_sys_delete_module+0x142/0x2b0 [ 377.707201] ? fpregs_assert_state_consistent+0x22/0x50 [ 377.707208] ? exit_to_user_mode_prepare+0x3e/0x190 [ 377.707215] do_syscall_64+0x38/0x90 [ 377.707221] entry_SYSCALL_64_after_hwframe+0x63/0xcd
5.5
Medium
CVE-2023-52905 2024-08-21 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix resource leakage in VF driver unbind resources allocated like mcam entries to support the Ntuple feature and hash tables for the tc feature are not getting freed in driver unbind. This patch fixes the issue.
5.5
Medium
CVE-2022-48893 2024-08-21 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915/gt: Cleanup partial engine discovery failures If we abort driver initialisation in the middle of gt/engine discovery, some engines will be fully setup and some not. Those incompletely setup engines only have 'engine->release == NULL' and so will leak any of the common objects allocated. v2: - Drop the destroy_pinned_context() helper for now. It's not really worth it with just a single callsite at the moment. (Janusz)
5.5
Medium
CVE-2022-48887 2024-08-21 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Remove rcu locks from user resources User resource lookups used rcu to avoid two extra atomics. Unfortunately the rcu paths were buggy and it was easy to make the driver crash by submitting command buffers from two different threads. Because the lookups never show up in performance profiles replace them with a regular spin lock which fixes the races in accesses to those shared resources. Fixes kernel oops'es in IGT's vmwgfx execution_buffer stress test and seen crashes with apps using shared resources.
5.5
Medium
CVE-2024-43872 2024-08-21 00h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup under heavy CEQE load CEQEs are handled in interrupt handler currently. This may cause the CPU core staying in interrupt context too long and lead to soft lockup under heavy load. Handle CEQEs in BH workqueue and set an upper limit for the number of CEQE handled by a single call of work handler.
5.5
Medium
CVE-2024-43866 2024-08-20 23h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Always drain health in shutdown callback There is no point in recovery during device shutdown. if health work started need to wait for it to avoid races and NULL pointer access. Hence, drain health WQ on shutdown callback.
4.7
Medium
CVE-2024-43855 2024-08-17 09h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: md: fix deadlock between mddev_suspend and flush bio Deadlock occurs when mddev is being suspended while some flush bio is in progress. It is a complex issue. T1. the first flush is at the ending stage, it clears 'mddev->flush_bio' and tries to submit data, but is blocked because mddev is suspended by T4. T2. the second flush sets 'mddev->flush_bio', and attempts to queue md_submit_flush_data(), which is already running (T1) and won't execute again if on the same CPU as T1. T3. the third flush inc active_io and tries to flush, but is blocked because 'mddev->flush_bio' is not NULL (set by T2). T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc by T3. T1 T2 T3 T4 (flush 1) (flush 2) (third 3) (suspend) md_submit_flush_data mddev->flush_bio = NULL; . . md_flush_request . mddev->flush_bio = bio . queue submit_flushes . . . . md_handle_request . . active_io + 1 . . md_flush_request . . wait !mddev->flush_bio . . . . mddev_suspend . . wait !active_io . . . submit_flushes . queue_work md_submit_flush_data . //md_submit_flush_data is already running (T1) . md_handle_request wait resume The root issue is non-atomic inc/dec of active_io during flush process. active_io is dec before md_submit_flush_data is queued, and inc soon after md_submit_flush_data() run. md_flush_request active_io + 1 submit_flushes active_io - 1 md_submit_flush_data md_handle_request active_io + 1 make_request active_io - 1 If active_io is dec after md_handle_request() instead of within submit_flushes(), make_request() can be called directly intead of md_handle_request() in md_submit_flush_data(), and active_io will only inc and dec once in the whole flush process. Deadlock will be fixed. Additionally, the only difference between fixing the issue and before is that there is no return error handling of make_request(). But after previous patch cleaned md_write_start(), make_requst() only return error in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape)". Since dm always splits data and flush operation into two separate io, io size of flush submitted by dm always is 0, make_request() will not be called in md_submit_flush_data(). To prevent future modifications from introducing issues, add WARN_ON to ensure make_request() no error is returned in this context.
5.5
Medium
CVE-2024-43853 2024-08-17 09h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: Prevent UAF in proc_cpuset_show() An UAF can happen when /proc/cpuset is read as reported in [1]. This can be reproduced by the following methods: 1.add an mdelay(1000) before acquiring the cgroup_lock In the cgroup_path_ns function. 2.$cat /proc//cpuset repeatly. 3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/ $umount /sys/fs/cgroup/cpuset/ repeatly. The race that cause this bug can be shown as below: (umount) | (cat /proc//cpuset) css_release | proc_cpuset_show css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id); css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...); cgroup_destroy_root | mutex_lock(&cgroup_mutex); rebind_subsystems | cgroup_free_root | | // cgrp was freed, UAF | cgroup_path_ns_locked(cgrp,..); When the cpuset is initialized, the root node top_cpuset.css.cgrp will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated &cgroup_root.cgrp. When the umount operation is executed, top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp. The problem is that when rebinding to cgrp_dfl_root, there are cases where the cgroup_root allocated by setting up the root for cgroup v1 is cached. This could lead to a Use-After-Free (UAF) if it is subsequently freed. The descendant cgroups of cgroup v1 can only be freed after the css is released. However, the css of the root will never be released, yet the cgroup_root should be freed when it is unmounted. This means that obtaining a reference to the css of the root does not guarantee that css.cgrp->root will not be freed. Fix this problem by using rcu_read_lock in proc_cpuset_show(). As cgroup_root is kfree_rcu after commit d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU safe"), css->cgroup won't be freed during the critical section. To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to replace task_get_css with task_css. [1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd
5.5
Medium
CVE-2024-43849 2024-08-17 09h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pdr: protect locator_addr with the main mutex If the service locator server is restarted fast enough, the PDR can rewrite locator_addr fields concurrently. Protect them by placing modification of those fields under the main pdr->lock.
5.5
Medium
CVE-2024-43846 2024-08-17 09h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: lib: objagg: Fix general protection fault The library supports aggregation of objects into other objects only if the parent object does not have a parent itself. That is, nesting is not supported. Aggregation happens in two cases: Without and with hints, where hints are a pre-computed recommendation on how to aggregate the provided objects. Nesting is not possible in the first case due to a check that prevents it, but in the second case there is no check because the assumption is that nesting cannot happen when creating objects based on hints. The violation of this assumption leads to various warnings and eventually to a general protection fault [1]. Before fixing the root cause, error out when nesting happens and warn. [1] general protection fault, probably for non-canonical address 0xdead000000000d90: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 1083 Comm: kworker/1:9 Tainted: G W 6.9.0-rc6-custom-gd9b4f1cca7fb #7 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:mlxsw_sp_acl_erp_bf_insert+0x25/0x80 [...] Call Trace: mlxsw_sp_acl_atcam_entry_add+0x256/0x3c0 mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0 mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270 mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-43841 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: virt_wifi: avoid reporting connection success with wrong SSID When user issues a connection with a different SSID than the one virt_wifi has advertised, the __cfg80211_connect_result() will trigger the warning: WARN_ON(bss_not_found). The issue is because the connection code in virt_wifi does not check the SSID from user space (it only checks the BSSID), and virt_wifi will call cfg80211_connect_result() with WLAN_STATUS_SUCCESS even if the SSID is different from the one virt_wifi has advertised. Eventually cfg80211 won't be able to find the cfg80211_bss and generate the warning. Fixed it by checking the SSID (from user space) in the connection code.
3.3
Low
CVE-2024-43839 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: bna: adjust 'name' buf size of bna_tcb and bna_ccb structures To have enough space to write all possible sprintf() args. Currently 'name' size is 16, but the first '%s' specifier may already need at least 16 characters, since 'bnad->netdev->name' is used there. For '%d' specifiers, assume that they require: * 1 char for 'tx_id + tx_info->tcb[i]->id' sum, BNAD_MAX_TXQ_PER_TX is 8 * 2 chars for 'rx_id + rx_info->rx_ctrl[i].ccb->id', BNAD_MAX_RXP_PER_RX is 16 And replace sprintf with snprintf. Detected using the static analysis tool - Svace.
7.8
High
CVE-2024-43835 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio_net: Fix napi_skb_cache_put warning After the commit bdacf3e34945 ("net: Use nested-BH locking for napi_alloc_cache.") was merged, the following warning began to appear: WARNING: CPU: 5 PID: 1 at net/core/skbuff.c:1451 napi_skb_cache_put+0x82/0x4b0 __warn+0x12f/0x340 napi_skb_cache_put+0x82/0x4b0 napi_skb_cache_put+0x82/0x4b0 report_bug+0x165/0x370 handle_bug+0x3d/0x80 exc_invalid_op+0x1a/0x50 asm_exc_invalid_op+0x1a/0x20 __free_old_xmit+0x1c8/0x510 napi_skb_cache_put+0x82/0x4b0 __free_old_xmit+0x1c8/0x510 __free_old_xmit+0x1c8/0x510 __pfx___free_old_xmit+0x10/0x10 The issue arises because virtio is assuming it's running in NAPI context even when it's not, such as in the netpoll case. To resolve this, modify virtnet_poll_tx() to only set NAPI when budget is available. Same for virtnet_poll_cleantx(), which always assumed that it was in a NAPI context.
5.5
Medium
CVE-2024-43834 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: xdp: fix invalid wait context of page_pool_destroy() If the driver uses a page pool, it creates a page pool with page_pool_create(). The reference count of page pool is 1 as default. A page pool will be destroyed only when a reference count reaches 0. page_pool_destroy() is used to destroy page pool, it decreases a reference count. When a page pool is destroyed, ->disconnect() is called, which is mem_allocator_disconnect(). This function internally acquires mutex_lock(). If the driver uses XDP, it registers a memory model with xdp_rxq_info_reg_mem_model(). The xdp_rxq_info_reg_mem_model() internally increases a page pool reference count if a memory model is a page pool. Now the reference count is 2. To destroy a page pool, the driver should call both page_pool_destroy() and xdp_unreg_mem_model(). The xdp_unreg_mem_model() internally calls page_pool_destroy(). Only page_pool_destroy() decreases a reference count. If a driver calls page_pool_destroy() then xdp_unreg_mem_model(), we will face an invalid wait context warning. Because xdp_unreg_mem_model() calls page_pool_destroy() with rcu_read_lock(). The page_pool_destroy() internally acquires mutex_lock(). Splat looks like: ============================= [ BUG: Invalid wait context ] 6.10.0-rc6+ #4 Tainted: G W ----------------------------- ethtool/1806 is trying to lock: ffffffff90387b90 (mem_id_lock){+.+.}-{4:4}, at: mem_allocator_disconnect+0x73/0x150 other info that might help us debug this: context-{5:5} 3 locks held by ethtool/1806: stack backtrace: CPU: 0 PID: 1806 Comm: ethtool Tainted: G W 6.10.0-rc6+ #4 f916f41f172891c800f2fed Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 Call Trace: dump_stack_lvl+0x7e/0xc0 __lock_acquire+0x1681/0x4de0 ? _printk+0x64/0xe0 ? __pfx_mark_lock.part.0+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 lock_acquire+0x1b3/0x580 ? mem_allocator_disconnect+0x73/0x150 ? __wake_up_klogd.part.0+0x16/0xc0 ? __pfx_lock_acquire+0x10/0x10 ? dump_stack_lvl+0x91/0xc0 __mutex_lock+0x15c/0x1690 ? mem_allocator_disconnect+0x73/0x150 ? __pfx_prb_read_valid+0x10/0x10 ? mem_allocator_disconnect+0x73/0x150 ? __pfx_llist_add_batch+0x10/0x10 ? console_unlock+0x193/0x1b0 ? lockdep_hardirqs_on+0xbe/0x140 ? __pfx___mutex_lock+0x10/0x10 ? tick_nohz_tick_stopped+0x16/0x90 ? __irq_work_queue_local+0x1e5/0x330 ? irq_work_queue+0x39/0x50 ? __wake_up_klogd.part.0+0x79/0xc0 ? mem_allocator_disconnect+0x73/0x150 mem_allocator_disconnect+0x73/0x150 ? __pfx_mem_allocator_disconnect+0x10/0x10 ? mark_held_locks+0xa5/0xf0 ? rcu_is_watching+0x11/0xb0 page_pool_release+0x36e/0x6d0 page_pool_destroy+0xd7/0x440 xdp_unreg_mem_model+0x1a7/0x2a0 ? __pfx_xdp_unreg_mem_model+0x10/0x10 ? kfree+0x125/0x370 ? bnxt_free_ring.isra.0+0x2eb/0x500 ? bnxt_free_mem+0x5ac/0x2500 xdp_rxq_info_unreg+0x4a/0xd0 bnxt_free_mem+0x1356/0x2500 bnxt_close_nic+0xf0/0x3b0 ? __pfx_bnxt_close_nic+0x10/0x10 ? ethnl_parse_bit+0x2c6/0x6d0 ? __pfx___nla_validate_parse+0x10/0x10 ? __pfx_ethnl_parse_bit+0x10/0x10 bnxt_set_features+0x2a8/0x3e0 __netdev_update_features+0x4dc/0x1370 ? ethnl_parse_bitset+0x4ff/0x750 ? __pfx_ethnl_parse_bitset+0x10/0x10 ? __pfx___netdev_update_features+0x10/0x10 ? mark_held_locks+0xa5/0xf0 ? _raw_spin_unlock_irqrestore+0x42/0x70 ? __pm_runtime_resume+0x7d/0x110 ethnl_set_features+0x32d/0xa20 To fix this problem, it uses rhashtable_lookup_fast() instead of rhashtable_lookup() with rcu_read_lock(). Using xa without rcu_read_lock() here is safe. xa is freed by __xdp_mem_allocator_rcu_free() and this is called by call_rcu() of mem_xa_remove(). The mem_xa_remove() is called by page_pool_destroy() if a reference count reaches 0. The xa is already protected by the reference count mechanism well in the control plane. So removing rcu_read_lock() for page_pool_destroy() is safe.
5.5
Medium
CVE-2024-43829 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/qxl: Add check for drm_cvt_mode Add check for the return value of drm_cvt_mode() and return the error if it fails in order to avoid NULL pointer dereference.
5.5
Medium
CVE-2024-43824 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Make use of cached 'epc_features' in pci_epf_test_core_init() Instead of getting the epc_features from pci_epc_get_features() API, use the cached pci_epf_test::epc_features value to avoid the NULL check. Since the NULL check is already performed in pci_epf_test_bind(), having one more check in pci_epf_test_core_init() is redundant and it is not possible to hit the NULL pointer dereference. Also with commit a01e7214bef9 ("PCI: endpoint: Remove "core_init_notifier" flag"), 'epc_features' got dereferenced without the NULL check, leading to the following false positive Smatch warning: drivers/pci/endpoint/functions/pci-epf-test.c:784 pci_epf_test_core_init() error: we previously assumed 'epc_features' could be null (see line 747) Thus, remove the redundant NULL check and also use the epc_features:: {msix_capable/msi_capable} flags directly to avoid local variables. [kwilczynski: commit log]
5.5
Medium
CVE-2024-43823 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: keystone: Fix NULL pointer dereference in case of DT error in ks_pcie_setup_rc_app_regs() If IORESOURCE_MEM is not provided in Device Tree due to any error, resource_list_first_type() will return NULL and pci_parse_request_of_pci_ranges() will just emit a warning. This will cause a NULL pointer dereference. Fix this bug by adding NULL return check. Found by Linux Verification Center (linuxtesting.org) with SVACE.
5.5
Medium
CVE-2024-43819 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: kvm: s390: Reject memory region operations for ucontrol VMs This change rejects the KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2 ioctls when called on a ucontrol VM. This is necessary since ucontrol VMs have kvm->arch.gmap set to 0 and would thus result in a null pointer dereference further in. Memory management needs to be performed in userspace and using the ioctls KVM_S390_UCAS_MAP and KVM_S390_UCAS_UNMAP. Also improve s390 specific documentation for KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2. [[email protected]: commit message spelling fix, subject prefix fix]
5.5
Medium
CVE-2024-42297 2024-08-17 09h09 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to don't dirty inode for readonly filesystem syzbot reports f2fs bug as below: kernel BUG at fs/f2fs/inode.c:933! RIP: 0010:f2fs_evict_inode+0x1576/0x1590 fs/f2fs/inode.c:933 Call Trace: evict+0x2a4/0x620 fs/inode.c:664 dispose_list fs/inode.c:697 [inline] evict_inodes+0x5f8/0x690 fs/inode.c:747 generic_shutdown_super+0x9d/0x2c0 fs/super.c:675 kill_block_super+0x44/0x90 fs/super.c:1667 kill_f2fs_super+0x303/0x3b0 fs/f2fs/super.c:4894 deactivate_locked_super+0xc1/0x130 fs/super.c:484 cleanup_mnt+0x426/0x4c0 fs/namespace.c:1256 task_work_run+0x24a/0x300 kernel/task_work.c:180 ptrace_notify+0x2cd/0x380 kernel/signal.c:2399 ptrace_report_syscall include/linux/ptrace.h:411 [inline] ptrace_report_syscall_exit include/linux/ptrace.h:473 [inline] syscall_exit_work kernel/entry/common.c:251 [inline] syscall_exit_to_user_mode_prepare kernel/entry/common.c:278 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:283 [inline] syscall_exit_to_user_mode+0x15c/0x280 kernel/entry/common.c:296 do_syscall_64+0x50/0x110 arch/x86/entry/common.c:88 entry_SYSCALL_64_after_hwframe+0x63/0x6b The root cause is: - do_sys_open - f2fs_lookup - __f2fs_find_entry - f2fs_i_depth_write - f2fs_mark_inode_dirty_sync - f2fs_dirty_inode - set_inode_flag(inode, FI_DIRTY_INODE) - umount - kill_f2fs_super - kill_block_super - generic_shutdown_super - sync_filesystem : sb is readonly, skip sync_filesystem() - evict_inodes - iput - f2fs_evict_inode - f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE)) : trigger kernel panic When we try to repair i_current_depth in readonly filesystem, let's skip dirty inode to avoid panic in later f2fs_evict_inode().
5.5
Medium
CVE-2024-42270 2024-08-17 08h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: iptables: Fix null-ptr-deref in iptable_nat_table_init(). We had a report that iptables-restore sometimes triggered null-ptr-deref at boot time. [0] The problem is that iptable_nat_table_init() is exposed to user space before the kernel fully initialises netns. In the small race window, a user could call iptable_nat_table_init() that accesses net_generic(net, iptable_nat_net_id), which is available only after registering iptable_nat_net_ops. Let's call register_pernet_subsys() before xt_register_template(). [0]: bpfilter: Loaded bpfilter_umh pid 11702 Started bpfilter BUG: kernel NULL pointer dereference, address: 0000000000000013 PF: supervisor write access in kernel mode PF: error_code(0x0002) - not-present page PGD 0 P4D 0 PREEMPT SMP NOPTI CPU: 2 PID: 11879 Comm: iptables-restor Not tainted 6.1.92-99.174.amzn2023.x86_64 #1 Hardware name: Amazon EC2 c6i.4xlarge/, BIOS 1.0 10/16/2017 RIP: 0010:iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat Code: 10 4c 89 f6 48 89 ef e8 0b 19 bb ff 41 89 c4 85 c0 75 38 41 83 c7 01 49 83 c6 28 41 83 ff 04 75 dc 48 8b 44 24 08 48 8b 0c 24 <48> 89 08 4c 89 ef e8 a2 3b a2 cf 48 83 c4 10 44 89 e0 5b 5d 41 5c RSP: 0018:ffffbef902843cd0 EFLAGS: 00010246 RAX: 0000000000000013 RBX: ffff9f4b052caa20 RCX: ffff9f4b20988d80 RDX: 0000000000000000 RSI: 0000000000000064 RDI: ffffffffc04201c0 RBP: ffff9f4b29394000 R08: ffff9f4b07f77258 R09: ffff9f4b07f77240 R10: 0000000000000000 R11: ffff9f4b09635388 R12: 0000000000000000 R13: ffff9f4b1a3c6c00 R14: ffff9f4b20988e20 R15: 0000000000000004 FS: 00007f6284340000(0000) GS:ffff9f51fe280000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000013 CR3: 00000001d10a6005 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? xt_find_table_lock (net/netfilter/x_tables.c:1259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? page_fault_oops (arch/x86/mm/fault.c:727) ? exc_page_fault (./arch/x86/include/asm/irqflags.h:40 ./arch/x86/include/asm/irqflags.h:75 arch/x86/mm/fault.c:1470 arch/x86/mm/fault.c:1518) ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:570) ? iptable_nat_table_init (net/ipv4/netfilter/iptable_nat.c:87 net/ipv4/netfilter/iptable_nat.c:121) iptable_nat xt_find_table_lock (net/netfilter/x_tables.c:1259) xt_request_find_table_lock (net/netfilter/x_tables.c:1287) get_info (net/ipv4/netfilter/ip_tables.c:965) ? security_capable (security/security.c:809 (discriminator 13)) ? ns_capable (kernel/capability.c:376 kernel/capability.c:397) ? do_ipt_get_ctl (net/ipv4/netfilter/ip_tables.c:1656) ? bpfilter_send_req (net/bpfilter/bpfilter_kern.c:52) bpfilter nf_getsockopt (net/netfilter/nf_sockopt.c:116) ip_getsockopt (net/ipv4/ip_sockglue.c:1827) __sys_getsockopt (net/socket.c:2327) __x64_sys_getsockopt (net/socket.c:2342 net/socket.c:2339 net/socket.c:2339) do_syscall_64 (arch/x86/entry/common.c:51 arch/x86/entry/common.c:81) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:121) RIP: 0033:0x7f62844685ee Code: 48 8b 0d 45 28 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 37 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 0a c3 66 0f 1f 84 00 00 00 00 00 48 8b 15 09 RSP: 002b:00007ffd1f83d638 EFLAGS: 00000246 ORIG_RAX: 0000000000000037 RAX: ffffffffffffffda RBX: 00007ffd1f83d680 RCX: 00007f62844685ee RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000004 RBP: 0000000000000004 R08: 00007ffd1f83d670 R09: 0000558798ffa2a0 R10: 00007ffd1f83d680 R11: 0000000000000246 R12: 00007ffd1f83e3b2 R13: 00007f6284 ---truncated---
5.5
Medium
CVE-2024-42269 2024-08-17 08h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: iptables: Fix potential null-ptr-deref in ip6table_nat_table_init(). ip6table_nat_table_init() accesses net->gen->ptr[ip6table_nat_net_ops.id], but the function is exposed to user space before the entry is allocated via register_pernet_subsys(). Let's call register_pernet_subsys() before xt_register_template().
5.5
Medium
CVE-2024-42253 2024-08-08 08h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpio: pca953x: fix pca953x_irq_bus_sync_unlock race Ensure that `i2c_lock' is held when setting interrupt latch and mask in pca953x_irq_bus_sync_unlock() in order to avoid races. The other (non-probe) call site pca953x_gpio_set_multiple() ensures the lock is held before calling pca953x_write_regs(). The problem occurred when a request raced against irq_bus_sync_unlock() approximately once per thousand reboots on an i.MX8MP based system. * Normal case 0-0022: write register AI|3a {03,02,00,00,01} Input latch P0 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 * Race case 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register *** 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
4.7
Medium
CVE-2024-42252 2024-08-08 08h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: closures: Change BUG_ON() to WARN_ON() If a BUG_ON() can be hit in the wild, it shouldn't be a BUG_ON() For reference, this has popped up once in the CI, and we'll need more info to debug it: 03240 ------------[ cut here ]------------ 03240 kernel BUG at lib/closure.c:21! 03240 kernel BUG at lib/closure.c:21! 03240 Internal error: Oops - BUG: 00000000f2000800 [#1] SMP 03240 Modules linked in: 03240 CPU: 15 PID: 40534 Comm: kworker/u80:1 Not tainted 6.10.0-rc4-ktest-ga56da69799bd #25570 03240 Hardware name: linux,dummy-virt (DT) 03240 Workqueue: btree_update btree_interior_update_work 03240 pstate: 00001005 (nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 03240 pc : closure_put+0x224/0x2a0 03240 lr : closure_put+0x24/0x2a0 03240 sp : ffff0000d12071c0 03240 x29: ffff0000d12071c0 x28: dfff800000000000 x27: ffff0000d1207360 03240 x26: 0000000000000040 x25: 0000000000000040 x24: 0000000000000040 03240 x23: ffff0000c1f20180 x22: 0000000000000000 x21: ffff0000c1f20168 03240 x20: 0000000040000000 x19: ffff0000c1f20140 x18: 0000000000000001 03240 x17: 0000000000003aa0 x16: 0000000000003ad0 x15: 1fffe0001c326974 03240 x14: 0000000000000a1e x13: 0000000000000000 x12: 1fffe000183e402d 03240 x11: ffff6000183e402d x10: dfff800000000000 x9 : ffff6000183e402e 03240 x8 : 0000000000000001 x7 : 00009fffe7c1bfd3 x6 : ffff0000c1f2016b 03240 x5 : ffff0000c1f20168 x4 : ffff6000183e402e x3 : ffff800081391954 03240 x2 : 0000000000000001 x1 : 0000000000000000 x0 : 00000000a8000000 03240 Call trace: 03240 closure_put+0x224/0x2a0 03240 bch2_check_for_deadlock+0x910/0x1028 03240 bch2_six_check_for_deadlock+0x1c/0x30 03240 six_lock_slowpath.isra.0+0x29c/0xed0 03240 six_lock_ip_waiter+0xa8/0xf8 03240 __bch2_btree_node_lock_write+0x14c/0x298 03240 bch2_trans_lock_write+0x6d4/0xb10 03240 __bch2_trans_commit+0x135c/0x5520 03240 btree_interior_update_work+0x1248/0x1c10 03240 process_scheduled_works+0x53c/0xd90 03240 worker_thread+0x370/0x8c8 03240 kthread+0x258/0x2e8 03240 ret_from_fork+0x10/0x20 03240 Code: aa1303e0 d63f0020 a94363f7 17ffff8c (d4210000) 03240 ---[ end trace 0000000000000000 ]--- 03240 Kernel panic - not syncing: Oops - BUG: Fatal exception 03240 SMP: stopping secondary CPUs 03241 SMP: failed to stop secondary CPUs 13,15 03241 Kernel Offset: disabled 03241 CPU features: 0x00,00000003,80000008,4240500b 03241 Memory Limit: none 03241 ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception ]--- 03246 ========= FAILED TIMEOUT copygc_torture_no_checksum in 7200s
5.5
Medium
CVE-2024-42246 2024-08-07 15h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: net, sunrpc: Remap EPERM in case of connection failure in xs_tcp_setup_socket When using a BPF program on kernel_connect(), the call can return -EPERM. This causes xs_tcp_setup_socket() to loop forever, filling up the syslog and causing the kernel to potentially freeze up. Neil suggested: This will propagate -EPERM up into other layers which might not be ready to handle it. It might be safer to map EPERM to an error we would be more likely to expect from the network system - such as ECONNREFUSED or ENETDOWN. ECONNREFUSED as error seems reasonable. For programs setting a different error can be out of reach (see handling in 4fbac77d2d09) in particular on kernels which do not have f10d05966196 ("bpf: Make BPF_PROG_RUN_ARRAY return -err instead of allow boolean"), thus given that it is better to simply remap for consistent behavior. UDP does handle EPERM in xs_udp_send_request().
5.5
Medium
CVE-2024-42240 2024-08-07 15h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/bhi: Avoid warning in #DB handler due to BHI mitigation When BHI mitigation is enabled, if SYSENTER is invoked with the TF flag set then entry_SYSENTER_compat() uses CLEAR_BRANCH_HISTORY and calls the clear_bhb_loop() before the TF flag is cleared. This causes the #DB handler (exc_debug_kernel()) to issue a warning because single-step is used outside the entry_SYSENTER_compat() function. To address this issue, entry_SYSENTER_compat() should use CLEAR_BRANCH_HISTORY after making sure the TF flag is cleared. The problem can be reproduced with the following sequence: $ cat sysenter_step.c int main() { asm("pushf; pop %ax; bts $8,%ax; push %ax; popf; sysenter"); } $ gcc -o sysenter_step sysenter_step.c $ ./sysenter_step Segmentation fault (core dumped) The program is expected to crash, and the #DB handler will issue a warning. Kernel log: WARNING: CPU: 27 PID: 7000 at arch/x86/kernel/traps.c:1009 exc_debug_kernel+0xd2/0x160 ... RIP: 0010:exc_debug_kernel+0xd2/0x160 ... Call Trace: <#DB> ? show_regs+0x68/0x80 ? __warn+0x8c/0x140 ? exc_debug_kernel+0xd2/0x160 ? report_bug+0x175/0x1a0 ? handle_bug+0x44/0x90 ? exc_invalid_op+0x1c/0x70 ? asm_exc_invalid_op+0x1f/0x30 ? exc_debug_kernel+0xd2/0x160 exc_debug+0x43/0x50 asm_exc_debug+0x1e/0x40 RIP: 0010:clear_bhb_loop+0x0/0xb0 ... ? entry_SYSENTER_compat_after_hwframe+0x6e/0x8d [ bp: Massage commit message. ]
5.5
Medium
CVE-2024-42239 2024-08-07 15h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fail bpf_timer_cancel when callback is being cancelled Given a schedule: timer1 cb timer2 cb bpf_timer_cancel(timer2); bpf_timer_cancel(timer1); Both bpf_timer_cancel calls would wait for the other callback to finish executing, introducing a lockup. Add an atomic_t count named 'cancelling' in bpf_hrtimer. This keeps track of all in-flight cancellation requests for a given BPF timer. Whenever cancelling a BPF timer, we must check if we have outstanding cancellation requests, and if so, we must fail the operation with an error (-EDEADLK) since cancellation is synchronous and waits for the callback to finish executing. This implies that we can enter a deadlock situation involving two or more timer callbacks executing in parallel and attempting to cancel one another. Note that we avoid incrementing the cancelling counter for the target timer (the one being cancelled) if bpf_timer_cancel is not invoked from a callback, to avoid spurious errors. The whole point of detecting cur->cancelling and returning -EDEADLK is to not enter a busy wait loop (which may or may not lead to a lockup). This does not apply in case the caller is in a non-callback context, the other side can continue to cancel as it sees fit without running into errors. Background on prior attempts: Earlier versions of this patch used a bool 'cancelling' bit and used the following pattern under timer->lock to publish cancellation status. lock(t->lock); t->cancelling = true; mb(); if (cur->cancelling) return -EDEADLK; unlock(t->lock); hrtimer_cancel(t->timer); t->cancelling = false; The store outside the critical section could overwrite a parallel requests t->cancelling assignment to true, to ensure the parallely executing callback observes its cancellation status. It would be necessary to clear this cancelling bit once hrtimer_cancel is done, but lack of serialization introduced races. Another option was explored where bpf_timer_start would clear the bit when (re)starting the timer under timer->lock. This would ensure serialized access to the cancelling bit, but may allow it to be cleared before in-flight hrtimer_cancel has finished executing, such that lockups can occur again. Thus, we choose an atomic counter to keep track of all outstanding cancellation requests and use it to prevent lockups in case callbacks attempt to cancel each other while executing in parallel.
5.5
Medium
CVE-2024-42237 2024-08-07 15h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Validate payload length before processing block Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load() to be done before the block is processed. The check that the length of a block payload does not exceed the number of remaining bytes in the firwmware file buffer was being done near the end of the loop iteration. However, some code before that check used the length field without validating it.
5.5
Medium
CVE-2024-42230 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: Fix scv instruction crash with kexec kexec on pseries disables AIL (reloc_on_exc), required for scv instruction support, before other CPUs have been shut down. This means they can execute scv instructions after AIL is disabled, which causes an interrupt at an unexpected entry location that crashes the kernel. Change the kexec sequence to disable AIL after other CPUs have been brought down. As a refresher, the real-mode scv interrupt vector is 0x17000, and the fixed-location head code probably couldn't easily deal with implementing such high addresses so it was just decided not to support that interrupt at all.
4.4
Medium
CVE-2024-42228 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Using uninitialized value *size when calling amdgpu_vce_cs_reloc Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001. V2: To really improve the handling we would actually need to have a separate value of 0xffffffff.(Christian)
7
High
CVE-2024-42227 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix overlapping copy within dml_core_mode_programming [WHY] &mode_lib->mp.Watermark and &locals->Watermark are the same address. memcpy may lead to unexpected behavior. [HOW] memmove should be used.
4.7
Medium
CVE-2024-42162 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: gve: Account for stopped queues when reading NIC stats We now account for the fact that the NIC might send us stats for a subset of queues. Without this change, gve_get_ethtool_stats might make an invalid access on the priv->stats_report->stats array.
7
High
CVE-2024-42160 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: check validation of fault attrs in f2fs_build_fault_attr() - It missed to check validation of fault attrs in parse_options(), let's fix to add check condition in f2fs_build_fault_attr(). - Use f2fs_build_fault_attr() in __sbi_store() to clean up code.
7.8
High
CVE-2024-42159 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Sanitise num_phys Information is stored in mr_sas_port->phy_mask, values larger then size of this field shouldn't be allowed.
7.8
High
CVE-2024-42158 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Use kfree_sensitive() to fix Coccinelle warnings Replace memzero_explicit() and kfree() with kfree_sensitive() to fix warnings reported by Coccinelle: WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1506) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1643) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1770)
4.1
Medium
CVE-2024-42156 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of clear-key structures on failure Wipe all sensitive data from stack for all IOCTLs, which convert a clear-key into a protected- or secure-key.
4.1
Medium
CVE-2024-42155 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of protected- and secure-keys Although the clear-key of neither protected- nor secure-keys is accessible, this key material should only be visible to the calling process. So wipe all copies of protected- or secure-keys from stack, even in case of an error.
1.9
Low
CVE-2024-42151 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: mark bpf_dummy_struct_ops.test_1 parameter as nullable Test case dummy_st_ops/dummy_init_ret_value passes NULL as the first parameter of the test_1() function. Mark this parameter as nullable to make verifier aware of such possibility. Otherwise, NULL check in the test_1() code: SEC("struct_ops/test_1") int BPF_PROG(test_1, struct bpf_dummy_ops_state *state) { if (!state) return ...; ... access state ... } Might be removed by verifier, thus triggering NULL pointer dereference under certain conditions.
5.5
Medium
CVE-2024-42147 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/debugfs - Fix debugfs uninit process issue During the zip probe process, the debugfs failure does not stop the probe. When debugfs initialization fails, jumping to the error branch will also release regs, in addition to its own rollback operation. As a result, it may be released repeatedly during the regs uninit process. Therefore, the null check needs to be added to the regs uninit process.
7.8
High
CVE-2024-42144 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal/drivers/mediatek/lvts_thermal: Check NULL ptr on lvts_data Verify that lvts_data is not NULL before using it.
5.5
Medium
CVE-2024-42139 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: Fix improper extts handling Extts events are disabled and enabled by the application ts2phc. However, in case where the driver is removed when the application is running, a specific extts event remains enabled and can cause a kernel crash. As a side effect, when the driver is reloaded and application is started again, remaining extts event for the channel from a previous run will keep firing and the message "extts on unexpected channel" might be printed to the user. To avoid that, extts events shall be disabled when PTP is released.
5.5
Medium
CVE-2024-42136 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: cdrom: rearrange last_media_change check to avoid unintentional overflow When running syzkaller with the newly reintroduced signed integer wrap sanitizer we encounter this splat: [ 366.015950] UBSAN: signed-integer-overflow in ../drivers/cdrom/cdrom.c:2361:33 [ 366.021089] -9223372036854775808 - 346321 cannot be represented in type '__s64' (aka 'long long') [ 366.025894] program syz-executor.4 is using a deprecated SCSI ioctl, please convert it to SG_IO [ 366.027502] CPU: 5 PID: 28472 Comm: syz-executor.7 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1 [ 366.027512] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 366.027518] Call Trace: [ 366.027523] [ 366.027533] dump_stack_lvl+0x93/0xd0 [ 366.027899] handle_overflow+0x171/0x1b0 [ 366.038787] ata1.00: invalid multi_count 32 ignored [ 366.043924] cdrom_ioctl+0x2c3f/0x2d10 [ 366.063932] ? __pm_runtime_resume+0xe6/0x130 [ 366.071923] sr_block_ioctl+0x15d/0x1d0 [ 366.074624] ? __pfx_sr_block_ioctl+0x10/0x10 [ 366.077642] blkdev_ioctl+0x419/0x500 [ 366.080231] ? __pfx_blkdev_ioctl+0x10/0x10 ... Historically, the signed integer overflow sanitizer did not work in the kernel due to its interaction with `-fwrapv` but this has since been changed [1] in the newest version of Clang. It was re-enabled in the kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow sanitizer"). Let's rearrange the check to not perform any arithmetic, thus not tripping the sanitizer.
7.8
High
CVE-2024-42135 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: vhost_task: Handle SIGKILL by flushing work and exiting Instead of lingering until the device is closed, this has us handle SIGKILL by: 1. marking the worker as killed so we no longer try to use it with new virtqueues and new flush operations. 2. setting the virtqueue to worker mapping so no new works are queued. 3. running all the exiting works.
5.5
Medium
CVE-2024-42134 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio-pci: Check if is_avq is NULL [bug] In the virtio_pci_common.c function vp_del_vqs, vp_dev->is_avq is involved to determine whether it is admin virtqueue, but this function vp_dev->is_avq may be empty. For installations, virtio_pci_legacy does not assign a value to vp_dev->is_avq. [fix] Check whether it is vp_dev->is_avq before use. [test] Test with virsh Attach device Before this patch, the following command would crash the guest system After applying the patch, everything seems to be working fine.
5.5
Medium
CVE-2024-42123 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix double free err_addr pointer warnings In amdgpu_umc_bad_page_polling_timeout, the amdgpu_umc_handle_bad_pages will be run many times so that double free err_addr in some special case. So set the err_addr to NULL to avoid the warnings.
4.4
Medium
CVE-2024-42122 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL pointer check for kzalloc [Why & How] Check return pointer of kzalloc before using it.
5.5
Medium
CVE-2024-42107 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: Don't process extts if PTP is disabled The ice_ptp_extts_event() function can race with ice_ptp_release() and result in a NULL pointer dereference which leads to a kernel panic. Panic occurs because the ice_ptp_extts_event() function calls ptp_clock_event() with a NULL pointer. The ice driver has already released the PTP clock by the time the interrupt for the next external timestamp event occurs. To fix this, modify the ice_ptp_extts_event() function to check the PTP state and bail early if PTP is not ready.
4.7
Medium
CVE-2024-42083 2024-07-29 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ionic: fix kernel panic due to multi-buffer handling Currently, the ionic_run_xdp() doesn't handle multi-buffer packets properly for XDP_TX and XDP_REDIRECT. When a jumbo frame is received, the ionic_run_xdp() first makes xdp frame with all necessary pages in the rx descriptor. And if the action is either XDP_TX or XDP_REDIRECT, it should unmap dma-mapping and reset page pointer to NULL for all pages, not only the first page. But it doesn't for SG pages. So, SG pages unexpectedly will be reused. It eventually causes kernel panic. Oops: general protection fault, probably for non-canonical address 0x504f4e4dbebc64ff: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.10.0-rc3+ #25 RIP: 0010:xdp_return_frame+0x42/0x90 Code: 01 75 12 5b 4c 89 e6 5d 31 c9 41 5c 31 d2 41 5d e9 73 fd ff ff 44 8b 6b 20 0f b7 43 0a 49 81 ed 68 01 00 00 49 29 c5 49 01 fd <41> 80 7d0 RSP: 0018:ffff99d00122ce08 EFLAGS: 00010202 RAX: 0000000000005453 RBX: ffff8d325f904000 RCX: 0000000000000001 RDX: 00000000670e1000 RSI: 000000011f90d000 RDI: 504f4e4d4c4b4a49 RBP: ffff99d003907740 R08: 0000000000000000 R09: 0000000000000000 R10: 000000011f90d000 R11: 0000000000000000 R12: ffff8d325f904010 R13: 504f4e4dbebc64fd R14: ffff8d3242b070c8 R15: ffff99d0039077c0 FS: 0000000000000000(0000) GS:ffff8d399f780000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f41f6c85e38 CR3: 000000037ac30000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: ? die_addr+0x33/0x90 ? exc_general_protection+0x251/0x2f0 ? asm_exc_general_protection+0x22/0x30 ? xdp_return_frame+0x42/0x90 ionic_tx_clean+0x211/0x280 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] ionic_tx_cq_service+0xd3/0x210 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] ionic_txrx_napi+0x41/0x1b0 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] __napi_poll.constprop.0+0x29/0x1b0 net_rx_action+0x2c4/0x350 handle_softirqs+0xf4/0x320 irq_exit_rcu+0x78/0xa0 common_interrupt+0x77/0x90
5.5
Medium
CVE-2024-42081 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/xe_devcoredump: Check NULL before assignments Assign 'xe_devcoredump_snapshot *' and 'xe_device *' only if 'coredump' is not NULL. v2 - Fix commit messages. v3 - Define variables before code.(Ashutosh/Jose) v4 - Drop return check for coredump_to_xe. (Jose/Rodrigo) v5 - Modify misleading commit message. (Matt)
5.5
Medium
CVE-2024-42079 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix NULL pointer dereference in gfs2_log_flush In gfs2_jindex_free(), set sdp->sd_jdesc to NULL under the log flush lock to provide exclusion against gfs2_log_flush(). In gfs2_log_flush(), check if sdp->sd_jdesc is non-NULL before dereferencing it. Otherwise, we could run into a NULL pointer dereference when outstanding glock work races with an unmount (glock_work_func -> run_queue -> do_xmote -> inode_go_sync -> gfs2_log_flush).
5.5
Medium
CVE-2024-42078 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: initialise nfsd_info.mutex early. nfsd_info.mutex can be dereferenced by svc_pool_stats_start() immediately after the new netns is created. Currently this can trigger an oops. Move the initialisation earlier before it can possibly be dereferenced.
5.5
Medium
CVE-2024-42075 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix remap of arena. The bpf arena logic didn't account for mremap operation. Add a refcnt for multiple mmap events to prevent use-after-free in arena_vm_close.
5.5
Medium
CVE-2024-42074 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: amd: acp: add a null check for chip_pdev structure When acp platform device creation is skipped, chip->chip_pdev value will remain NULL. Add NULL check for chip->chip_pdev structure in snd_acp_resume() function to avoid null pointer dereference.
5.5
Medium
CVE-2024-42073 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_buffers: Fix memory corruptions on Spectrum-4 systems The following two shared buffer operations make use of the Shared Buffer Status Register (SBSR): # devlink sb occupancy snapshot pci/0000:01:00.0 # devlink sb occupancy clearmax pci/0000:01:00.0 The register has two masks of 256 bits to denote on which ingress / egress ports the register should operate on. Spectrum-4 has more than 256 ports, so the register was extended by cited commit with a new 'port_page' field. However, when filling the register's payload, the driver specifies the ports as absolute numbers and not relative to the first port of the port page, resulting in memory corruptions [1]. Fix by specifying the ports relative to the first port of the port page. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0 Read of size 1 at addr ffff8881068cb00f by task devlink/1566 [...] Call Trace: dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0 mlxsw_devlink_sb_occ_snapshot+0x75/0xb0 devlink_nl_sb_occ_snapshot_doit+0x1f9/0x2a0 genl_family_rcv_msg_doit+0x20c/0x300 genl_rcv_msg+0x567/0x800 netlink_rcv_skb+0x170/0x450 genl_rcv+0x2d/0x40 netlink_unicast+0x547/0x830 netlink_sendmsg+0x8d4/0xdb0 __sys_sendto+0x49b/0x510 __x64_sys_sendto+0xe5/0x1c0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f [...] Allocated by task 1: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 copy_verifier_state+0xbc2/0xfb0 do_check_common+0x2c51/0xc7e0 bpf_check+0x5107/0x9960 bpf_prog_load+0xf0e/0x2690 __sys_bpf+0x1a61/0x49d0 __x64_sys_bpf+0x7d/0xc0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 1: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x109/0x170 __kasan_slab_free+0x14/0x30 kfree+0xca/0x2b0 free_verifier_state+0xce/0x270 do_check_common+0x4828/0xc7e0 bpf_check+0x5107/0x9960 bpf_prog_load+0xf0e/0x2690 __sys_bpf+0x1a61/0x49d0 __x64_sys_bpf+0x7d/0xc0 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-42072 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix may_goto with negative offset. Zac's syzbot crafted a bpf prog that exposed two bugs in may_goto. The 1st bug is the way may_goto is patched. When offset is negative it should be patched differently. The 2nd bug is in the verifier: when current state may_goto_depth is equal to visited state may_goto_depth it means there is an actual infinite loop. It's not correct to prune exploration of the program at this point. Note, that this check doesn't limit the program to only one may_goto insn, since 2nd and any further may_goto will increment may_goto_depth only in the queued state pushed for future exploration. The current state will have may_goto_depth == 0 regardless of number of may_goto insns and the verifier has to explore the program until bpf_exit.
7.8
High
CVE-2024-42071 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: ionic: use dev_consume_skb_any outside of napi If we're not in a NAPI softirq context, we need to be careful about how we call napi_consume_skb(), specifically we need to call it with budget==0 to signal to it that we're not in a safe context. This was found while running some configuration stress testing of traffic and a change queue config loop running, and this curious note popped out: [ 4371.402645] BUG: using smp_processor_id() in preemptible [00000000] code: ethtool/20545 [ 4371.402897] caller is napi_skb_cache_put+0x16/0x80 [ 4371.403120] CPU: 25 PID: 20545 Comm: ethtool Kdump: loaded Tainted: G OE 6.10.0-rc3-netnext+ #8 [ 4371.403302] Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 01/23/2021 [ 4371.403460] Call Trace: [ 4371.403613] [ 4371.403758] dump_stack_lvl+0x4f/0x70 [ 4371.403904] check_preemption_disabled+0xc1/0xe0 [ 4371.404051] napi_skb_cache_put+0x16/0x80 [ 4371.404199] ionic_tx_clean+0x18a/0x240 [ionic] [ 4371.404354] ionic_tx_cq_service+0xc4/0x200 [ionic] [ 4371.404505] ionic_tx_flush+0x15/0x70 [ionic] [ 4371.404653] ? ionic_lif_qcq_deinit.isra.23+0x5b/0x70 [ionic] [ 4371.404805] ionic_txrx_deinit+0x71/0x190 [ionic] [ 4371.404956] ionic_reconfigure_queues+0x5f5/0xff0 [ionic] [ 4371.405111] ionic_set_ringparam+0x2e8/0x3e0 [ionic] [ 4371.405265] ethnl_set_rings+0x1f1/0x300 [ 4371.405418] ethnl_default_set_doit+0xbb/0x160 [ 4371.405571] genl_family_rcv_msg_doit+0xff/0x130 [...] I found that ionic_tx_clean() calls napi_consume_skb() which calls napi_skb_cache_put(), but before that last call is the note /* Zero budget indicate non-NAPI context called us, like netpoll */ and DEBUG_NET_WARN_ON_ONCE(!in_softirq()); Those are pretty big hints that we're doing it wrong. We can pass a context hint down through the calls to let ionic_tx_clean() know what we're doing so it can call napi_consume_skb() correctly.
5.5
Medium
CVE-2024-42069 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix possible double free in error handling path When auxiliary_device_add() returns error and then calls auxiliary_device_uninit(), callback function adev_release calls kfree(madev). We shouldn't call kfree(madev) again in the error handling path. Set 'madev' to NULL.
5.5
Medium
CVE-2024-42067 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Take return from set_memory_rox() into account with bpf_jit_binary_lock_ro() set_memory_rox() can fail, leaving memory unprotected. Check return and bail out when bpf_jit_binary_lock_ro() returns an error.
5.5
Medium
CVE-2024-42066 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix potential integer overflow in page size calculation Explicitly cast tbo->page_alignment to u64 before bit-shifting to prevent overflow when assigning to min_page_size.
5.5
Medium
CVE-2024-42065 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: Add a NULL check in xe_ttm_stolen_mgr_init Add an explicit check to ensure that the mgr is not NULL.
5.5
Medium
CVE-2024-42064 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip pipe if the pipe idx not set properly [why] Driver crashes when pipe idx not set properly [how] Add code to skip the pipe that idx not set properly
5.5
Medium
CVE-2024-42063 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Mark bpf prog stack with kmsan_unposion_memory in interpreter mode syzbot reported uninit memory usages during map_{lookup,delete}_elem. ========== BUG: KMSAN: uninit-value in __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline] BUG: KMSAN: uninit-value in dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796 __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline] dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796 ____bpf_map_lookup_elem kernel/bpf/helpers.c:42 [inline] bpf_map_lookup_elem+0x5c/0x80 kernel/bpf/helpers.c:38 ___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997 __bpf_prog_run256+0xb5/0xe0 kernel/bpf/core.c:2237 ========== The reproducer should be in the interpreter mode. The C reproducer is trying to run the following bpf prog: 0: (18) r0 = 0x0 2: (18) r1 = map[id:49] 4: (b7) r8 = 16777216 5: (7b) *(u64 *)(r10 -8) = r8 6: (bf) r2 = r10 7: (07) r2 += -229 ^^^^^^^^^^ 8: (b7) r3 = 8 9: (b7) r4 = 0 10: (85) call dev_map_lookup_elem#1543472 11: (95) exit It is due to the "void *key" (r2) passed to the helper. bpf allows uninit stack memory access for bpf prog with the right privileges. This patch uses kmsan_unpoison_memory() to mark the stack as initialized. This should address different syzbot reports on the uninit "void *key" argument during map_{lookup,delete}_elem.
5.5
Medium
CVE-2024-41098 2024-07-29 15h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: ata: libata-core: Fix null pointer dereference on error If the ata_port_alloc() call in ata_host_alloc() fails, ata_host_release() will get called. However, the code in ata_host_release() tries to free ata_port struct members unconditionally, which can lead to the following: BUG: unable to handle page fault for address: 0000000000003990 PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 10 PID: 594 Comm: (udev-worker) Not tainted 6.10.0-rc5 #44 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:ata_host_release.cold+0x2f/0x6e [libata] Code: e4 4d 63 f4 44 89 e2 48 c7 c6 90 ad 32 c0 48 c7 c7 d0 70 33 c0 49 83 c6 0e 41 RSP: 0018:ffffc90000ebb968 EFLAGS: 00010246 RAX: 0000000000000041 RBX: ffff88810fb52e78 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff88813b3218c0 RDI: ffff88813b3218c0 RBP: ffff88810fb52e40 R08: 0000000000000000 R09: 6c65725f74736f68 R10: ffffc90000ebb738 R11: 73692033203a746e R12: 0000000000000004 R13: 0000000000000000 R14: 0000000000000011 R15: 0000000000000006 FS: 00007f6cc55b9980(0000) GS:ffff88813b300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000003990 CR3: 00000001122a2000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? ata_host_release.cold+0x2f/0x6e [libata] ? ata_host_release.cold+0x2f/0x6e [libata] release_nodes+0x35/0xb0 devres_release_group+0x113/0x140 ata_host_alloc+0xed/0x120 [libata] ata_host_alloc_pinfo+0x14/0xa0 [libata] ahci_init_one+0x6c9/0xd20 [ahci] Do not access ata_port struct members unconditionally.
5.5
Medium
CVE-2024-41088 2024-07-29 15h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: can: mcp251xfd: fix infinite loop when xmit fails When the mcp251xfd_start_xmit() function fails, the driver stops processing messages, and the interrupt routine does not return, running indefinitely even after killing the running application. Error messages: [ 441.298819] mcp251xfd spi2.0 can0: ERROR in mcp251xfd_start_xmit: -16 [ 441.306498] mcp251xfd spi2.0 can0: Transmit Event FIFO buffer not empty. (seq=0x000017c7, tef_tail=0x000017cf, tef_head=0x000017d0, tx_head=0x000017d3). ... and repeat forever. The issue can be triggered when multiple devices share the same SPI interface. And there is concurrent access to the bus. The problem occurs because tx_ring->head increments even if mcp251xfd_start_xmit() fails. Consequently, the driver skips one TX package while still expecting a response in mcp251xfd_handle_tefif_one(). Resolve the issue by starting a workqueue to write the tx obj synchronously if err = -EBUSY. In case of another error, decrement tx_ring->head, remove skb from the echo stack, and drop the message. [mkl: use more imperative wording in patch description]
5.5
Medium
CVE-2024-41080 2024-07-29 15h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: fix possible deadlock in io_register_iowq_max_workers() The io_register_iowq_max_workers() function calls io_put_sq_data(), which acquires the sqd->lock without releasing the uring_lock. Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock before acquiring sqd->lock"), this can lead to a potential deadlock situation. To resolve this issue, the uring_lock is released before calling io_put_sq_data(), and then it is re-acquired after the function call. This change ensures that the locks are acquired in the correct order, preventing the possibility of a deadlock.
5.5
Medium
CVE-2024-41076 2024-07-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSv4: Fix memory leak in nfs4_set_security_label We leak nfs_fattr and nfs4_label every time we set a security xattr.
5.5
Medium
CVE-2024-41066 2024-07-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Add tx check to prevent skb leak Below is a summary of how the driver stores a reference to an skb during transmit: tx_buff[free_map[consumer_index]]->skb = new_skb; free_map[consumer_index] = IBMVNIC_INVALID_MAP; consumer_index ++; Where variable data looks like this: free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3] consumer_index^ tx_buff == [skb=null, skb=, skb=, skb=null, skb=null] The driver has checks to ensure that free_map[consumer_index] pointed to a valid index but there was no check to ensure that this index pointed to an unused/null skb address. So, if, by some chance, our free_map and tx_buff lists become out of sync then we were previously risking an skb memory leak. This could then cause tcp congestion control to stop sending packets, eventually leading to ETIMEDOUT. Therefore, add a conditional to ensure that the skb address is null. If not then warn the user (because this is still a bug that should be patched) and free the old pointer to prevent memleak/tcp problems.
5.5
Medium
CVE-2024-41061 2024-07-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access.
7.8
High
CVE-2024-41009 2024-07-17 06h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix overrunning reservations in ringbuf The BPF ring buffer internally is implemented as a power-of-2 sized circular buffer, with two logical and ever-increasing counters: consumer_pos is the consumer counter to show which logical position the consumer consumed the data, and producer_pos which is the producer counter denoting the amount of data reserved by all producers. Each time a record is reserved, the producer that "owns" the record will successfully advance producer counter. In user space each time a record is read, the consumer of the data advanced the consumer counter once it finished processing. Both counters are stored in separate pages so that from user space, the producer counter is read-only and the consumer counter is read-write. One aspect that simplifies and thus speeds up the implementation of both producers and consumers is how the data area is mapped twice contiguously back-to-back in the virtual memory, allowing to not take any special measures for samples that have to wrap around at the end of the circular buffer data area, because the next page after the last data page would be first data page again, and thus the sample will still appear completely contiguous in virtual memory. Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for book-keeping the length and offset, and is inaccessible to the BPF program. Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ` for the BPF program to use. Bing-Jhong and Muhammad reported that it is however possible to make a second allocated memory chunk overlapping with the first chunk and as a result, the BPF program is now able to edit first chunk's header. For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in [0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets allocate a chunk B with size 0x3000. This will succeed because consumer_pos was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask` check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data pages. This means that chunk B at [0x4000,0x4008] is chunk A's header. bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong page and could cause a crash. Fix it by calculating the oldest pending_pos and check whether the range from the oldest outstanding record to the newest would span beyond the ring buffer size. If that is the case, then reject the request. We've tested with the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh) before/after the fix and while it seems a bit slower on some benchmarks, it is still not significantly enough to matter.
5.5
Medium
CVE-2022-48841 2024-07-16 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: fix NULL pointer dereference in ice_update_vsi_tx_ring_stats() It is possible to do NULL pointer dereference in routine that updates Tx ring stats. Currently only stats and bytes are updated when ring pointer is valid, but later on ring is accessed to propagate gathered Tx stats onto VSI stats. Change the existing logic to move to next ring when ring is NULL.
5.5
Medium
CVE-2024-41001 2024-07-12 12h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring/sqpoll: work around a potential audit memory leak kmemleak complains that there's a memory leak related to connect handling: unreferenced object 0xffff0001093bdf00 (size 128): comm "iou-sqp-455", pid 457, jiffies 4294894164 hex dump (first 32 bytes): 02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 2e481b1a): [<00000000c0a26af4>] kmemleak_alloc+0x30/0x38 [<000000009c30bb45>] kmalloc_trace+0x228/0x358 [<000000009da9d39f>] __audit_sockaddr+0xd0/0x138 [<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8 [<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4 [<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48 [<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4 [<00000000d999b491>] ret_from_fork+0x10/0x20 which can can happen if: 1) The command type does something on the prep side that triggers an audit call. 2) The thread hasn't done any operations before this that triggered an audit call inside ->issue(), where we have audit_uring_entry() and audit_uring_exit(). Work around this by issuing a blanket NOP operation before the SQPOLL does anything.
5.5
Medium
CVE-2024-40997 2024-07-12 12h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: fix memory leak on CPU EPP exit The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is not freed in the analogous exit function, so fix that. [ rjw: Subject and changelog edits ]
5.5
Medium
CVE-2024-40977 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921s: fix potential hung tasks during chip recovery During chip recovery (e.g. chip reset), there is a possible situation that kernel worker reset_work is holding the lock and waiting for kernel thread stat_worker to be parked, while stat_worker is waiting for the release of the same lock. It causes a deadlock resulting in the dumping of hung tasks messages and possible rebooting of the device. This patch prevents the execution of stat_worker during the chip recovery.
5.5
Medium
CVE-2024-40973 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: mtk-vcodec: potential null pointer deference in SCP The return value of devm_kzalloc() needs to be checked to avoid NULL pointer deference. This is similar to CVE-2022-3113.
5.5
Medium
CVE-2024-40972 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: do not create EA inode under buffer lock ext4_xattr_set_entry() creates new EA inodes while holding buffer lock on the external xattr block. This is problematic as it nests all the allocation locking (which acquires locks on other buffers) under the buffer lock. This can even deadlock when the filesystem is corrupted and e.g. quota file is setup to contain xattr block as data block. Move the allocation of EA inode out of ext4_xattr_set_entry() into the callers.
5.5
Medium
CVE-2024-40969 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: don't set RO when shutting down f2fs Shutdown does not check the error of thaw_super due to readonly, which causes a deadlock like below. f2fs_ioc_shutdown(F2FS_GOING_DOWN_FULLSYNC) issue_discard_thread - bdev_freeze - freeze_super - f2fs_stop_checkpoint() - f2fs_handle_critical_error - sb_start_write - set RO - waiting - bdev_thaw - thaw_super_locked - return -EINVAL, if sb_rdonly() - f2fs_stop_discard_thread -> wait for kthread_stop(discard_thread);
5.5
Medium
CVE-2024-40965 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: i2c: lpi2c: Avoid calling clk_get_rate during transfer Instead of repeatedly calling clk_get_rate for each transfer, lock the clock rate and cache the value. A deadlock has been observed while adding tlv320aic32x4 audio codec to the system. When this clock provider adds its clock, the clk mutex is locked already, it needs to access i2c, which in return needs the mutex for clk_get_rate as well.
5.5
Medium
CVE-2024-39496 2024-07-12 12h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free due to race with dev replace While loading a zone's info during creation of a block group, we can race with a device replace operation and then trigger a use-after-free on the device that was just replaced (source device of the replace operation). This happens because at btrfs_load_zone_info() we extract a device from the chunk map into a local variable and then use the device while not under the protection of the device replace rwsem. So if there's a device replace operation happening when we extract the device and that device is the source of the replace operation, we will trigger a use-after-free if before we finish using the device the replace operation finishes and frees the device. Fix this by enlarging the critical section under the protection of the device replace rwsem so that all uses of the device are done inside the critical section.
7.8
High
CVE-2024-39494 2024-07-12 12h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: ima: Fix use-after-free on a dentry's dname.name ->d_name.name can change on rename and the earlier value can be freed; there are conditions sufficient to stabilize it (->d_lock on dentry, ->d_lock on its parent, ->i_rwsem exclusive on the parent's inode, rename_lock), but none of those are met at any of the sites. Take a stable snapshot of the name instead.
7.8
High
CVE-2024-39485 2024-07-05 06h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: v4l: async: Properly re-initialise notifier entry in unregister The notifier_entry of a notifier is not re-initialised after unregistering the notifier. This leads to dangling pointers being left there so use list_del_init() to return the notifier_entry an empty list.
5.5
Medium
CVE-2024-39483 2024-07-05 06h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked When requesting an NMI window, WARN on vNMI support being enabled if and only if NMIs are actually masked, i.e. if the vCPU is already handling an NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of view) is to inject one NMI and pend the other. When using vNMI, KVM pends the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected). However, if KVM can't immediately inject an NMI, e.g. because the vCPU is in an STI shadow or is running with GIF=0, then KVM will request an NMI window and trigger the WARN (but still function correctly). Whether or not the GIF=0 case makes sense is debatable, as the intent of KVM's behavior is to provide functionality that is as close to real hardware as possible. E.g. if two NMIs are sent in quick succession, the probability of both NMIs arriving in an STI shadow is infinitesimally low on real hardware, but significantly larger in a virtual environment, e.g. if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't as clear cut, because the window where two NMIs can collide is much larger in bare metal (though still small). That said, KVM should not have divergent behavior for the GIF=0 case based on whether or not vNMI support is enabled. And KVM has allowed simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400 ("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be modified without a *really* good reason to do so, and if KVM's behavior were to be modified, it should be done irrespective of vNMI support.
5.5
Medium
CVE-2024-39474 2024-07-05 06h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc: fix vmalloc which may return null if called with __GFP_NOFAIL commit a421ef303008 ("mm: allow !GFP_KERNEL allocations for kvmalloc") includes support for __GFP_NOFAIL, but it presents a conflict with commit dd544141b9eb ("vmalloc: back off when the current task is OOM-killed"). A possible scenario is as follows: process-a __vmalloc_node_range(GFP_KERNEL | __GFP_NOFAIL) __vmalloc_area_node() vm_area_alloc_pages() --> oom-killer send SIGKILL to process-a if (fatal_signal_pending(current)) break; --> return NULL; To fix this, do not check fatal_signal_pending() in vm_area_alloc_pages() if __GFP_NOFAIL set. This issue occurred during OPLUS KASAN TEST. Below is part of the log -> oom-killer sends signal to process [65731.222840] [ T1308] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,global_oom,task_memcg=/apps/uid_10198,task=gs.intelligence,pid=32454,uid=10198 [65731.259685] [T32454] Call trace: [65731.259698] [T32454] dump_backtrace+0xf4/0x118 [65731.259734] [T32454] show_stack+0x18/0x24 [65731.259756] [T32454] dump_stack_lvl+0x60/0x7c [65731.259781] [T32454] dump_stack+0x18/0x38 [65731.259800] [T32454] mrdump_common_die+0x250/0x39c [mrdump] [65731.259936] [T32454] ipanic_die+0x20/0x34 [mrdump] [65731.260019] [T32454] atomic_notifier_call_chain+0xb4/0xfc [65731.260047] [T32454] notify_die+0x114/0x198 [65731.260073] [T32454] die+0xf4/0x5b4 [65731.260098] [T32454] die_kernel_fault+0x80/0x98 [65731.260124] [T32454] __do_kernel_fault+0x160/0x2a8 [65731.260146] [T32454] do_bad_area+0x68/0x148 [65731.260174] [T32454] do_mem_abort+0x151c/0x1b34 [65731.260204] [T32454] el1_abort+0x3c/0x5c [65731.260227] [T32454] el1h_64_sync_handler+0x54/0x90 [65731.260248] [T32454] el1h_64_sync+0x68/0x6c [65731.260269] [T32454] z_erofs_decompress_queue+0x7f0/0x2258 --> be->decompressed_pages = kvcalloc(be->nr_pages, sizeof(struct page *), GFP_KERNEL | __GFP_NOFAIL); kernel panic by NULL pointer dereference. erofs assume kvmalloc with __GFP_NOFAIL never return NULL. [65731.260293] [T32454] z_erofs_runqueue+0xf30/0x104c [65731.260314] [T32454] z_erofs_readahead+0x4f0/0x968 [65731.260339] [T32454] read_pages+0x170/0xadc [65731.260364] [T32454] page_cache_ra_unbounded+0x874/0xf30 [65731.260388] [T32454] page_cache_ra_order+0x24c/0x714 [65731.260411] [T32454] filemap_fault+0xbf0/0x1a74 [65731.260437] [T32454] __do_fault+0xd0/0x33c [65731.260462] [T32454] handle_mm_fault+0xf74/0x3fe0 [65731.260486] [T32454] do_mem_abort+0x54c/0x1b34 [65731.260509] [T32454] el0_da+0x44/0x94 [65731.260531] [T32454] el0t_64_sync_handler+0x98/0xb4 [65731.260553] [T32454] el0t_64_sync+0x198/0x19c
5.5
Medium
CVE-2024-39473 2024-07-05 06h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension If a process module does not have base config extension then the same format applies to all of it's inputs and the process->base_config_ext is NULL, causing NULL dereference when specifically crafted topology and sequences used.
5.5
Medium
CVE-2024-39472 2024-07-05 06h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: xfs: fix log recovery buffer allocation for the legacy h_size fixup Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer. Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation.
5.5
Medium
CVE-2023-52340 2024-07-05 00h00 +00:00 The IPv6 implementation in the Linux kernel before 6.3 has a net/ipv6/route.c max_size threshold that can be consumed easily, e.g., leading to a denial of service (network is unreachable errors) when IPv6 packets are sent in a loop via a raw socket.
7.5
High
CVE-2024-39463 2024-06-25 14h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: 9p: add missing locking around taking dentry fid list Fix a use-after-free on dentry's d_fsdata fid list when a thread looks up a fid through dentry while another thread unlinks it: UAF thread: refcount_t: addition on 0; use-after-free. p9_fid_get linux/./include/net/9p/client.h:262 v9fs_fid_find+0x236/0x280 linux/fs/9p/fid.c:129 v9fs_fid_lookup_with_uid linux/fs/9p/fid.c:181 v9fs_fid_lookup+0xbf/0xc20 linux/fs/9p/fid.c:314 v9fs_vfs_getattr_dotl+0xf9/0x360 linux/fs/9p/vfs_inode_dotl.c:400 vfs_statx+0xdd/0x4d0 linux/fs/stat.c:248 Freed by: p9_fid_destroy (inlined) p9_client_clunk+0xb0/0xe0 linux/net/9p/client.c:1456 p9_fid_put linux/./include/net/9p/client.h:278 v9fs_dentry_release+0xb5/0x140 linux/fs/9p/vfs_dentry.c:55 v9fs_remove+0x38f/0x620 linux/fs/9p/vfs_inode.c:518 vfs_unlink+0x29a/0x810 linux/fs/namei.c:4335 The problem is that d_fsdata was not accessed under d_lock, because d_release() normally is only called once the dentry is otherwise no longer accessible but since we also call it explicitly in v9fs_remove that lock is required: move the hlist out of the dentry under lock then unref its fids once they are no longer accessible.
7.8
High
CVE-2024-37021 2024-06-24 13h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: fpga: manager: add owner module and take its refcount The current implementation of the fpga manager assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the manager if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_manager struct and use it to take the module's refcount. Modify the functions for registering the manager to take an additional owner module parameter and rename them to avoid conflicts. Use the old function names for helper macros that automatically set the module that registers the manager as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a manager without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga manager. Other changes: opportunistically move put_device() from __fpga_mgr_get() to fpga_mgr_get() and of_fpga_mgr_get() to improve code clarity since the manager device is taken in these functions.
5.5
Medium
CVE-2024-36479 2024-06-24 13h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: fpga: bridge: add owner module and take its refcount The current implementation of the fpga bridge assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the bridge if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_bridge struct and use it to take the module's refcount. Modify the function for registering a bridge to take an additional owner module parameter and rename it to avoid conflicts. Use the old function name for a helper macro that automatically sets the module that registers the bridge as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a bridge without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga bridge. Other changes: opportunistically move put_device() from __fpga_bridge_get() to fpga_bridge_get() and of_fpga_bridge_get() to improve code clarity since the bridge device is taken in these functions.
5.5
Medium
CVE-2024-39291 2024-06-24 13h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix buffer size in gfx_v9_4_3_init_ cp_compute_microcode() and rlc_microcode() The function gfx_v9_4_3_init_microcode in gfx_v9_4_3.c was generating about potential truncation of output when using the snprintf function. The issue was due to the size of the buffer 'ucode_prefix' being too small to accommodate the maximum possible length of the string being written into it. The string being written is "amdgpu/%s_mec.bin" or "amdgpu/%s_rlc.bin", where %s is replaced by the value of 'chip_name'. The length of this string without the %s is 16 characters. The warning message indicated that 'chip_name' could be up to 29 characters long, resulting in a total of 45 characters, which exceeds the buffer size of 30 characters. To resolve this issue, the size of the 'ucode_prefix' buffer has been reduced from 30 to 15. This ensures that the maximum possible length of the string being written into the buffer will not exceed its size, thus preventing potential buffer overflow and truncation issues. Fixes the below with gcc W=1: drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c: In function ‘gfx_v9_4_3_early_init’: drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=] 379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); | ^~ ...... 439 | r = gfx_v9_4_3_init_rlc_microcode(adev, ucode_prefix); | ~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:379:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30 379 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:52: warning: ‘%s’ directive output may be truncated writing up to 29 bytes into a region of size 23 [-Wformat-truncation=] 413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); | ^~ ...... 443 | r = gfx_v9_4_3_init_cp_compute_microcode(adev, ucode_prefix); | ~~~~~~~~~~~~ drivers/gpu/drm/amd/amdgpu/gfx_v9_4_3.c:413:9: note: ‘snprintf’ output between 16 and 45 bytes into a destination of size 30 413 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7.8
High
CVE-2024-38664 2024-06-24 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm: zynqmp_dpsub: Always register bridge We must always register the DRM bridge, since zynqmp_dp_hpd_work_func calls drm_bridge_hpd_notify, which in turn expects hpd_mutex to be initialized. We do this before zynqmp_dpsub_drm_init since that calls drm_bridge_attach. This fixes the following lockdep warning: [ 19.217084] ------------[ cut here ]------------ [ 19.227530] DEBUG_LOCKS_WARN_ON(lock->magic != lock) [ 19.227768] WARNING: CPU: 0 PID: 140 at kernel/locking/mutex.c:582 __mutex_lock+0x4bc/0x550 [ 19.241696] Modules linked in: [ 19.244937] CPU: 0 PID: 140 Comm: kworker/0:4 Not tainted 6.6.20+ #96 [ 19.252046] Hardware name: xlnx,zynqmp (DT) [ 19.256421] Workqueue: events zynqmp_dp_hpd_work_func [ 19.261795] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 19.269104] pc : __mutex_lock+0x4bc/0x550 [ 19.273364] lr : __mutex_lock+0x4bc/0x550 [ 19.277592] sp : ffffffc085c5bbe0 [ 19.281066] x29: ffffffc085c5bbe0 x28: 0000000000000000 x27: ffffff88009417f8 [ 19.288624] x26: ffffff8800941788 x25: ffffff8800020008 x24: ffffffc082aa3000 [ 19.296227] x23: ffffffc080d90e3c x22: 0000000000000002 x21: 0000000000000000 [ 19.303744] x20: 0000000000000000 x19: ffffff88002f5210 x18: 0000000000000000 [ 19.311295] x17: 6c707369642e3030 x16: 3030613464662072 x15: 0720072007200720 [ 19.318922] x14: 0000000000000000 x13: 284e4f5f4e524157 x12: 0000000000000001 [ 19.326442] x11: 0001ffc085c5b940 x10: 0001ff88003f388b x9 : 0001ff88003f3888 [ 19.334003] x8 : 0001ff88003f3888 x7 : 0000000000000000 x6 : 0000000000000000 [ 19.341537] x5 : 0000000000000000 x4 : 0000000000001668 x3 : 0000000000000000 [ 19.349054] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff88003f3880 [ 19.356581] Call trace: [ 19.359160] __mutex_lock+0x4bc/0x550 [ 19.363032] mutex_lock_nested+0x24/0x30 [ 19.367187] drm_bridge_hpd_notify+0x2c/0x6c [ 19.371698] zynqmp_dp_hpd_work_func+0x44/0x54 [ 19.376364] process_one_work+0x3ac/0x988 [ 19.380660] worker_thread+0x398/0x694 [ 19.384736] kthread+0x1bc/0x1c0 [ 19.388241] ret_from_fork+0x10/0x20 [ 19.392031] irq event stamp: 183 [ 19.395450] hardirqs last enabled at (183): [] finish_task_switch.isra.0+0xa8/0x2d4 [ 19.405140] hardirqs last disabled at (182): [] __schedule+0x714/0xd04 [ 19.413612] softirqs last enabled at (114): [] srcu_invoke_callbacks+0x158/0x23c [ 19.423128] softirqs last disabled at (110): [] srcu_invoke_callbacks+0x158/0x23c [ 19.432614] ---[ end trace 0000000000000000 ]--- (cherry picked from commit 61ba791c4a7a09a370c45b70a81b8c7d4cf6b2ae)
7.8
High
CVE-2024-36481 2024-06-21 11h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: tracing/probes: fix error check in parse_btf_field() btf_find_struct_member() might return NULL or an error via the ERR_PTR() macro. However, its caller in parse_btf_field() only checks for the NULL condition. Fix this by using IS_ERR() and returning the error up the stack.
5.5
Medium
CVE-2024-36477 2024-06-21 11h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the maximum transfer length and the size of the transfer buffer. As such, it does not account for the 4 bytes of header that prepends the SPI data frame. This can result in out-of-bounds accesses and was confirmed with KASAN. Introduce SPI_HDRSIZE to account for the header and use to allocate the transfer buffer.
7.8
High
CVE-2024-36288 2024-06-21 11h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix loop termination condition in gss_free_in_token_pages() The in_token->pages[] array is not NULL terminated. This results in the following KASAN splat: KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f]
5.5
Medium
CVE-2024-38630 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: watchdog: cpu5wdt.c: Fix use-after-free bug caused by cpu5wdt_trigger When the cpu5wdt module is removing, the origin code uses del_timer() to de-activate the timer. If the timer handler is running, del_timer() could not stop it and will return directly. If the port region is released by release_region() and then the timer handler cpu5wdt_trigger() calls outb() to write into the region that is released, the use-after-free bug will happen. Change del_timer() to timer_shutdown_sync() in order that the timer handler could be finished before the port region is released.
7.8
High
CVE-2024-38628 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_audio: Fix race condition use of controls after free during gadget unbind. Hang on to the control IDs instead of pointers since those are correctly handled with locks.
5.5
Medium
CVE-2024-38625 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Check 'folio' pointer for NULL It can be NULL if bmap is called.
5.5
Medium
CVE-2024-38381 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_rx_work syzbot reported the following uninit-value access issue [1] nci_rx_work() parses received packet from ndev->rx_q. It should be validated header size, payload size and total packet size before processing the packet. If an invalid packet is detected, it should be silently discarded.
7.1
High
CVE-2024-36478 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: null_blk: fix null-ptr-dereference while configuring 'power' and 'submit_queues' Writing 'power' and 'submit_queues' concurrently will trigger kernel panic: Test script: modprobe null_blk nr_devices=0 mkdir -p /sys/kernel/config/nullb/nullb0 while true; do echo 1 > submit_queues; echo 4 > submit_queues; done & while true; do echo 1 > power; echo 0 > power; done Test result: BUG: kernel NULL pointer dereference, address: 0000000000000148 Oops: 0000 [#1] PREEMPT SMP RIP: 0010:__lock_acquire+0x41d/0x28f0 Call Trace: lock_acquire+0x121/0x450 down_write+0x5f/0x1d0 simple_recursive_removal+0x12f/0x5c0 blk_mq_debugfs_unregister_hctxs+0x7c/0x100 blk_mq_update_nr_hw_queues+0x4a3/0x720 nullb_update_nr_hw_queues+0x71/0xf0 [null_blk] nullb_device_submit_queues_store+0x79/0xf0 [null_blk] configfs_write_iter+0x119/0x1e0 vfs_write+0x326/0x730 ksys_write+0x74/0x150 This is because del_gendisk() can concurrent with blk_mq_update_nr_hw_queues(): nullb_device_power_store nullb_apply_submit_queues null_del_dev del_gendisk nullb_update_nr_hw_queues if (!dev->nullb) // still set while gendisk is deleted return 0 blk_mq_update_nr_hw_queues dev->nullb = NULL Fix this problem by resuing the global mutex to protect nullb_device_power_store() and nullb_update_nr_hw_queues() from configfs.
5.5
Medium
CVE-2022-48766 2024-06-20 11h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wrap dcn301_calculate_wm_and_dlg for FPU. Mirrors the logic for dcn30. Cue lots of WARNs and some kernel panics without this fix.
5.5
Medium
CVE-2024-38608 2024-06-19 13h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-38588 2024-06-19 13h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix possible use-after-free issue in ftrace_location() KASAN reports a bug: BUG: KASAN: use-after-free in ftrace_location+0x90/0x120 Read of size 8 at addr ffff888141d40010 by task insmod/424 CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+ [...] Call Trace: dump_stack_lvl+0x68/0xa0 print_report+0xcf/0x610 kasan_report+0xb5/0xe0 ftrace_location+0x90/0x120 register_kprobe+0x14b/0xa40 kprobe_init+0x2d/0xff0 [kprobe_example] do_one_initcall+0x8f/0x2d0 do_init_module+0x13a/0x3c0 load_module+0x3082/0x33d0 init_module_from_file+0xd2/0x130 __x64_sys_finit_module+0x306/0x440 do_syscall_64+0x68/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79 The root cause is that, in lookup_rec(), ftrace record of some address is being searched in ftrace pages of some module, but those ftrace pages at the same time is being freed in ftrace_release_mod() as the corresponding module is being deleted: CPU1 | CPU2 register_kprobes() { | delete_module() { check_kprobe_address_safe() { | arch_check_ftrace_location() { | ftrace_location() { | lookup_rec() // USE! | ftrace_release_mod() // Free! To fix this issue: 1. Hold rcu lock as accessing ftrace pages in ftrace_location_range(); 2. Use ftrace_location_range() instead of lookup_rec() in ftrace_location(); 3. Call synchronize_rcu() before freeing any ftrace pages both in ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem().
7.8
High
CVE-2024-38581 2024-06-19 13h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/mes: fix use-after-free issue Delete fence fallback timer to fix the ramdom use-after-free issue. v2: move to amdgpu_mes.c
7.8
High
CVE-2024-38577 2024-06-19 13h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Fix show_rcu_tasks_trace_gp_kthread buffer overflow There is a possibility of buffer overflow in show_rcu_tasks_trace_gp_kthread() if counters, passed to sprintf() are huge. Counter numbers, needed for this are unrealistically high, but buffer overflow is still possible. Use snprintf() with buffer size instead of sprintf(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
7.8
High
CVE-2024-38570 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace. This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead.
7.8
High
CVE-2024-38557 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Reload only IB representors upon lag disable/enable On lag disable, the bond IB device along with all of its representors are destroyed, and then the slaves' representors get reloaded. In case the slave IB representor load fails, the eswitch error flow unloads all representors, including ethernet representors, where the netdevs get detached and removed from lag bond. Such flow is inaccurate as the lag driver is not responsible for loading/unloading ethernet representors. Furthermore, the flow described above begins by holding lag lock to prevent bond changes during disable flow. However, when reaching the ethernet representors detachment from lag, the lag lock is required again, triggering the following deadlock: Call trace: __switch_to+0xf4/0x148 __schedule+0x2c8/0x7d0 schedule+0x50/0xe0 schedule_preempt_disabled+0x18/0x28 __mutex_lock.isra.13+0x2b8/0x570 __mutex_lock_slowpath+0x1c/0x28 mutex_lock+0x4c/0x68 mlx5_lag_remove_netdev+0x3c/0x1a0 [mlx5_core] mlx5e_uplink_rep_disable+0x70/0xa0 [mlx5_core] mlx5e_detach_netdev+0x6c/0xb0 [mlx5_core] mlx5e_netdev_change_profile+0x44/0x138 [mlx5_core] mlx5e_netdev_attach_nic_profile+0x28/0x38 [mlx5_core] mlx5e_vport_rep_unload+0x184/0x1b8 [mlx5_core] mlx5_esw_offloads_rep_load+0xd8/0xe0 [mlx5_core] mlx5_eswitch_reload_reps+0x74/0xd0 [mlx5_core] mlx5_disable_lag+0x130/0x138 [mlx5_core] mlx5_lag_disable_change+0x6c/0x70 [mlx5_core] // hold ldev->lock mlx5_devlink_eswitch_mode_set+0xc0/0x410 [mlx5_core] devlink_nl_cmd_eswitch_set_doit+0xdc/0x180 genl_family_rcv_msg_doit.isra.17+0xe8/0x138 genl_rcv_msg+0xe4/0x220 netlink_rcv_skb+0x44/0x108 genl_rcv+0x40/0x58 netlink_unicast+0x198/0x268 netlink_sendmsg+0x1d4/0x418 sock_sendmsg+0x54/0x60 __sys_sendto+0xf4/0x120 __arm64_sys_sendto+0x30/0x40 el0_svc_common+0x8c/0x120 do_el0_svc+0x30/0xa0 el0_svc+0x20/0x30 el0_sync_handler+0x90/0xb8 el0_sync+0x160/0x180 Thus, upon lag enable/disable, load and unload only the IB representors of the slaves preventing the deadlock mentioned above. While at it, refactor the mlx5_esw_offloads_rep_load() function to have a static helper method for its internal logic, in symmetry with the representor unload design.
5.5
Medium
CVE-2024-38556 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Add a timeout to acquire the command queue semaphore Prevent forced completion handling on an entry that has not yet been assigned an index, causing an out of bounds access on idx = -22. Instead of waiting indefinitely for the sem, blocking flow now waits for index to be allocated or a sem acquisition timeout before beginning the timer for FW completion. Kernel log example: mlx5_core 0000:06:00.0: wait_func_handle_exec_timeout:1128:(pid 185911): cmd[-22]: CREATE_UCTX(0xa04) No done completion
7.8
High
CVE-2024-38553 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fec: remove .ndo_poll_controller to avoid deadlocks There is a deadlock issue found in sungem driver, please refer to the commit ac0a230f719b ("eth: sungem: remove .ndo_poll_controller to avoid deadlocks"). The root cause of the issue is that netpoll is in atomic context and disable_irq() is called by .ndo_poll_controller interface of sungem driver, however, disable_irq() might sleep. After analyzing the implementation of fec_poll_controller(), the fec driver should have the same issue. Due to the fec driver uses NAPI for TX completions, the .ndo_poll_controller is unnecessary to be implemented in the fec driver, so fec_poll_controller() can be safely removed.
5.5
Medium
CVE-2024-38545 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix UAF for cq async event The refcount of CQ is not protected by locks. When CQ asynchronous events and CQ destruction are concurrent, CQ may have been released, which will cause UAF. Use the xa_lock() to protect the CQ refcount.
7.8
High
CVE-2024-38543 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: lib/test_hmm.c: handle src_pfns and dst_pfns allocation failure The kcalloc() in dmirror_device_evict_chunk() will return null if the physical memory has run out. As a result, if src_pfns or dst_pfns is dereferenced, the null pointer dereference bug will happen. Moreover, the device is going away. If the kcalloc() fails, the pages mapping a chunk could not be evicted. So add a __GFP_NOFAIL flag in kcalloc(). Finally, as there is no need to have physically contiguous memory, Switch kcalloc() to kvcalloc() in order to avoid failing allocations.
5.5
Medium
CVE-2024-38538 2024-06-19 13h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: bridge: xmit: make sure we have at least eth header len bytes syzbot triggered an uninit value[1] error in bridge device's xmit path by sending a short (less than ETH_HLEN bytes) skb. To fix it check if we can actually pull that amount instead of assuming. Tested with dropwatch: drop at: br_dev_xmit+0xb93/0x12d0 [bridge] (0xffffffffc06739b3) origin: software timestamp: Mon May 13 11:31:53 2024 778214037 nsec protocol: 0x88a8 length: 2 original length: 2 drop reason: PKT_TOO_SMALL [1] BUG: KMSAN: uninit-value in br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65 br_dev_xmit+0x61d/0x1cb0 net/bridge/br_device.c:65 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547 __dev_queue_xmit+0x34db/0x5350 net/core/dev.c:4341 dev_queue_xmit include/linux/netdevice.h:3091 [inline] __bpf_tx_skb net/core/filter.c:2136 [inline] __bpf_redirect_common net/core/filter.c:2180 [inline] __bpf_redirect+0x14a6/0x1620 net/core/filter.c:2187 ____bpf_clone_redirect net/core/filter.c:2460 [inline] bpf_clone_redirect+0x328/0x470 net/core/filter.c:2432 ___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997 __bpf_prog_run512+0xb5/0xe0 kernel/bpf/core.c:2238 bpf_dispatcher_nop_func include/linux/bpf.h:1234 [inline] __bpf_prog_run include/linux/filter.h:657 [inline] bpf_prog_run include/linux/filter.h:664 [inline] bpf_test_run+0x499/0xc30 net/bpf/test_run.c:425 bpf_prog_test_run_skb+0x14ea/0x1f20 net/bpf/test_run.c:1058 bpf_prog_test_run+0x6b7/0xad0 kernel/bpf/syscall.c:4269 __sys_bpf+0x6aa/0xd90 kernel/bpf/syscall.c:5678 __do_sys_bpf kernel/bpf/syscall.c:5767 [inline] __se_sys_bpf kernel/bpf/syscall.c:5765 [inline] __x64_sys_bpf+0xa0/0xe0 kernel/bpf/syscall.c:5765 x64_sys_call+0x96b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:322 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
7.1
High
CVE-2024-36968 2024-06-08 12h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init() l2cap_le_flowctl_init() can cause both div-by-zero and an integer overflow since hdev->le_mtu may not fall in the valid range. Move MTU from hci_dev to hci_conn to validate MTU and stop the connection process earlier if MTU is invalid. Also, add a missing validation in read_buffer_size() and make it return an error value if the validation fails. Now hci_conn_add() returns ERR_PTR() as it can fail due to the both a kzalloc failure and invalid MTU value. divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 67 Comm: kworker/u5:0 Tainted: G W 6.9.0-rc5+ #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci0 hci_rx_work RIP: 0010:l2cap_le_flowctl_init+0x19e/0x3f0 net/bluetooth/l2cap_core.c:547 Code: e8 17 17 0c 00 66 41 89 9f 84 00 00 00 bf 01 00 00 00 41 b8 02 00 00 00 4c 89 fe 4c 89 e2 89 d9 e8 27 17 0c 00 44 89 f0 31 d2 <66> f7 f3 89 c3 ff c3 4d 8d b7 88 00 00 00 4c 89 f0 48 c1 e8 03 42 RSP: 0018:ffff88810bc0f858 EFLAGS: 00010246 RAX: 00000000000002a0 RBX: 0000000000000000 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: ffff88810bc0f7c0 RDI: ffffc90002dcb66f RBP: ffff88810bc0f880 R08: aa69db2dda70ff01 R09: 0000ffaaaaaaaaaa R10: 0084000000ffaaaa R11: 0000000000000000 R12: ffff88810d65a084 R13: dffffc0000000000 R14: 00000000000002a0 R15: ffff88810d65a000 FS: 0000000000000000(0000) GS:ffff88811ac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000100 CR3: 0000000103268003 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: l2cap_le_connect_req net/bluetooth/l2cap_core.c:4902 [inline] l2cap_le_sig_cmd net/bluetooth/l2cap_core.c:5420 [inline] l2cap_le_sig_channel net/bluetooth/l2cap_core.c:5486 [inline] l2cap_recv_frame+0xe59d/0x11710 net/bluetooth/l2cap_core.c:6809 l2cap_recv_acldata+0x544/0x10a0 net/bluetooth/l2cap_core.c:7506 hci_acldata_packet net/bluetooth/hci_core.c:3939 [inline] hci_rx_work+0x5e5/0xb20 net/bluetooth/hci_core.c:4176 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0x90f/0x1530 kernel/workqueue.c:3335 worker_thread+0x926/0xe70 kernel/workqueue.c:3416 kthread+0x2e3/0x380 kernel/kthread.c:388 ret_from_fork+0x5c/0x90 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Modules linked in: ---[ end trace 0000000000000000 ]---
6.5
Medium
CVE-2024-36924 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up() lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the hbalock to avoid potential deadlock.
5.5
Medium
CVE-2024-36923 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/9p: fix uninitialized values during inode evict If an iget fails due to not being able to retrieve information from the server then the inode structure is only partially initialized. When the inode gets evicted, references to uninitialized structures (like fscache cookies) were being made. This patch checks for a bad_inode before doing anything other than clearing the inode from the cache. Since the inode is bad, it shouldn't have any state associated with it that needs to be written back (and there really isn't a way to complete those anyways).
5.5
Medium
CVE-2024-36921 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: guard against invalid STA ID on removal Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would result in out-of-bounds array accesses. This prevents issues should the driver get into a bad state during error handling.
7.8
High
CVE-2024-36902 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: fib6_rules: avoid possible NULL dereference in fib6_rule_action() syzbot is able to trigger the following crash [1], caused by unsafe ip6_dst_idev() use. Indeed ip6_dst_idev() can return NULL, and must always be checked. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 31648 Comm: syz-executor.0 Not tainted 6.9.0-rc4-next-20240417-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:__fib6_rule_action net/ipv6/fib6_rules.c:237 [inline] RIP: 0010:fib6_rule_action+0x241/0x7b0 net/ipv6/fib6_rules.c:267 Code: 02 00 00 49 8d 9f d8 00 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 f9 32 bf f7 48 8b 1b 48 89 d8 48 c1 e8 03 <42> 80 3c 20 00 74 08 48 89 df e8 e0 32 bf f7 4c 8b 03 48 89 ef 4c RSP: 0018:ffffc9000fc1f2f0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 1a772f98c8186700 RDX: 0000000000000003 RSI: ffffffff8bcac4e0 RDI: ffffffff8c1f9760 RBP: ffff8880673fb980 R08: ffffffff8fac15ef R09: 1ffffffff1f582bd R10: dffffc0000000000 R11: fffffbfff1f582be R12: dffffc0000000000 R13: 0000000000000080 R14: ffff888076509000 R15: ffff88807a029a00 FS: 00007f55e82ca6c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b31d23000 CR3: 0000000022b66000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: fib_rules_lookup+0x62c/0xdb0 net/core/fib_rules.c:317 fib6_rule_lookup+0x1fd/0x790 net/ipv6/fib6_rules.c:108 ip6_route_output_flags_noref net/ipv6/route.c:2637 [inline] ip6_route_output_flags+0x38e/0x610 net/ipv6/route.c:2649 ip6_route_output include/net/ip6_route.h:93 [inline] ip6_dst_lookup_tail+0x189/0x11a0 net/ipv6/ip6_output.c:1120 ip6_dst_lookup_flow+0xb9/0x180 net/ipv6/ip6_output.c:1250 sctp_v6_get_dst+0x792/0x1e20 net/sctp/ipv6.c:326 sctp_transport_route+0x12c/0x2e0 net/sctp/transport.c:455 sctp_assoc_add_peer+0x614/0x15c0 net/sctp/associola.c:662 sctp_connect_new_asoc+0x31d/0x6c0 net/sctp/socket.c:1099 __sctp_connect+0x66d/0xe30 net/sctp/socket.c:1197 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-36901 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: prevent NULL dereference in ip6_output() According to syzbot, there is a chance that ip6_dst_idev() returns NULL in ip6_output(). Most places in IPv6 stack deal with a NULL idev just fine, but not here. syzbot reported: general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7] CPU: 0 PID: 9775 Comm: syz-executor.4 Not tainted 6.9.0-rc5-syzkaller-00157-g6a30653b604a #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:ip6_output+0x231/0x3f0 net/ipv6/ip6_output.c:237 Code: 3c 1e 00 49 89 df 74 08 4c 89 ef e8 19 58 db f7 48 8b 44 24 20 49 89 45 00 49 89 c5 48 8d 9d e0 05 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 38 84 c0 4c 8b 74 24 28 0f 85 61 01 00 00 8b 1b 31 ff RSP: 0018:ffffc9000927f0d8 EFLAGS: 00010202 RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000040000 RDX: ffffc900131f9000 RSI: 0000000000004f47 RDI: 0000000000004f48 RBP: 0000000000000000 R08: ffffffff8a1f0b9a R09: 1ffffffff1f51fad R10: dffffc0000000000 R11: fffffbfff1f51fae R12: ffff8880293ec8c0 R13: ffff88805d7fc000 R14: 1ffff1100527d91a R15: dffffc0000000000 FS: 00007f135c6856c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000080 CR3: 0000000064096000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: NF_HOOK include/linux/netfilter.h:314 [inline] ip6_xmit+0xefe/0x17f0 net/ipv6/ip6_output.c:358 sctp_v6_xmit+0x9f2/0x13f0 net/sctp/ipv6.c:248 sctp_packet_transmit+0x26ad/0x2ca0 net/sctp/output.c:653 sctp_packet_singleton+0x22c/0x320 net/sctp/outqueue.c:783 sctp_outq_flush_ctrl net/sctp/outqueue.c:914 [inline] sctp_outq_flush+0x6d5/0x3e20 net/sctp/outqueue.c:1212 sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline] sctp_do_sm+0x59cc/0x60c0 net/sctp/sm_sideeffect.c:1169 sctp_primitive_ASSOCIATE+0x95/0xc0 net/sctp/primitive.c:73 __sctp_connect+0x9cd/0xe30 net/sctp/socket.c:1234 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-36899 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: Fix use after free in lineinfo_changed_notify The use-after-free issue occurs as follows: when the GPIO chip device file is being closed by invoking gpio_chrdev_release(), watched_lines is freed by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier chain failed due to waiting write rwsem. Additionally, one of the GPIO chip's lines is also in the release process and holds the notifier chain's read rwsem. Consequently, a race condition leads to the use-after-free of watched_lines. Here is the typical stack when issue happened: [free] gpio_chrdev_release() --> bitmap_free(cdev->watched_lines) <-- freed --> blocking_notifier_chain_unregister() --> down_write(&nh->rwsem) <-- waiting rwsem --> __down_write_common() --> rwsem_down_write_slowpath() --> schedule_preempt_disabled() --> schedule() [use] st54spi_gpio_dev_release() --> gpio_free() --> gpiod_free() --> gpiod_free_commit() --> gpiod_line_state_notify() --> blocking_notifier_call_chain() --> down_read(&nh->rwsem); <-- held rwsem --> notifier_call_chain() --> lineinfo_changed_notify() --> test_bit(xxxx, cdev->watched_lines) <-- use after free The side effect of the use-after-free issue is that a GPIO line event is being generated for userspace where it shouldn't. However, since the chrdev is being closed, userspace won't have the chance to read that event anyway. To fix the issue, call the bitmap_free() function after the unregistration of lineinfo_changed_nb notifier chain.
7
High
CVE-2024-36893 2024-05-30 15h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: Check for port partner validity before consuming it typec_register_partner() does not guarantee partner registration to always succeed. In the event of failure, port->partner is set to the error value or NULL. Given that port->partner validity is not checked, this results in the following crash: Unable to handle kernel NULL pointer dereference at virtual address xx pc : run_state_machine+0x1bc8/0x1c08 lr : run_state_machine+0x1b90/0x1c08 .. Call trace: run_state_machine+0x1bc8/0x1c08 tcpm_state_machine_work+0x94/0xe4 kthread_worker_fn+0x118/0x328 kthread+0x1d0/0x23c ret_from_fork+0x10/0x20 To prevent the crash, check for port->partner validity before derefencing it in all the call sites.
5.5
Medium
CVE-2024-36023 2024-05-30 15h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: Julia Lawall reported this null pointer dereference, this should fix it.
5.5
Medium
CVE-2024-36012 2024-05-23 07h03 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: fix slab-use-after-free in msft_do_close() Tying the msft->data lifetime to hdev by freeing it in hci_release_dev() to fix the following case: [use] msft_do_close() msft = hdev->msft_data; if (!msft) ...(1) <- passed. return; mutex_lock(&msft->filter_lock); ...(4) <- used after freed. [free] msft_unregister() msft = hdev->msft_data; hdev->msft_data = NULL; ...(2) kfree(msft); ...(3) <- msft is freed. ================================================================== BUG: KASAN: slab-use-after-free in __mutex_lock_common kernel/locking/mutex.c:587 [inline] BUG: KASAN: slab-use-after-free in __mutex_lock+0x8f/0xc30 kernel/locking/mutex.c:752 Read of size 8 at addr ffff888106cbbca8 by task kworker/u5:2/309
7.8
High
CVE-2023-52857 2024-05-21 15h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix coverity issue with unintentional integer overflow 1. Instead of multiplying 2 variable of different types. Change to assign a value of one variable and then multiply the other variable. 2. Add a int variable for multiplier calculation instead of calculating different types multiplier with dma_addr_t variable directly.
5.5
Medium
CVE-2023-52837 2024-05-21 15h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: nbd: fix uaf in nbd_open Commit 4af5f2e03013 ("nbd: use blk_mq_alloc_disk and blk_cleanup_disk") cleans up disk by blk_cleanup_disk() and it won't set disk->private_data as NULL as before. UAF may be triggered in nbd_open() if someone tries to open nbd device right after nbd_put() since nbd has been free in nbd_dev_remove(). Fix this by implementing ->free_disk and free private data in it.
7.8
High
CVE-2023-52827 2024-05-21 15h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix possible out-of-bound read in ath12k_htt_pull_ppdu_stats() len is extracted from HTT message and could be an unexpected value in case errors happen, so add validation before using to avoid possible out-of-bound read in the following message iteration and parsing. The same issue also applies to ppdu_info->ppdu_stats.common.num_users, so validate it before using too. These are found during code review. Compile test only.
7.1
High
CVE-2023-52812 2024-05-21 15h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd: check num of link levels when update pcie param In SR-IOV environment, the value of pcie_table->num_of_link_levels will be 0, and num_of_levels - 1 will cause array index out of bounds
7.8
High
CVE-2023-52760 2024-05-21 15h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix slab-use-after-free in gfs2_qd_dealloc In gfs2_put_super(), whether withdrawn or not, the quota should be cleaned up by gfs2_quota_cleanup(). Otherwise, struct gfs2_sbd will be freed before gfs2_qd_dealloc (rcu callback) has run for all gfs2_quota_data objects, resulting in use-after-free. Also, gfs2_destroy_threads() and gfs2_quota_cleanup() is already called by gfs2_make_fs_ro(), so in gfs2_put_super(), after calling gfs2_make_fs_ro(), there is no need to call them again.
7.8
High
CVE-2023-52757 2024-05-21 15h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when releasing mids All release_mid() callers seem to hold a reference of @mid so there is no need to call kref_put(&mid->refcount, __release_mid) under @server->mid_lock spinlock. If they don't, then an use-after-free bug would have occurred anyways. By getting rid of such spinlock also fixes a potential deadlock as shown below CPU 0 CPU 1 ------------------------------------------------------------------ cifs_demultiplex_thread() cifs_debug_data_proc_show() release_mid() spin_lock(&server->mid_lock); spin_lock(&cifs_tcp_ses_lock) spin_lock(&server->mid_lock) __release_mid() smb2_find_smb_tcon() spin_lock(&cifs_tcp_ses_lock) *deadlock*
7.8
High
CVE-2023-52752 2024-05-21 15h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free bug in cifs_debug_data_proc_show() Skip SMB sessions that are being teared down (e.g. @ses->ses_status == SES_EXITING) in cifs_debug_data_proc_show() to avoid use-after-free in @ses. This fixes the following GPF when reading from /proc/fs/cifs/DebugData while mounting and umounting [ 816.251274] general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6d81: 0000 [#1] PREEMPT SMP NOPTI ... [ 816.260138] Call Trace: [ 816.260329] [ 816.260499] ? die_addr+0x36/0x90 [ 816.260762] ? exc_general_protection+0x1b3/0x410 [ 816.261126] ? asm_exc_general_protection+0x26/0x30 [ 816.261502] ? cifs_debug_tcon+0xbd/0x240 [cifs] [ 816.261878] ? cifs_debug_tcon+0xab/0x240 [cifs] [ 816.262249] cifs_debug_data_proc_show+0x516/0xdb0 [cifs] [ 816.262689] ? seq_read_iter+0x379/0x470 [ 816.262995] seq_read_iter+0x118/0x470 [ 816.263291] proc_reg_read_iter+0x53/0x90 [ 816.263596] ? srso_alias_return_thunk+0x5/0x7f [ 816.263945] vfs_read+0x201/0x350 [ 816.264211] ksys_read+0x75/0x100 [ 816.264472] do_syscall_64+0x3f/0x90 [ 816.264750] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 816.265135] RIP: 0033:0x7fd5e669d381
7.8
High
CVE-2023-52751 2024-05-21 15h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free in smb2_query_info_compound() The following UAF was triggered when running fstests generic/072 with KASAN enabled against Windows Server 2022 and mount options 'multichannel,max_channels=2,vers=3.1.1,mfsymlinks,noperm' BUG: KASAN: slab-use-after-free in smb2_query_info_compound+0x423/0x6d0 [cifs] Read of size 8 at addr ffff888014941048 by task xfs_io/27534 CPU: 0 PID: 27534 Comm: xfs_io Not tainted 6.6.0-rc7 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack_lvl+0x4a/0x80 print_report+0xcf/0x650 ? srso_alias_return_thunk+0x5/0x7f ? srso_alias_return_thunk+0x5/0x7f ? __phys_addr+0x46/0x90 kasan_report+0xda/0x110 ? smb2_query_info_compound+0x423/0x6d0 [cifs] ? smb2_query_info_compound+0x423/0x6d0 [cifs] smb2_query_info_compound+0x423/0x6d0 [cifs] ? __pfx_smb2_query_info_compound+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __stack_depot_save+0x39/0x480 ? kasan_save_stack+0x33/0x60 ? kasan_set_track+0x25/0x30 ? ____kasan_slab_free+0x126/0x170 smb2_queryfs+0xc2/0x2c0 [cifs] ? __pfx_smb2_queryfs+0x10/0x10 [cifs] ? __pfx___lock_acquire+0x10/0x10 smb311_queryfs+0x210/0x220 [cifs] ? __pfx_smb311_queryfs+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __lock_acquire+0x480/0x26c0 ? lock_release+0x1ed/0x640 ? srso_alias_return_thunk+0x5/0x7f ? do_raw_spin_unlock+0x9b/0x100 cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 ? __pfx___do_sys_fstatfs+0x10/0x10 ? srso_alias_return_thunk+0x5/0x7f ? lockdep_hardirqs_on_prepare+0x136/0x200 ? srso_alias_return_thunk+0x5/0x7f do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Allocated by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 __kasan_kmalloc+0x8f/0xa0 open_cached_dir+0x71b/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] smb311_queryfs+0x210/0x220 [cifs] cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Freed by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 ____kasan_slab_free+0x126/0x170 slab_free_freelist_hook+0xd0/0x1e0 __kmem_cache_free+0x9d/0x1b0 open_cached_dir+0xff5/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] This is a race between open_cached_dir() and cached_dir_lease_break() where the cache entry for the open directory handle receives a lease break while creating it. And before returning from open_cached_dir(), we put the last reference of the new @cfid because of !@cfid->has_lease. Besides the UAF, while running xfstests a lot of missed lease breaks have been noticed in tests that run several concurrent statfs(2) calls on those cached fids CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 00000000715bfe83 len 108 CIFS: VFS: Dump pending requests: CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 000000005aa7316e len 108 ... To fix both, in open_cached_dir() ensure that @cfid->has_lease is set right before sending out compounded request so that any potential lease break will be get processed by demultiplex thread while we're still caching @cfid. And, if open failed for some reason, re-check @cfid->has_lease to decide whether or not put lease reference.
7.8
High
CVE-2023-52749 2024-05-21 15h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: spi: Fix null dereference on suspend A race condition exists where a synchronous (noqueue) transfer can be active during a system suspend. This can cause a null pointer dereference exception to occur when the system resumes. Example order of events leading to the exception: 1. spi_sync() calls __spi_transfer_message_noqueue() which sets ctlr->cur_msg 2. Spi transfer begins via spi_transfer_one_message() 3. System is suspended interrupting the transfer context 4. System is resumed 6. spi_controller_resume() calls spi_start_queue() which resets cur_msg to NULL 7. Spi transfer context resumes and spi_finalize_current_message() is called which dereferences cur_msg (which is now NULL) Wait for synchronous transfers to complete before suspending by acquiring the bus mutex and setting/checking a suspend flag.
4.7
Medium
CVE-2023-52737 2024-05-21 15h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: lock the inode in shared mode before starting fiemap Currently fiemap does not take the inode's lock (VFS lock), it only locks a file range in the inode's io tree. This however can lead to a deadlock if we have a concurrent fsync on the file and fiemap code triggers a fault when accessing the user space buffer with fiemap_fill_next_extent(). The deadlock happens on the inode's i_mmap_lock semaphore, which is taken both by fsync and btrfs_page_mkwrite(). This deadlock was recently reported by syzbot and triggers a trace like the following: task:syz-executor361 state:D stack:20264 pid:5668 ppid:5119 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:5293 [inline] __schedule+0x995/0xe20 kernel/sched/core.c:6606 schedule+0xcb/0x190 kernel/sched/core.c:6682 wait_on_state fs/btrfs/extent-io-tree.c:707 [inline] wait_extent_bit+0x577/0x6f0 fs/btrfs/extent-io-tree.c:751 lock_extent+0x1c2/0x280 fs/btrfs/extent-io-tree.c:1742 find_lock_delalloc_range+0x4e6/0x9c0 fs/btrfs/extent_io.c:488 writepage_delalloc+0x1ef/0x540 fs/btrfs/extent_io.c:1863 __extent_writepage+0x736/0x14e0 fs/btrfs/extent_io.c:2174 extent_write_cache_pages+0x983/0x1220 fs/btrfs/extent_io.c:3091 extent_writepages+0x219/0x540 fs/btrfs/extent_io.c:3211 do_writepages+0x3c3/0x680 mm/page-writeback.c:2581 filemap_fdatawrite_wbc+0x11e/0x170 mm/filemap.c:388 __filemap_fdatawrite_range mm/filemap.c:421 [inline] filemap_fdatawrite_range+0x175/0x200 mm/filemap.c:439 btrfs_fdatawrite_range fs/btrfs/file.c:3850 [inline] start_ordered_ops fs/btrfs/file.c:1737 [inline] btrfs_sync_file+0x4ff/0x1190 fs/btrfs/file.c:1839 generic_write_sync include/linux/fs.h:2885 [inline] btrfs_do_write_iter+0xcd3/0x1280 fs/btrfs/file.c:1684 call_write_iter include/linux/fs.h:2189 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x7dc/0xc50 fs/read_write.c:584 ksys_write+0x177/0x2a0 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f7d4054e9b9 RSP: 002b:00007f7d404fa2f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007f7d405d87a0 RCX: 00007f7d4054e9b9 RDX: 0000000000000090 RSI: 0000000020000000 RDI: 0000000000000006 RBP: 00007f7d405a51d0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 61635f65646f6e69 R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87a8 INFO: task syz-executor361:5697 blocked for more than 145 seconds. Not tainted 6.2.0-rc3-syzkaller-00376-g7c6984405241 #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor361 state:D stack:21216 pid:5697 ppid:5119 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:5293 [inline] __schedule+0x995/0xe20 kernel/sched/core.c:6606 schedule+0xcb/0x190 kernel/sched/core.c:6682 rwsem_down_read_slowpath+0x5f9/0x930 kernel/locking/rwsem.c:1095 __down_read_common+0x54/0x2a0 kernel/locking/rwsem.c:1260 btrfs_page_mkwrite+0x417/0xc80 fs/btrfs/inode.c:8526 do_page_mkwrite+0x19e/0x5e0 mm/memory.c:2947 wp_page_shared+0x15e/0x380 mm/memory.c:3295 handle_pte_fault mm/memory.c:4949 [inline] __handle_mm_fault mm/memory.c:5073 [inline] handle_mm_fault+0x1b79/0x26b0 mm/memory.c:5219 do_user_addr_fault+0x69b/0xcb0 arch/x86/mm/fault.c:1428 handle_page_fault arch/x86/mm/fault.c:1519 [inline] exc_page_fault+0x7a/0x110 arch/x86/mm/fault.c:1575 asm_exc_page_fault+0x22/0x30 arch/x86/include/asm/idtentry.h:570 RIP: 0010:copy_user_short_string+0xd/0x40 arch/x86/lib/copy_user_64.S:233 Code: 74 0a 89 (...) RSP: 0018:ffffc9000570f330 EFLAGS: 000502 ---truncated---
5.5
Medium
CVE-2022-48706 2024-05-21 15h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: vdpa: ifcvf: Do proper cleanup if IFCVF init fails ifcvf_mgmt_dev leaks memory if it is not freed before returning. Call is made to correct return statement so memory does not leak. ifcvf_init_hw does not take care of this so it is needed to do it here.
5.5
Medium
CVE-2024-35998 2024-05-20 09h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb3: fix lock ordering potential deadlock in cifs_sync_mid_result Coverity spotted that the cifs_sync_mid_result function could deadlock "Thread deadlock (ORDER_REVERSAL) lock_order: Calling spin_lock acquires lock TCP_Server_Info.srv_lock while holding lock TCP_Server_Info.mid_lock" Addresses-Coverity: 1590401 ("Thread deadlock (ORDER_REVERSAL)")
5.5
Medium
CVE-2024-35946 2024-05-19 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix null pointer access when abort scan During cancel scan we might use vif that weren't scanning. Fix this by using the actual scanning vif.
5.5
Medium
CVE-2024-35945 2024-05-19 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: phy: phy_device: Prevent nullptr exceptions on ISR If phydev->irq is set unconditionally, check for valid interrupt handler or fall back to polling mode to prevent nullptr exceptions in interrupt service routine.
5.5
Medium
CVE-2024-35937 2024-05-19 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: check A-MSDU format more carefully If it looks like there's another subframe in the A-MSDU but the header isn't fully there, we can end up reading data out of bounds, only to discard later. Make this a bit more careful and check if the subframe header can even be present.
7.1
High
CVE-2024-35929 2024-05-19 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix WARN_ON_ONCE() in the rcu_nocb_bypass_lock() For the kernels built with CONFIG_RCU_NOCB_CPU_DEFAULT_ALL=y and CONFIG_RCU_LAZY=y, the following scenarios will trigger WARN_ON_ONCE() in the rcu_nocb_bypass_lock() and rcu_nocb_wait_contended() functions: CPU2 CPU11 kthread rcu_nocb_cb_kthread ksys_write rcu_do_batch vfs_write rcu_torture_timer_cb proc_sys_write __kmem_cache_free proc_sys_call_handler kmemleak_free drop_caches_sysctl_handler delete_object_full drop_slab __delete_object shrink_slab put_object lazy_rcu_shrink_scan call_rcu rcu_nocb_flush_bypass __call_rcu_commn rcu_nocb_bypass_lock raw_spin_trylock(&rdp->nocb_bypass_lock) fail atomic_inc(&rdp->nocb_lock_contended); rcu_nocb_wait_contended WARN_ON_ONCE(smp_processor_id() != rdp->cpu); WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)) | |_ _ _ _ _ _ _ _ _ _same rdp and rdp->cpu != 11_ _ _ _ _ _ _ _ _ __| Reproduce this bug with "echo 3 > /proc/sys/vm/drop_caches". This commit therefore uses rcu_nocb_try_flush_bypass() instead of rcu_nocb_flush_bypass() in lazy_rcu_shrink_scan(). If the nocb_bypass queue is being flushed, then rcu_nocb_try_flush_bypass will return directly.
7.8
High
CVE-2024-35904 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: selinux: avoid dereference of garbage after mount failure In case kern_mount() fails and returns an error pointer return in the error branch instead of continuing and dereferencing the error pointer. While on it drop the never read static variable selinuxfs_mount.
5.5
Medium
CVE-2024-35887 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.
7.8
High
CVE-2024-35868 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_write() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35867 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35866 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35864 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_is_valid_lease_break() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35863 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in is_valid_oplock_break() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35862 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_is_network_name_deleted() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-35861 2024-05-19 08h34 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2023-52664 2024-05-17 13h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: atlantic: eliminate double free in error handling logic Driver has a logic leak in ring data allocation/free, where aq_ring_free could be called multiple times on same ring, if system is under stress and got memory allocation error. Ring pointer was used as an indicator of failure, but this is not correct since only ring data is allocated/deallocated. Ring itself is an array member. Changing ring allocation functions to return error code directly. This simplifies error handling and eliminates aq_ring_free on higher layer.
7.8
High
CVE-2024-35784 2024-05-17 12h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock with fiemap and extent locking While working on the patchset to remove extent locking I got a lockdep splat with fiemap and pagefaulting with my new extent lock replacement lock. This deadlock exists with our normal code, we just don't have lockdep annotations with the extent locking so we've never noticed it. Since we're copying the fiemap extent to user space on every iteration we have the chance of pagefaulting. Because we hold the extent lock for the entire range we could mkwrite into a range in the file that we have mmap'ed. This would deadlock with the following stack trace [<0>] lock_extent+0x28d/0x2f0 [<0>] btrfs_page_mkwrite+0x273/0x8a0 [<0>] do_page_mkwrite+0x50/0xb0 [<0>] do_fault+0xc1/0x7b0 [<0>] __handle_mm_fault+0x2fa/0x460 [<0>] handle_mm_fault+0xa4/0x330 [<0>] do_user_addr_fault+0x1f4/0x800 [<0>] exc_page_fault+0x7c/0x1e0 [<0>] asm_exc_page_fault+0x26/0x30 [<0>] rep_movs_alternative+0x33/0x70 [<0>] _copy_to_user+0x49/0x70 [<0>] fiemap_fill_next_extent+0xc8/0x120 [<0>] emit_fiemap_extent+0x4d/0xa0 [<0>] extent_fiemap+0x7f8/0xad0 [<0>] btrfs_fiemap+0x49/0x80 [<0>] __x64_sys_ioctl+0x3e1/0xb50 [<0>] do_syscall_64+0x94/0x1a0 [<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 I wrote an fstest to reproduce this deadlock without my replacement lock and verified that the deadlock exists with our existing locking. To fix this simply don't take the extent lock for the entire duration of the fiemap. This is safe in general because we keep track of where we are when we're searching the tree, so if an ordered extent updates in the middle of our fiemap call we'll still emit the correct extents because we know what offset we were on before. The only place we maintain the lock is searching delalloc. Since the delalloc stuff can change during writeback we want to lock the extent range so we have a consistent view of delalloc at the time we're checking to see if we need to set the delalloc flag. With this patch applied we no longer deadlock with my testcase.
5.5
Medium
CVE-2022-48703 2024-05-03 15h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal/int340x_thermal: handle data_vault when the value is ZERO_SIZE_PTR In some case, the GDDV returns a package with a buffer which has zero length. It causes that kmemdup() returns ZERO_SIZE_PTR (0x10). Then the data_vault_read() got NULL point dereference problem when accessing the 0x10 value in data_vault. [ 71.024560] BUG: kernel NULL pointer dereference, address: 0000000000000010 This patch uses ZERO_OR_NULL_PTR() for checking ZERO_SIZE_PTR or NULL value in data_vault.
5.5
Medium
CVE-2022-48673 2024-05-03 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/smc: Fix possible access to freed memory in link clear After modifying the QP to the Error state, all RX WR would be completed with WC in IB_WC_WR_FLUSH_ERR status. Current implementation does not wait for it is done, but destroy the QP and free the link group directly. So there is a risk that accessing the freed memory in tasklet context. Here is a crash example: BUG: unable to handle page fault for address: ffffffff8f220860 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD f7300e067 P4D f7300e067 PUD f7300f063 PMD 8c4e45063 PTE 800ffff08c9df060 Oops: 0002 [#1] SMP PTI CPU: 1 PID: 0 Comm: swapper/1 Kdump: loaded Tainted: G S OE 5.10.0-0607+ #23 Hardware name: Inspur NF5280M4/YZMB-00689-101, BIOS 4.1.20 07/09/2018 RIP: 0010:native_queued_spin_lock_slowpath+0x176/0x1b0 Code: f3 90 48 8b 32 48 85 f6 74 f6 eb d5 c1 ee 12 83 e0 03 83 ee 01 48 c1 e0 05 48 63 f6 48 05 00 c8 02 00 48 03 04 f5 00 09 98 8e <48> 89 10 8b 42 08 85 c0 75 09 f3 90 8b 42 08 85 c0 74 f7 48 8b 32 RSP: 0018:ffffb3b6c001ebd8 EFLAGS: 00010086 RAX: ffffffff8f220860 RBX: 0000000000000246 RCX: 0000000000080000 RDX: ffff91db1f86c800 RSI: 000000000000173c RDI: ffff91db62bace00 RBP: ffff91db62bacc00 R08: 0000000000000000 R09: c00000010000028b R10: 0000000000055198 R11: ffffb3b6c001ea58 R12: ffff91db80e05010 R13: 000000000000000a R14: 0000000000000006 R15: 0000000000000040 FS: 0000000000000000(0000) GS:ffff91db1f840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffff8f220860 CR3: 00000001f9580004 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: _raw_spin_lock_irqsave+0x30/0x40 mlx5_ib_poll_cq+0x4c/0xc50 [mlx5_ib] smc_wr_rx_tasklet_fn+0x56/0xa0 [smc] tasklet_action_common.isra.21+0x66/0x100 __do_softirq+0xd5/0x29c asm_call_irq_on_stack+0x12/0x20 do_softirq_own_stack+0x37/0x40 irq_exit_rcu+0x9d/0xa0 sysvec_call_function_single+0x34/0x80 asm_sysvec_call_function_single+0x12/0x20
5.5
Medium
CVE-2024-27011 2024-05-01 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak in map from abort path The delete set command does not rely on the transaction object for element removal, therefore, a combination of delete element + delete set from the abort path could result in restoring twice the refcount of the mapping. Check for inactive element in the next generation for the delete element command in the abort path, skip restoring state if next generation bit has been already cleared. This is similar to the activate logic using the set walk iterator. [ 6170.286929] ------------[ cut here ]------------ [ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287071] Modules linked in: [...] [ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365 [ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f [ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202 [ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000 [ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750 [ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55 [ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10 [ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100 [ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000 [ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0 [ 6170.287962] Call Trace: [ 6170.287967] [ 6170.287973] ? __warn+0x9f/0x1a0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.288104] ? handle_bug+0x3c/0x70 [ 6170.288112] ? exc_invalid_op+0x17/0x40 [ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20 [ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables]
5.5
Medium
CVE-2024-27010 2024-05-01 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix mirred deadlock on device recursion When the mirred action is used on a classful egress qdisc and a packet is mirrored or redirected to self we hit a qdisc lock deadlock. See trace below. [..... other info removed for brevity....] [ 82.890906] [ 82.890906] ============================================ [ 82.890906] WARNING: possible recursive locking detected [ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W [ 82.890906] -------------------------------------------- [ 82.890906] ping/418 is trying to acquire lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] but task is already holding lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] other info that might help us debug this: [ 82.890906] Possible unsafe locking scenario: [ 82.890906] [ 82.890906] CPU0 [ 82.890906] ---- [ 82.890906] lock(&sch->q.lock); [ 82.890906] lock(&sch->q.lock); [ 82.890906] [ 82.890906] *** DEADLOCK *** [ 82.890906] [..... other info removed for brevity....] Example setup (eth0->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 Another example(eth0->eth1->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth1 tc qdisc add dev eth1 root handle 1: htb default 30 tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 We fix this by adding an owner field (CPU id) to struct Qdisc set after root qdisc is entered. When the softirq enters it a second time, if the qdisc owner is the same CPU, the packet is dropped to break the loop.
5.5
Medium
CVE-2024-27002 2024-05-01 05h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: Do a runtime PM get on controllers during probe mt8183-mfgcfg has a mutual dependency with genpd during the probing stage, which leads to a deadlock in the following call stack: CPU0: genpd_lock --> clk_prepare_lock genpd_power_off_work_fn() genpd_lock() generic_pm_domain::power_off() clk_unprepare() clk_prepare_lock() CPU1: clk_prepare_lock --> genpd_lock clk_register() __clk_core_init() clk_prepare_lock() clk_pm_runtime_get() genpd_lock() Do a runtime PM get at the probe function to make sure clk_register() won't acquire the genpd lock. Instead of only modifying mt8183-mfgcfg, do this on all mediatek clock controller probings because we don't believe this would cause any regression. Verified on MT8183 and MT8192 Chromebooks.
5.5
Medium
CVE-2024-26983 2024-05-01 05h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: bootconfig: use memblock_free_late to free xbc memory to buddy On the time to free xbc memory in xbc_exit(), memblock may has handed over memory to buddy allocator. So it doesn't make sense to free memory back to memblock. memblock_free() called by xbc_exit() even causes UAF bugs on architectures with CONFIG_ARCH_KEEP_MEMBLOCK disabled like x86. Following KASAN logs shows this case. This patch fixes the xbc memory free problem by calling memblock_free() in early xbc init error rewind path and calling memblock_free_late() in xbc exit path to free memory to buddy allocator. [ 9.410890] ================================================================== [ 9.418962] BUG: KASAN: use-after-free in memblock_isolate_range+0x12d/0x260 [ 9.426850] Read of size 8 at addr ffff88845dd30000 by task swapper/0/1 [ 9.435901] CPU: 9 PID: 1 Comm: swapper/0 Tainted: G U 6.9.0-rc3-00208-g586b5dfb51b9 #5 [ 9.446403] Hardware name: Intel Corporation RPLP LP5 (CPU:RaptorLake)/RPLP LP5 (ID:13), BIOS IRPPN02.01.01.00.00.19.015.D-00000000 Dec 28 2023 [ 9.460789] Call Trace: [ 9.463518] [ 9.465859] dump_stack_lvl+0x53/0x70 [ 9.469949] print_report+0xce/0x610 [ 9.473944] ? __virt_addr_valid+0xf5/0x1b0 [ 9.478619] ? memblock_isolate_range+0x12d/0x260 [ 9.483877] kasan_report+0xc6/0x100 [ 9.487870] ? memblock_isolate_range+0x12d/0x260 [ 9.493125] memblock_isolate_range+0x12d/0x260 [ 9.498187] memblock_phys_free+0xb4/0x160 [ 9.502762] ? __pfx_memblock_phys_free+0x10/0x10 [ 9.508021] ? mutex_unlock+0x7e/0xd0 [ 9.512111] ? __pfx_mutex_unlock+0x10/0x10 [ 9.516786] ? kernel_init_freeable+0x2d4/0x430 [ 9.521850] ? __pfx_kernel_init+0x10/0x10 [ 9.526426] xbc_exit+0x17/0x70 [ 9.529935] kernel_init+0x38/0x1e0 [ 9.533829] ? _raw_spin_unlock_irq+0xd/0x30 [ 9.538601] ret_from_fork+0x2c/0x50 [ 9.542596] ? __pfx_kernel_init+0x10/0x10 [ 9.547170] ret_from_fork_asm+0x1a/0x30 [ 9.551552] [ 9.555649] The buggy address belongs to the physical page: [ 9.561875] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x45dd30 [ 9.570821] flags: 0x200000000000000(node=0|zone=2) [ 9.576271] page_type: 0xffffffff() [ 9.580167] raw: 0200000000000000 ffffea0011774c48 ffffea0012ba1848 0000000000000000 [ 9.588823] raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 [ 9.597476] page dumped because: kasan: bad access detected [ 9.605362] Memory state around the buggy address: [ 9.610714] ffff88845dd2ff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 9.618786] ffff88845dd2ff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 9.626857] >ffff88845dd30000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.634930] ^ [ 9.638534] ffff88845dd30080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.646605] ffff88845dd30100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 9.654675] ==================================================================
7.8
High
CVE-2024-26982 2024-05-01 05h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [[email protected]: whitespace fix] Link: https://lkml.kernel.org/r/[email protected]
7.1
High
CVE-2024-26978 2024-05-01 05h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: max310x: fix NULL pointer dereference in I2C instantiation When trying to instantiate a max14830 device from userspace: echo max14830 0x60 > /sys/bus/i2c/devices/i2c-2/new_device we get the following error: Unable to handle kernel NULL pointer dereference at virtual address... ... Call trace: max310x_i2c_probe+0x48/0x170 [max310x] i2c_device_probe+0x150/0x2a0 ... Add check for validity of devtype to prevent the error, and abort probe with a meaningful error message.
5.5
Medium
CVE-2024-26962 2024-05-01 05h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape For raid456, if reshape is still in progress, then IO across reshape position will wait for reshape to make progress. However, for dm-raid, in following cases reshape will never make progress hence IO will hang: 1) the array is read-only; 2) MD_RECOVERY_WAIT is set; 3) MD_RECOVERY_FROZEN is set; After commit c467e97f079f ("md/raid6: use valid sector values to determine if an I/O should wait on the reshape") fix the problem that IO across reshape position doesn't wait for reshape, the dm-raid test shell/lvconvert-raid-reshape.sh start to hang: [root@fedora ~]# cat /proc/979/stack [<0>] wait_woken+0x7d/0x90 [<0>] raid5_make_request+0x929/0x1d70 [raid456] [<0>] md_handle_request+0xc2/0x3b0 [md_mod] [<0>] raid_map+0x2c/0x50 [dm_raid] [<0>] __map_bio+0x251/0x380 [dm_mod] [<0>] dm_submit_bio+0x1f0/0x760 [dm_mod] [<0>] __submit_bio+0xc2/0x1c0 [<0>] submit_bio_noacct_nocheck+0x17f/0x450 [<0>] submit_bio_noacct+0x2bc/0x780 [<0>] submit_bio+0x70/0xc0 [<0>] mpage_readahead+0x169/0x1f0 [<0>] blkdev_readahead+0x18/0x30 [<0>] read_pages+0x7c/0x3b0 [<0>] page_cache_ra_unbounded+0x1ab/0x280 [<0>] force_page_cache_ra+0x9e/0x130 [<0>] page_cache_sync_ra+0x3b/0x110 [<0>] filemap_get_pages+0x143/0xa30 [<0>] filemap_read+0xdc/0x4b0 [<0>] blkdev_read_iter+0x75/0x200 [<0>] vfs_read+0x272/0x460 [<0>] ksys_read+0x7a/0x170 [<0>] __x64_sys_read+0x1c/0x30 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 This is because reshape can't make progress. For md/raid, the problem doesn't exist because register new sync_thread doesn't rely on the IO to be done any more: 1) If array is read-only, it can switch to read-write by ioctl/sysfs; 2) md/raid never set MD_RECOVERY_WAIT; 3) If MD_RECOVERY_FROZEN is set, mddev_suspend() doesn't hold 'reconfig_mutex', hence it can be cleared and reshape can continue by sysfs api 'sync_action'. However, I'm not sure yet how to avoid the problem in dm-raid yet. This patch on the one hand make sure raid_message() can't change sync_thread() through raid_message() after presuspend(), on the other hand detect the above 3 cases before wait for IO do be done in dm_suspend(), and let dm-raid requeue those IO.
5.5
Medium
CVE-2024-26952 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length.
8.1
High
CVE-2024-26949 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/pm: Fix NULL pointer dereference when get power limit Because powerplay_table initialization is skipped under sriov case, We check and set default lower and upper OD value if powerplay_table is NULL.
5.5
Medium
CVE-2024-26945 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix nr_cpus < nr_iaa case If nr_cpus < nr_iaa, the calculated cpus_per_iaa will be 0, which causes a divide-by-0 in rebalance_wq_table(). Make sure cpus_per_iaa is 1 in that case, and also in the nr_iaa == 0 case, even though cpus_per_iaa is never used if nr_iaa == 0, for paranoia.
8.4
High
CVE-2024-26944 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free in do_zone_finish() Shinichiro reported the following use-after-free triggered by the device replace operation in fstests btrfs/070. BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0 ================================================================== BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs] Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007 CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Call Trace: dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0x200/0x3e0 kasan_report+0xd8/0x110 ? do_zone_finish+0x91a/0xb90 [btrfs] ? do_zone_finish+0x91a/0xb90 [btrfs] do_zone_finish+0x91a/0xb90 [btrfs] btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs] ? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs] ? btrfs_put_root+0x2d/0x220 [btrfs] ? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs] cleaner_kthread+0x21e/0x380 [btrfs] ? __pfx_cleaner_kthread+0x10/0x10 [btrfs] kthread+0x2e3/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 Allocated by task 3493983: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_alloc_device+0xb3/0x4e0 [btrfs] device_list_add.constprop.0+0x993/0x1630 [btrfs] btrfs_scan_one_device+0x219/0x3d0 [btrfs] btrfs_control_ioctl+0x26e/0x310 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 3494056: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3f/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x32/0x70 kfree+0x11b/0x320 btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs] btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs] btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs] btrfs_ioctl+0xb27/0x57d0 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 The buggy address belongs to the object at ffff8881543c8000 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 96 bytes inside of freed 1024-byte region [ffff8881543c8000, ffff8881543c8400) The buggy address belongs to the physical page: page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8 head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb This UAF happens because we're accessing stale zone information of a already removed btrfs_device in do_zone_finish(). The sequence of events is as follows: btrfs_dev_replace_start btrfs_scrub_dev btrfs_dev_replace_finishing btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced btrfs_rm_dev_replace_free_srcdev btrfs_free_device <-- device freed cleaner_kthread btrfs_delete_unused_bgs btrfs_zone_finish do_zone_finish <-- refers the freed device The reason for this is that we're using a ---truncated---
7.8
High
CVE-2024-26933 2024-05-01 05h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in port "disable" sysfs attribute The show and store callback routines for the "disable" sysfs attribute file in port.c acquire the device lock for the port's parent hub device. This can cause problems if another process has locked the hub to remove it or change its configuration: Removing the hub or changing its configuration requires the hub interface to be removed, which requires the port device to be removed, and device_del() waits until all outstanding sysfs attribute callbacks for the ports have returned. The lock can't be released until then. But the disable_show() or disable_store() routine can't return until after it has acquired the lock. The resulting deadlock can be avoided by calling sysfs_break_active_protection(). This will cause the sysfs core not to wait for the attribute's callback routine to return, allowing the removal to proceed. The disadvantage is that after making this call, there is no guarantee that the hub structure won't be deallocated at any moment. To prevent this, we have to acquire a reference to it first by calling hub_get().
7.8
High
CVE-2024-26930 2024-05-01 05h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of the ha->vp_map pointer Coverity scan reported potential risk of double free of the pointer ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed in function qla2x00_mem_free(ha). Assign NULL to vp_map and kfree take care of NULL.
7.8
High
CVE-2022-48666 2024-04-28 13h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix a use-after-free There are two .exit_cmd_priv implementations. Both implementations use resources associated with the SCSI host. Make sure that these resources are still available when .exit_cmd_priv is called by waiting inside scsi_remove_host() until the tag set has been freed. This commit fixes the following use-after-free: ================================================================== BUG: KASAN: use-after-free in srp_exit_cmd_priv+0x27/0xd0 [ib_srp] Read of size 8 at addr ffff888100337000 by task multipathd/16727 Call Trace: dump_stack_lvl+0x34/0x44 print_report.cold+0x5e/0x5db kasan_report+0xab/0x120 srp_exit_cmd_priv+0x27/0xd0 [ib_srp] scsi_mq_exit_request+0x4d/0x70 blk_mq_free_rqs+0x143/0x410 __blk_mq_free_map_and_rqs+0x6e/0x100 blk_mq_free_tag_set+0x2b/0x160 scsi_host_dev_release+0xf3/0x1a0 device_release+0x54/0xe0 kobject_put+0xa5/0x120 device_release+0x54/0xe0 kobject_put+0xa5/0x120 scsi_device_dev_release_usercontext+0x4c1/0x4e0 execute_in_process_context+0x23/0x90 device_release+0x54/0xe0 kobject_put+0xa5/0x120 scsi_disk_release+0x3f/0x50 device_release+0x54/0xe0 kobject_put+0xa5/0x120 disk_release+0x17f/0x1b0 device_release+0x54/0xe0 kobject_put+0xa5/0x120 dm_put_table_device+0xa3/0x160 [dm_mod] dm_put_device+0xd0/0x140 [dm_mod] free_priority_group+0xd8/0x110 [dm_multipath] free_multipath+0x94/0xe0 [dm_multipath] dm_table_destroy+0xa2/0x1e0 [dm_mod] __dm_destroy+0x196/0x350 [dm_mod] dev_remove+0x10c/0x160 [dm_mod] ctl_ioctl+0x2c2/0x590 [dm_mod] dm_ctl_ioctl+0x5/0x10 [dm_mod] __x64_sys_ioctl+0xb4/0xf0 dm_ctl_ioctl+0x5/0x10 [dm_mod] __x64_sys_ioctl+0xb4/0xf0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0
7.4
High
CVE-2022-48646 2024-04-28 13h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: sfc/siena: fix null pointer dereference in efx_hard_start_xmit Like in previous patch for sfc, prevent potential (but unlikely) NULL pointer dereference.
6.2
Medium
CVE-2024-26928 2024-04-28 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_debug_files_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
7.8
High
CVE-2024-26913 2024-04-17 15h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix dcn35 8k30 Underflow/Corruption Issue [why] odm calculation is missing for pipe split policy determination and cause Underflow/Corruption issue. [how] Add the odm calculation.
7.8
High
CVE-2024-26902 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: perf: RISCV: Fix panic on pmu overflow handler (1 << idx) of int is not desired when setting bits in unsigned long overflowed_ctrs, use BIT() instead. This panic happens when running 'perf record -e branches' on sophgo sg2042. [ 273.311852] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098 [ 273.320851] Oops [#1] [ 273.323179] Modules linked in: [ 273.326303] CPU: 0 PID: 1475 Comm: perf Not tainted 6.6.0-rc3+ #9 [ 273.332521] Hardware name: Sophgo Mango (DT) [ 273.336878] epc : riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.342291] ra : pmu_sbi_ovf_handler+0x2e0/0x34e [ 273.347091] epc : ffffffff80aecd98 ra : ffffffff80aee056 sp : fffffff6e36928b0 [ 273.354454] gp : ffffffff821f82d0 tp : ffffffd90c353200 t0 : 0000002ade4f9978 [ 273.361815] t1 : 0000000000504d55 t2 : ffffffff8016cd8c s0 : fffffff6e3692a70 [ 273.369180] s1 : 0000000000000020 a0 : 0000000000000000 a1 : 00001a8e81800000 [ 273.376540] a2 : 0000003c00070198 a3 : 0000003c00db75a4 a4 : 0000000000000015 [ 273.383901] a5 : ffffffd7ff8804b0 a6 : 0000000000000015 a7 : 000000000000002a [ 273.391327] s2 : 000000000000ffff s3 : 0000000000000000 s4 : ffffffd7ff8803b0 [ 273.398773] s5 : 0000000000504d55 s6 : ffffffd905069800 s7 : ffffffff821fe210 [ 273.406139] s8 : 000000007fffffff s9 : ffffffd7ff8803b0 s10: ffffffd903f29098 [ 273.413660] s11: 0000000080000000 t3 : 0000000000000003 t4 : ffffffff8017a0ca [ 273.421022] t5 : ffffffff8023cfc2 t6 : ffffffd9040780e8 [ 273.426437] status: 0000000200000100 badaddr: 0000000000000098 cause: 000000000000000d [ 273.434512] [] riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.441169] [] handle_percpu_devid_irq+0x98/0x1ee [ 273.447562] [] generic_handle_domain_irq+0x28/0x36 [ 273.454151] [] riscv_intc_irq+0x36/0x4e [ 273.459659] [] handle_riscv_irq+0x4a/0x74 [ 273.465442] [] do_irq+0x62/0x92 [ 273.470360] Code: 0420 60a2 6402 5529 0141 8082 0013 0000 0013 0000 (6d5c) b783 [ 273.477921] ---[ end trace 0000000000000000 ]--- [ 273.482630] Kernel panic - not syncing: Fatal exception in interrupt
5.5
Medium
CVE-2024-26900 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: md: fix kmemleak of rdev->serial If kobject_add() is fail in bind_rdev_to_array(), 'rdev->serial' will be alloc not be freed, and kmemleak occurs. unreferenced object 0xffff88815a350000 (size 49152): comm "mdadm", pid 789, jiffies 4294716910 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc f773277a): [<0000000058b0a453>] kmemleak_alloc+0x61/0xe0 [<00000000366adf14>] __kmalloc_large_node+0x15e/0x270 [<000000002e82961b>] __kmalloc_node.cold+0x11/0x7f [<00000000f206d60a>] kvmalloc_node+0x74/0x150 [<0000000034bf3363>] rdev_init_serial+0x67/0x170 [<0000000010e08fe9>] mddev_create_serial_pool+0x62/0x220 [<00000000c3837bf0>] bind_rdev_to_array+0x2af/0x630 [<0000000073c28560>] md_add_new_disk+0x400/0x9f0 [<00000000770e30ff>] md_ioctl+0x15bf/0x1c10 [<000000006cfab718>] blkdev_ioctl+0x191/0x3f0 [<0000000085086a11>] vfs_ioctl+0x22/0x60 [<0000000018b656fe>] __x64_sys_ioctl+0xba/0xe0 [<00000000e54e675e>] do_syscall_64+0x71/0x150 [<000000008b0ad622>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
5.5
Medium
CVE-2024-26896 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: wfx: fix memory leak when starting AP Kmemleak reported this error: unreferenced object 0xd73d1180 (size 184): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.245s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................ backtrace: [<5ca11420>] kmem_cache_alloc+0x20c/0x5ac [<127bdd74>] __alloc_skb+0x144/0x170 [] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [] netlink_sendmsg+0x1e8/0x428 [] ____sys_sendmsg+0x1e0/0x274 [] ___sys_sendmsg+0x80/0xb4 [<69954f45>] __sys_sendmsg+0x64/0xa8 unreferenced object 0xce087000 (size 1024): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.246s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<9a993714>] __kmalloc_track_caller+0x230/0x600 [] kmalloc_reserve.constprop.0+0x30/0x74 [] __alloc_skb+0xa0/0x170 [] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [] netlink_sendmsg+0x1e8/0x428 [] ____sys_sendmsg+0x1e0/0x274 [] ___sys_sendmsg+0x80/0xb4 However, since the kernel is build optimized, it seems the stack is not accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue is obvious in this function: memory allocated by ieee80211_beacon_get() is never released. Fixing this leak makes kmemleak happy.
5.5
Medium
CVE-2024-26893 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix double free in SMC transport cleanup path When the generic SCMI code tears down a channel, it calls the chan_free callback function, defined by each transport. Since multiple protocols might share the same transport_info member, chan_free() might want to clean up the same member multiple times within the given SCMI transport implementation. In this case, it is SMC transport. This will lead to a NULL pointer dereference at the second time: | scmi_protocol scmi_dev.1: Enabled polling mode TX channel - prot_id:16 | arm-scmi firmware:scmi: SCMI Notifications - Core Enabled. | arm-scmi firmware:scmi: unable to communicate with SCMI | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 | Mem abort info: | ESR = 0x0000000096000004 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x04: level 0 translation fault | Data abort info: | ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 | CM = 0, WnR = 0, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881ef8000 | [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 | Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP | Modules linked in: | CPU: 4 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-00124-g455ef3d016c9-dirty #793 | Hardware name: FVP Base RevC (DT) | pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : smc_chan_free+0x3c/0x6c | lr : smc_chan_free+0x3c/0x6c | Call trace: | smc_chan_free+0x3c/0x6c | idr_for_each+0x68/0xf8 | scmi_cleanup_channels.isra.0+0x2c/0x58 | scmi_probe+0x434/0x734 | platform_probe+0x68/0xd8 | really_probe+0x110/0x27c | __driver_probe_device+0x78/0x12c | driver_probe_device+0x3c/0x118 | __driver_attach+0x74/0x128 | bus_for_each_dev+0x78/0xe0 | driver_attach+0x24/0x30 | bus_add_driver+0xe4/0x1e8 | driver_register+0x60/0x128 | __platform_driver_register+0x28/0x34 | scmi_driver_init+0x84/0xc0 | do_one_initcall+0x78/0x33c | kernel_init_freeable+0x2b8/0x51c | kernel_init+0x24/0x130 | ret_from_fork+0x10/0x20 | Code: f0004701 910a0021 aa1403e5 97b91c70 (b9400280) | ---[ end trace 0000000000000000 ]--- Simply check for the struct pointer being NULL before trying to access its members, to avoid this situation. This was found when a transport doesn't really work (for instance no SMC service), the probe routines then tries to clean up, and triggers a crash.
5.5
Medium
CVE-2024-26886 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: af_bluetooth: Fix deadlock Attemting to do sock_lock on .recvmsg may cause a deadlock as shown bellow, so instead of using sock_sock this uses sk_receive_queue.lock on bt_sock_ioctl to avoid the UAF: INFO: task kworker/u9:1:121 blocked for more than 30 seconds. Not tainted 6.7.6-lemon #183 Workqueue: hci0 hci_rx_work Call Trace: __schedule+0x37d/0xa00 schedule+0x32/0xe0 __lock_sock+0x68/0xa0 ? __pfx_autoremove_wake_function+0x10/0x10 lock_sock_nested+0x43/0x50 l2cap_sock_recv_cb+0x21/0xa0 l2cap_recv_frame+0x55b/0x30a0 ? psi_task_switch+0xeb/0x270 ? finish_task_switch.isra.0+0x93/0x2a0 hci_rx_work+0x33a/0x3f0 process_one_work+0x13a/0x2f0 worker_thread+0x2f0/0x410 ? __pfx_worker_thread+0x10/0x10 kthread+0xe0/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30
6.5
Medium
CVE-2024-26866 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: spi: lpspi: Avoid potential use-after-free in probe() fsl_lpspi_probe() is allocating/disposing memory manually with spi_alloc_host()/spi_alloc_target(), but uses devm_spi_register_controller(). In case of error after the latter call the memory will be explicitly freed in the probe function by spi_controller_put() call, but used afterwards by "devm" management outside probe() (spi_unregister_controller() <- devm_spi_unregister() below). Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070 ... Call trace: kernfs_find_ns kernfs_find_and_get_ns sysfs_remove_group sysfs_remove_groups device_remove_attrs device_del spi_unregister_controller devm_spi_unregister release_nodes devres_release_all really_probe driver_probe_device __device_attach_driver bus_for_each_drv __device_attach device_initial_probe bus_probe_device deferred_probe_work_func process_one_work worker_thread kthread ret_from_fork
5.5
Medium
CVE-2024-26865 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: rds: tcp: Fix use-after-free of net in reqsk_timer_handler(). syzkaller reported a warning of netns tracker [0] followed by KASAN splat [1] and another ref tracker warning [1]. syzkaller could not find a repro, but in the log, the only suspicious sequence was as follows: 18:26:22 executing program 1: r0 = socket$inet6_mptcp(0xa, 0x1, 0x106) ... connect$inet6(r0, &(0x7f0000000080)={0xa, 0x4001, 0x0, @loopback}, 0x1c) (async) The notable thing here is 0x4001 in connect(), which is RDS_TCP_PORT. So, the scenario would be: 1. unshare(CLONE_NEWNET) creates a per netns tcp listener in rds_tcp_listen_init(). 2. syz-executor connect()s to it and creates a reqsk. 3. syz-executor exit()s immediately. 4. netns is dismantled. [0] 5. reqsk timer is fired, and UAF happens while freeing reqsk. [1] 6. listener is freed after RCU grace period. [2] Basically, reqsk assumes that the listener guarantees netns safety until all reqsk timers are expired by holding the listener's refcount. However, this was not the case for kernel sockets. Commit 740ea3c4a0b2 ("tcp: Clean up kernel listener's reqsk in inet_twsk_purge()") fixed this issue only for per-netns ehash. Let's apply the same fix for the global ehash. [0]: ref_tracker: net notrefcnt@0000000065449cc3 has 1/1 users at sk_alloc (./include/net/net_namespace.h:337 net/core/sock.c:2146) inet6_create (net/ipv6/af_inet6.c:192 net/ipv6/af_inet6.c:119) __sock_create (net/socket.c:1572) rds_tcp_listen_init (net/rds/tcp_listen.c:279) rds_tcp_init_net (net/rds/tcp.c:577) ops_init (net/core/net_namespace.c:137) setup_net (net/core/net_namespace.c:340) copy_net_ns (net/core/net_namespace.c:497) create_new_namespaces (kernel/nsproxy.c:110) unshare_nsproxy_namespaces (kernel/nsproxy.c:228 (discriminator 4)) ksys_unshare (kernel/fork.c:3429) __x64_sys_unshare (kernel/fork.c:3496) do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129) ... WARNING: CPU: 0 PID: 27 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179) [1]: BUG: KASAN: slab-use-after-free in inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966) Read of size 8 at addr ffff88801b370400 by task swapper/0/0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1)) print_report (mm/kasan/report.c:378 mm/kasan/report.c:488) kasan_report (mm/kasan/report.c:603) inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966) reqsk_timer_handler (net/ipv4/inet_connection_sock.c:979 net/ipv4/inet_connection_sock.c:1092) call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701) __run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2038) run_timer_softirq (kernel/time/timer.c:2053) __do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554) irq_exit_rcu (kernel/softirq.c:427 kernel/softirq.c:632 kernel/softirq.c:644) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1076 (discriminator 14)) Allocated by task 258 on cpu 0 at 83.612050s: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (mm/kasan/common.c:68) __kasan_slab_alloc (mm/kasan/common.c:343) kmem_cache_alloc (mm/slub.c:3813 mm/slub.c:3860 mm/slub.c:3867) copy_net_ns (./include/linux/slab.h:701 net/core/net_namespace.c:421 net/core/net_namespace.c:480) create_new_namespaces (kernel/nsproxy.c:110) unshare_nsproxy_name ---truncated---
7.8
High
CVE-2024-26811 2024-04-08 10h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate payload size in ipc response If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc response to ksmbd kernel server. ksmbd should validate payload size of ipc response from ksmbd.mountd to avoid memory overrun or slab-out-of-bounds. This patch validate 3 ipc response that has payload.
5.5
Medium
CVE-2024-27437 2024-04-05 08h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Disable auto-enable of exclusive INTx IRQ Currently for devices requiring masking at the irqchip for INTx, ie. devices without DisINTx support, the IRQ is enabled in request_irq() and subsequently disabled as necessary to align with the masked status flag. This presents a window where the interrupt could fire between these events, resulting in the IRQ incrementing the disable depth twice. This would be unrecoverable for a user since the masked flag prevents nested enables through vfio. Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx is never auto-enabled, then unmask as required.
5.5
Medium
CVE-2024-26814 2024-04-05 08h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/fsl-mc: Block calling interrupt handler without trigger The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is initially NULL and may become NULL if the user sets the trigger eventfd to -1. The interrupt handler itself is guaranteed that trigger is always valid between request_irq() and free_irq(), but the loopback testing mechanisms to invoke the handler function need to test the trigger. The triggering and setting ioctl paths both make use of igate and are therefore mutually exclusive. The vfio-fsl-mc driver does not make use of irqfds, nor does it support any sort of masking operations, therefore unlike vfio-pci and vfio-platform, the flow can remain essentially unchanged.
5.5
Medium
CVE-2024-26812 2024-04-05 08h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Create persistent INTx handler A vulnerability exists where the eventfd for INTx signaling can be deconfigured, which unregisters the IRQ handler but still allows eventfds to be signaled with a NULL context through the SET_IRQS ioctl or through unmask irqfd if the device interrupt is pending. Ideally this could be solved with some additional locking; the igate mutex serializes the ioctl and config space accesses, and the interrupt handler is unregistered relative to the trigger, but the irqfd path runs asynchronous to those. The igate mutex cannot be acquired from the atomic context of the eventfd wake function. Disabling the irqfd relative to the eventfd registration is potentially incompatible with existing userspace. As a result, the solution implemented here moves configuration of the INTx interrupt handler to track the lifetime of the INTx context object and irq_type configuration, rather than registration of a particular trigger eventfd. Synchronization is added between the ioctl path and eventfd_signal() wrapper such that the eventfd trigger can be dynamically updated relative to in-flight interrupts or irqfd callbacks.
5.5
Medium
CVE-2024-26775 2024-04-03 17h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: aoe: avoid potential deadlock at set_capacity Move set_capacity() outside of the section procected by (&d->lock). To avoid possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- [1] lock(&bdev->bd_size_lock); local_irq_disable(); [2] lock(&d->lock); [3] lock(&bdev->bd_size_lock); [4] lock(&d->lock); *** DEADLOCK *** Where [1](&bdev->bd_size_lock) hold by zram_add()->set_capacity(). [2]lock(&d->lock) hold by aoeblk_gdalloc(). And aoeblk_gdalloc() is trying to acquire [3](&bdev->bd_size_lock) at set_capacity() call. In this situation an attempt to acquire [4]lock(&d->lock) from aoecmd_cfg_rsp() will lead to deadlock. So the simplest solution is breaking lock dependency [2](&d->lock) -> [3](&bdev->bd_size_lock) by moving set_capacity() outside.
5.5
Medium
CVE-2024-26770 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: HID: nvidia-shield: Add missing null pointer checks to LED initialization devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity. [[email protected]: tweak changelog a bit]
5.5
Medium
CVE-2024-26767 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fixed integer types and null check locations [why]: issues fixed: - comparison with wider integer type in loop condition which can cause infinite loops - pointer dereference before null check
5.5
Medium
CVE-2024-26765 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Disable IRQ before init_fn() for nonboot CPUs Disable IRQ before init_fn() for nonboot CPUs when hotplug, in order to silence such warnings (and also avoid potential errors due to unexpected interrupts): WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:4503 rcu_cpu_starting+0x214/0x280 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198 pc 90000000048e3334 ra 90000000047bd56c tp 900000010039c000 sp 900000010039fdd0 a0 0000000000000001 a1 0000000000000006 a2 900000000802c040 a3 0000000000000000 a4 0000000000000001 a5 0000000000000004 a6 0000000000000000 a7 90000000048e3f4c t0 0000000000000001 t1 9000000005c70968 t2 0000000004000000 t3 000000000005e56e t4 00000000000002e4 t5 0000000000001000 t6 ffffffff80000000 t7 0000000000040000 t8 9000000007931638 u0 0000000000000006 s9 0000000000000004 s0 0000000000000001 s1 9000000006356ac0 s2 9000000007244000 s3 0000000000000001 s4 0000000000000001 s5 900000000636f000 s6 7fffffffffffffff s7 9000000002123940 s8 9000000001ca55f8 ra: 90000000047bd56c tlb_init+0x24c/0x528 ERA: 90000000048e3334 rcu_cpu_starting+0x214/0x280 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 00000000 (PPLV0 -PIE -PWE) EUEN: 00000000 (-FPE -SXE -ASXE -BTE) ECFG: 00071000 (LIE=12 VS=7) ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0) PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198 Stack : 0000000000000000 9000000006375000 9000000005b61878 900000010039c000 900000010039fa30 0000000000000000 900000010039fa38 900000000619a140 9000000006456888 9000000006456880 900000010039f950 0000000000000001 0000000000000001 cb0cb028ec7e52e1 0000000002b90000 9000000100348700 0000000000000000 0000000000000001 ffffffff916d12f1 0000000000000003 0000000000040000 9000000007930370 0000000002b90000 0000000000000004 9000000006366000 900000000619a140 0000000000000000 0000000000000004 0000000000000000 0000000000000009 ffffffffffc681f2 9000000002123940 9000000001ca55f8 9000000006366000 90000000047a4828 00007ffff057ded8 00000000000000b0 0000000000000000 0000000000000000 0000000000071000 ... Call Trace: [<90000000047a4828>] show_stack+0x48/0x1a0 [<9000000005b61874>] dump_stack_lvl+0x84/0xcc [<90000000047f60ac>] __warn+0x8c/0x1e0 [<9000000005b0ab34>] report_bug+0x1b4/0x280 [<9000000005b63110>] do_bp+0x2d0/0x480 [<90000000047a2e20>] handle_bp+0x120/0x1c0 [<90000000048e3334>] rcu_cpu_starting+0x214/0x280 [<90000000047bd568>] tlb_init+0x248/0x528 [<90000000047a4c44>] per_cpu_trap_init+0x124/0x160 [<90000000047a19f4>] cpu_probe+0x494/0xa00 [<90000000047b551c>] start_secondary+0x3c/0xc0 [<9000000005b66134>] smpboot_entry+0x50/0x58
5.5
Medium
CVE-2024-26759 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/swap: fix race when skipping swapcache When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads swapin the same entry at the same time, they get different pages (A, B). Before one thread (T0) finishes the swapin and installs page (A) to the PTE, another thread (T1) could finish swapin of page (B), swap_free the entry, then swap out the possibly modified page reusing the same entry. It breaks the pte_same check in (T0) because PTE value is unchanged, causing ABA problem. Thread (T0) will install a stalled page (A) into the PTE and cause data corruption. One possible callstack is like this: CPU0 CPU1 ---- ---- do_swap_page() do_swap_page() with same entry swap_read_folio() <- read to page A swap_read_folio() <- read to page B ... set_pte_at() swap_free() <- entry is free pte_same() <- Check pass, PTE seems unchanged, but page A is stalled! swap_free() <- page B content lost! set_pte_at() <- staled page A installed! And besides, for ZRAM, swap_free() allows the swap device to discard the entry content, so even if page (B) is not modified, if swap_read_folio() on CPU0 happens later than swap_free() on CPU1, it may also cause data loss. To fix this, reuse swapcache_prepare which will pin the swap entry using the cache flag, and allow only one thread to swap it in, also prevent any parallel code from putting the entry in the cache. Release the pin after PT unlocked. Racers just loop and wait since it's a rare and very short event. A schedule_timeout_uninterruptible(1) call is added to avoid repeated page faults wasting too much CPU, causing livelock or adding too much noise to perf statistics. A similar livelock issue was described in commit 029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead") Reproducer: This race issue can be triggered easily using a well constructed reproducer and patched brd (with a delay in read path) [1]: With latest 6.8 mainline, race caused data loss can be observed easily: $ gcc -g -lpthread test-thread-swap-race.c && ./a.out Polulating 32MB of memory region... Keep swapping out... Starting round 0... Spawning 65536 workers... 32746 workers spawned, wait for done... Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss! Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss! Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss! Round 0 Failed, 15 data loss! This reproducer spawns multiple threads sharing the same memory region using a small swap device. Every two threads updates mapped pages one by one in opposite direction trying to create a race, with one dedicated thread keep swapping out the data out using madvise. The reproducer created a reproduce rate of about once every 5 minutes, so the race should be totally possible in production. After this patch, I ran the reproducer for over a few hundred rounds and no data loss observed. Performance overhead is minimal, microbenchmark swapin 10G from 32G zram: Before: 10934698 us After: 11157121 us Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag) [[email protected]: v4] Link: https://lkml.kernel.org/r/[email protected]
5.5
Medium
CVE-2024-26756 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: md: Don't register sync_thread for reshape directly Currently, if reshape is interrupted, then reassemble the array will register sync_thread directly from pers->run(), in this case 'MD_RECOVERY_RUNNING' is set directly, however, there is no guarantee that md_do_sync() will be executed, hence stop_sync_thread() will hang because 'MD_RECOVERY_RUNNING' can't be cleared. Last patch make sure that md_do_sync() will set MD_RECOVERY_DONE, however, following hang can still be triggered by dm-raid test shell/lvconvert-raid-reshape.sh occasionally: [root@fedora ~]# cat /proc/1982/stack [<0>] stop_sync_thread+0x1ab/0x270 [md_mod] [<0>] md_frozen_sync_thread+0x5c/0xa0 [md_mod] [<0>] raid_presuspend+0x1e/0x70 [dm_raid] [<0>] dm_table_presuspend_targets+0x40/0xb0 [dm_mod] [<0>] __dm_destroy+0x2a5/0x310 [dm_mod] [<0>] dm_destroy+0x16/0x30 [dm_mod] [<0>] dev_remove+0x165/0x290 [dm_mod] [<0>] ctl_ioctl+0x4bb/0x7b0 [dm_mod] [<0>] dm_ctl_ioctl+0x11/0x20 [dm_mod] [<0>] vfs_ioctl+0x21/0x60 [<0>] __x64_sys_ioctl+0xb9/0xe0 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 Meanwhile mddev->recovery is: MD_RECOVERY_RUNNING | MD_RECOVERY_INTR | MD_RECOVERY_RESHAPE | MD_RECOVERY_FROZEN Fix this problem by remove the code to register sync_thread directly from raid10 and raid5. And let md_check_recovery() to register sync_thread.
5.5
Medium
CVE-2024-26740 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: use the backlog for mirred ingress The test Davide added in commit ca22da2fbd69 ("act_mirred: use the backlog for nested calls to mirred ingress") hangs our testing VMs every 10 or so runs, with the familiar tcp_v4_rcv -> tcp_v4_rcv deadlock reported by lockdep. The problem as previously described by Davide (see Link) is that if we reverse flow of traffic with the redirect (egress -> ingress) we may reach the same socket which generated the packet. And we may still be holding its socket lock. The common solution to such deadlocks is to put the packet in the Rx backlog, rather than run the Rx path inline. Do that for all egress -> ingress reversals, not just once we started to nest mirred calls. In the past there was a concern that the backlog indirection will lead to loss of error reporting / less accurate stats. But the current workaround does not seem to address the issue.
5.5
Medium
CVE-2024-26739 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: don't override retval if we already lost the skb If we're redirecting the skb, and haven't called tcf_mirred_forward(), yet, we need to tell the core to drop the skb by setting the retcode to SHOT. If we have called tcf_mirred_forward(), however, the skb is out of our hands and returning SHOT will lead to UaF. Move the retval override to the error path which actually need it.
7.8
High
CVE-2024-26726 2024-04-03 14h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't drop extent_map for free space inode on write error While running the CI for an unrelated change I hit the following panic with generic/648 on btrfs_holes_spacecache. assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1385! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1 RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0 Call Trace: extent_write_cache_pages+0x2ac/0x8f0 extent_writepages+0x87/0x110 do_writepages+0xd5/0x1f0 filemap_fdatawrite_wbc+0x63/0x90 __filemap_fdatawrite_range+0x5c/0x80 btrfs_fdatawrite_range+0x1f/0x50 btrfs_write_out_cache+0x507/0x560 btrfs_write_dirty_block_groups+0x32a/0x420 commit_cowonly_roots+0x21b/0x290 btrfs_commit_transaction+0x813/0x1360 btrfs_sync_file+0x51a/0x640 __x64_sys_fdatasync+0x52/0x90 do_syscall_64+0x9c/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 This happens because we fail to write out the free space cache in one instance, come back around and attempt to write it again. However on the second pass through we go to call btrfs_get_extent() on the inode to get the extent mapping. Because this is a new block group, and with the free space inode we always search the commit root to avoid deadlocking with the tree, we find nothing and return a EXTENT_MAP_HOLE for the requested range. This happens because the first time we try to write the space cache out we hit an error, and on an error we drop the extent mapping. This is normal for normal files, but the free space cache inode is special. We always expect the extent map to be correct. Thus the second time through we end up with a bogus extent map. Since we're deprecating this feature, the most straightforward way to fix this is to simply skip dropping the extent map range for this failed range. I shortened the test by using error injection to stress the area to make it easier to reproduce. With this patch in place we no longer panic with my error injection test.
5.5
Medium
CVE-2024-26719 2024-04-03 14h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: nouveau: offload fence uevents work to workqueue This should break the deadlock between the fctx lock and the irq lock. This offloads the processing off the work from the irq into a workqueue.
5.5
Medium
CVE-2024-26718 2024-04-03 14h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm-crypt, dm-verity: disable tasklets Tasklets have an inherent problem with memory corruption. The function tasklet_action_common calls tasklet_trylock, then it calls the tasklet callback and then it calls tasklet_unlock. If the tasklet callback frees the structure that contains the tasklet or if it calls some code that may free it, tasklet_unlock will write into free memory. The commits 8e14f610159d and d9a02e016aaf try to fix it for dm-crypt, but it is not a sufficient fix and the data corruption can still happen [1]. There is no fix for dm-verity and dm-verity will write into free memory with every tasklet-processed bio. There will be atomic workqueues implemented in the kernel 6.9 [2]. They will have better interface and they will not suffer from the memory corruption problem. But we need something that stops the memory corruption now and that can be backported to the stable kernels. So, I'm proposing this commit that disables tasklets in both dm-crypt and dm-verity. This commit doesn't remove the tasklet support, because the tasklet code will be reused when atomic workqueues will be implemented. [1] https://lore.kernel.org/all/[email protected]/T/ [2] https://lore.kernel.org/lkml/[email protected]/
5.5
Medium
CVE-2024-26714 2024-04-03 14h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: interconnect: qcom: sc8180x: Mark CO0 BCM keepalive The CO0 BCM needs to be up at all times, otherwise some hardware (like the UFS controller) loses its connection to the rest of the SoC, resulting in a hang of the platform, accompanied by a spectacular logspam. Mark it as keepalive to prevent such cases.
5.5
Medium
CVE-2024-26706 2024-04-03 14h55 +00:00 In the Linux kernel, the following vulnerability has been resolved: parisc: Fix random data corruption from exception handler The current exception handler implementation, which assists when accessing user space memory, may exhibit random data corruption if the compiler decides to use a different register than the specified register %r29 (defined in ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another register, the fault handler will nevertheless store -EFAULT into %r29 and thus trash whatever this register is used for. Looking at the assembly I found that this happens sometimes in emulate_ldd(). To solve the issue, the easiest solution would be if it somehow is possible to tell the fault handler which register is used to hold the error code. Using %0 or %1 in the inline assembly is not posssible as it will show up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not convert to an integer. This patch takes another, better and more flexible approach: We extend the __ex_table (which is out of the execution path) by one 32-word. In this word we tell the compiler to insert the assembler instruction "or %r0,%r0,%reg", where %reg references the register which the compiler choosed for the error return code. In case of an access failure, the fault handler finds the __ex_table entry and can examine the opcode. The used register is encoded in the lowest 5 bits, and the fault handler can then store -EFAULT into this register. Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT config option any longer.
5.5
Medium
CVE-2024-26700 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix MST Null Ptr for RV The change try to fix below error specific to RV platform: BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 ? _copy_to_user+0x25/0x30 ? drm_ioctl+0x296/0x4b0 ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 drm_ioctl_kernel+0xcd/0x170 drm_ioctl+0x26d/0x4b0 ? __pfx_drm_mode_atomic_ioctl+0x10/0x10 amdgpu_drm_ioctl+0x4e/0x90 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] __x64_sys_ioctl+0x94/0xd0 do_syscall_64+0x60/0x90 ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f4dad17f76f Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c> RSP: 002b:00007ffd9ae859f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 000055e255a55900 RCX: 00007f4dad17f76f RDX: 00007ffd9ae85a90 RSI: 00000000c03864bc RDI: 000000000000000b RBP: 00007ffd9ae85a90 R08: 0000000000000003 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c03864bc R13: 000000000000000b R14: 000055e255a7fc60 R15: 000055e255a01eb0 Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device ccm cmac algif_hash algif_skcipher af_alg joydev mousedev bnep > typec libphy k10temp ipmi_msghandler roles i2c_scmi acpi_cpufreq mac_hid nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_mas> CR2: 0000000000000008 ---[ end trace 0000000000000000 ]--- RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000 ---truncated---
5.5
Medium
CVE-2024-26699 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dcn35_clkmgr [Why] There is a potential memory access violation while iterating through array of dcn35 clks. [How] Limit iteration per array size.
7.8
High
CVE-2024-26691 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix circular locking dependency The rule inside kvm enforces that the vcpu->mutex is taken *inside* kvm->lock. The rule is violated by the pkvm_create_hyp_vm() which acquires the kvm->lock while already holding the vcpu->mutex lock from kvm_vcpu_ioctl(). Avoid the circular locking dependency altogether by protecting the hyp vm handle with the config_lock, much like we already do for other forms of VM-scoped data.
5.5
Medium
CVE-2024-26687 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: xen/events: close evtchn after mapping cleanup shutdown_pirq and startup_pirq are not taking the irq_mapping_update_lock because they can't due to lock inversion. Both are called with the irq_desc->lock being taking. The lock order, however, is first irq_mapping_update_lock and then irq_desc->lock. This opens multiple races: - shutdown_pirq can be interrupted by a function that allocates an event channel: CPU0 CPU1 shutdown_pirq { xen_evtchn_close(e) __startup_pirq { EVTCHNOP_bind_pirq -> returns just freed evtchn e set_evtchn_to_irq(e, irq) } xen_irq_info_cleanup() { set_evtchn_to_irq(e, -1) } } Assume here event channel e refers here to the same event channel number. After this race the evtchn_to_irq mapping for e is invalid (-1). - __startup_pirq races with __unbind_from_irq in a similar way. Because __startup_pirq doesn't take irq_mapping_update_lock it can grab the evtchn that __unbind_from_irq is currently freeing and cleaning up. In this case even though the event channel is allocated, its mapping can be unset in evtchn_to_irq. The fix is to first cleanup the mappings and then close the event channel. In this way, when an event channel gets allocated it's potential previous evtchn_to_irq mappings are guaranteed to be unset already. This is also the reverse order of the allocation where first the event channel is allocated and then the mappings are setup. On a 5.10 kernel prior to commit 3fcdaf3d7634 ("xen/events: modify internal [un]bind interfaces"), we hit a BUG like the following during probing of NVMe devices. The issue is that during nvme_setup_io_queues, pci_free_irq is called for every device which results in a call to shutdown_pirq. With many nvme devices it's therefore likely to hit this race during boot because there will be multiple calls to shutdown_pirq and startup_pirq are running potentially in parallel. ------------[ cut here ]------------ blkfront: xvda: barrier or flush: disabled; persistent grants: enabled; indirect descriptors: enabled; bounce buffer: enabled kernel BUG at drivers/xen/events/events_base.c:499! invalid opcode: 0000 [#1] SMP PTI CPU: 44 PID: 375 Comm: kworker/u257:23 Not tainted 5.10.201-191.748.amzn2.x86_64 #1 Hardware name: Xen HVM domU, BIOS 4.11.amazon 08/24/2006 Workqueue: nvme-reset-wq nvme_reset_work RIP: 0010:bind_evtchn_to_cpu+0xdf/0xf0 Code: 5d 41 5e c3 cc cc cc cc 44 89 f7 e8 2b 55 ad ff 49 89 c5 48 85 c0 0f 84 64 ff ff ff 4c 8b 68 30 41 83 fe ff 0f 85 60 ff ff ff <0f> 0b 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00 RSP: 0000:ffffc9000d533b08 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006 RDX: 0000000000000028 RSI: 00000000ffffffff RDI: 00000000ffffffff RBP: ffff888107419680 R08: 0000000000000000 R09: ffffffff82d72b00 R10: 0000000000000000 R11: 0000000000000000 R12: 00000000000001ed R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff88bc8b500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000002610001 CR4: 00000000001706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? show_trace_log_lvl+0x1c1/0x2d9 ? show_trace_log_lvl+0x1c1/0x2d9 ? set_affinity_irq+0xdc/0x1c0 ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0x90/0x110 ? bind_evtchn_to_cpu+0xdf/0xf0 ? do_error_trap+0x65/0x80 ? bind_evtchn_to_cpu+0xdf/0xf0 ? exc_invalid_op+0x4e/0x70 ? bind_evtchn_to_cpu+0xdf/0xf0 ? asm_exc_invalid_op+0x12/0x20 ? bind_evtchn_to_cpu+0xdf/0x ---truncated---
5.5
Medium
CVE-2024-26686 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call do_task_stat() at the same time and the process has NR_THREADS, it will spin with irqs disabled O(NR_CPUS * NR_THREADS) time. Change do_task_stat() to use sig->stats_lock to gather the statistics outside of ->siglock protected section, in the likely case this code will run lockless.
5.5
Medium
CVE-2023-52639 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: s390: vsie: fix race during shadow creation Right now it is possible to see gmap->private being zero in kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the fact that we add gmap->private == kvm after creation: static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { [...] gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); gmap->private = vcpu->kvm; Let children inherit the private field of the parent.
4.7
Medium
CVE-2024-26680 2024-04-02 07h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: atlantic: Fix DMA mapping for PTP hwts ring Function aq_ring_hwts_rx_alloc() maps extra AQ_CFG_RXDS_DEF bytes for PTP HWTS ring but then generic aq_ring_free() does not take this into account. Create and use a specific function to free HWTS ring to fix this issue. Trace: [ 215.351607] ------------[ cut here ]------------ [ 215.351612] DMA-API: atlantic 0000:4b:00.0: device driver frees DMA memory with different size [device address=0x00000000fbdd0000] [map size=34816 bytes] [unmap size=32768 bytes] [ 215.351635] WARNING: CPU: 33 PID: 10759 at kernel/dma/debug.c:988 check_unmap+0xa6f/0x2360 ... [ 215.581176] Call Trace: [ 215.583632] [ 215.585745] ? show_trace_log_lvl+0x1c4/0x2df [ 215.590114] ? show_trace_log_lvl+0x1c4/0x2df [ 215.594497] ? debug_dma_free_coherent+0x196/0x210 [ 215.599305] ? check_unmap+0xa6f/0x2360 [ 215.603147] ? __warn+0xca/0x1d0 [ 215.606391] ? check_unmap+0xa6f/0x2360 [ 215.610237] ? report_bug+0x1ef/0x370 [ 215.613921] ? handle_bug+0x3c/0x70 [ 215.617423] ? exc_invalid_op+0x14/0x50 [ 215.621269] ? asm_exc_invalid_op+0x16/0x20 [ 215.625480] ? check_unmap+0xa6f/0x2360 [ 215.629331] ? mark_lock.part.0+0xca/0xa40 [ 215.633445] debug_dma_free_coherent+0x196/0x210 [ 215.638079] ? __pfx_debug_dma_free_coherent+0x10/0x10 [ 215.643242] ? slab_free_freelist_hook+0x11d/0x1d0 [ 215.648060] dma_free_attrs+0x6d/0x130 [ 215.651834] aq_ring_free+0x193/0x290 [atlantic] [ 215.656487] aq_ptp_ring_free+0x67/0x110 [atlantic] ... [ 216.127540] ---[ end trace 6467e5964dd2640b ]--- [ 216.132160] DMA-API: Mapped at: [ 216.132162] debug_dma_alloc_coherent+0x66/0x2f0 [ 216.132165] dma_alloc_attrs+0xf5/0x1b0 [ 216.132168] aq_ring_hwts_rx_alloc+0x150/0x1f0 [atlantic] [ 216.132193] aq_ptp_ring_alloc+0x1bb/0x540 [atlantic] [ 216.132213] aq_nic_init+0x4a1/0x760 [atlantic]
5.5
Medium
CVE-2024-26677 2024-04-02 07h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix delayed ACKs to not set the reference serial number Fix the construction of delayed ACKs to not set the reference serial number as they can't be used as an RTT reference.
5.5
Medium
CVE-2023-52634 2024-04-02 06h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix disable_otg_wa logic [Why] When switching to another HDMI mode, we are unnecesarilly disabling/enabling FIFO causing both HPO and DIG registers to be set at the same time when only HPO is supposed to be set. This can lead to a system hang the next time we change refresh rates as there are cases when we don't disable OTG/FIFO but FIFO is enabled when it isn't supposed to be. [How] Removing the enable/disable FIFO entirely.
5.5
Medium
CVE-2023-52632 2024-04-02 06h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix lock dependency warning with srcu ====================================================== WARNING: possible circular locking dependency detected 6.5.0-kfd-yangp #2289 Not tainted ------------------------------------------------------ kworker/0:2/996 is trying to acquire lock: (srcu){.+.+}-{0:0}, at: __synchronize_srcu+0x5/0x1a0 but task is already holding lock: ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}, at: process_one_work+0x211/0x560 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 svm_range_list_lock_and_flush_work+0x3d/0x110 [amdgpu] svm_range_set_attr+0xd6/0x14c0 [amdgpu] kfd_ioctl+0x1d1/0x630 [amdgpu] __x64_sys_ioctl+0x88/0xc0 -> #2 (&info->lock#2){+.+.}-{3:3}: __mutex_lock+0x99/0xc70 amdgpu_amdkfd_gpuvm_restore_process_bos+0x54/0x740 [amdgpu] restore_process_helper+0x22/0x80 [amdgpu] restore_process_worker+0x2d/0xa0 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 -> #1 ((work_completion)(&(&process->restore_work)->work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 __cancel_work_timer+0x12c/0x1c0 kfd_process_notifier_release_internal+0x37/0x1f0 [amdgpu] __mmu_notifier_release+0xad/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 do_exit+0x322/0xb90 do_group_exit+0x37/0xa0 __x64_sys_exit_group+0x18/0x20 do_syscall_64+0x38/0x80 -> #0 (srcu){.+.+}-{0:0}: __lock_acquire+0x1521/0x2510 lock_sync+0x5f/0x90 __synchronize_srcu+0x4f/0x1a0 __mmu_notifier_release+0x128/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 svm_range_deferred_list_work+0x19f/0x350 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 other info that might help us debug this: Chain exists of: srcu --> &info->lock#2 --> (work_completion)(&svms->deferred_list_work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((work_completion)(&svms->deferred_list_work)); lock(&info->lock#2); lock((work_completion)(&svms->deferred_list_work)); sync(srcu);
5.5
Medium
CVE-2024-26669 2024-04-02 06h43 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: flower: Fix chain template offload When a qdisc is deleted from a net device the stack instructs the underlying driver to remove its flow offload callback from the associated filter block using the 'FLOW_BLOCK_UNBIND' command. The stack then continues to replay the removal of the filters in the block for this driver by iterating over the chains in the block and invoking the 'reoffload' operation of the classifier being used. In turn, the classifier in its 'reoffload' operation prepares and emits a 'FLOW_CLS_DESTROY' command for each filter. However, the stack does not do the same for chain templates and the underlying driver never receives a 'FLOW_CLS_TMPLT_DESTROY' command when a qdisc is deleted. This results in a memory leak [1] which can be reproduced using [2]. Fix by introducing a 'tmplt_reoffload' operation and have the stack invoke it with the appropriate arguments as part of the replay. Implement the operation in the sole classifier that supports chain templates (flower) by emitting the 'FLOW_CLS_TMPLT_{CREATE,DESTROY}' command based on whether a flow offload callback is being bound to a filter block or being unbound from one. As far as I can tell, the issue happens since cited commit which reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains() in __tcf_block_put(). The order cannot be reversed as the filter block is expected to be freed after flushing all the chains. [1] unreferenced object 0xffff888107e28800 (size 2048): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[...... 01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................ backtrace: [] __kmem_cache_alloc_node+0x1e8/0x320 [] __kmalloc+0x4e/0x90 [] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0 [] mlxsw_sp_flower_tmplt_create+0x145/0x180 [] mlxsw_sp_flow_block_cb+0x1ea/0x280 [] tc_setup_cb_call+0x183/0x340 [] fl_tmplt_create+0x3da/0x4c0 [] tc_ctl_chain+0xa15/0x1170 [] rtnetlink_rcv_msg+0x3cc/0xed0 [] netlink_rcv_skb+0x170/0x440 [] netlink_unicast+0x540/0x820 [] netlink_sendmsg+0x8d8/0xda0 [] ____sys_sendmsg+0x30f/0xa80 [] ___sys_sendmsg+0x13a/0x1e0 [] __sys_sendmsg+0x11c/0x1f0 [] do_syscall_64+0x40/0xe0 unreferenced object 0xffff88816d2c0400 (size 1024): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): 40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8..... 10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m.... backtrace: [] __kmem_cache_alloc_node+0x1e8/0x320 [] __kmalloc_node+0x51/0x90 [] kvmalloc_node+0xa6/0x1f0 [] bucket_table_alloc.isra.0+0x83/0x460 [] rhashtable_init+0x43b/0x7c0 [] mlxsw_sp_acl_ruleset_get+0x428/0x7a0 [] mlxsw_sp_flower_tmplt_create+0x145/0x180 [] mlxsw_sp_flow_block_cb+0x1ea/0x280 [] tc_setup_cb_call+0x183/0x340 [] fl_tmplt_create+0x3da/0x4c0 [] tc_ctl_chain+0xa15/0x1170 [] rtnetlink_rcv_msg+0x3cc/0xed0 [] netlink_rcv_skb+0x170/0x440 [] netlink_unicast+0x540/0x820 [] netlink_sendmsg+0x8d8/0xda0 [] ____sys_sendmsg+0x30f/0xa80 [2] # tc qdisc add dev swp1 clsact # tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32 # tc qdisc del dev ---truncated---
7.1
High
CVE-2024-26656 2024-04-02 06h08 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung . For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
5.5
Medium
CVE-2024-26647 2024-03-26 17h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix late derefrence 'dsc' check in 'link_set_dsc_pps_packet()' In link_set_dsc_pps_packet(), 'struct display_stream_compressor *dsc' was dereferenced in a DC_LOGGER_INIT(dsc->ctx->logger); before the 'dsc' NULL pointer check. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/link/link_dpms.c:905 link_set_dsc_pps_packet() warn: variable dereferenced before check 'dsc' (see line 903)
5.5
Medium
CVE-2024-26646 2024-03-26 17h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal: intel: hfi: Add syscore callbacks for system-wide PM The kernel allocates a memory buffer and provides its location to the hardware, which uses it to update the HFI table. This allocation occurs during boot and remains constant throughout runtime. When resuming from hibernation, the restore kernel allocates a second memory buffer and reprograms the HFI hardware with the new location as part of a normal boot. The location of the second memory buffer may differ from the one allocated by the image kernel. When the restore kernel transfers control to the image kernel, its HFI buffer becomes invalid, potentially leading to memory corruption if the hardware writes to it (the hardware continues to use the buffer from the restore kernel). It is also possible that the hardware "forgets" the address of the memory buffer when resuming from "deep" suspend. Memory corruption may also occur in such a scenario. To prevent the described memory corruption, disable HFI when preparing to suspend or hibernate. Enable it when resuming. Add syscore callbacks to handle the package of the boot CPU (packages of non-boot CPUs are handled via CPU offline). Syscore ops always run on the boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend and hibernation. Syscore ops only run in these cases. [ rjw: Comment adjustment, subject and changelog edits ]
5.5
Medium
CVE-2023-52625 2024-03-26 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Refactor DMCUB enter/exit idle interface [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] We need to exit out of the idle state prior to sending a command, but the process that performs the exit also invokes a command itself. Fixing this issue involves the following: 1. Using a software state to track whether or not we need to start the process to exit idle or notify idle. It's possible for the hardware to have exited an idle state without driver knowledge, but entering one is always restricted to a driver allow - which makes the SW state vs HW state mismatch issue purely one of optimization, which should seldomly be hit, if at all. 2. Refactor any instances of exit/notify idle to use a single wrapper that maintains this SW state. This works simialr to dc_allow_idle_optimizations, but works at the DMCUB level and makes sure the state is marked prior to any notify/exit idle so we don't enter an infinite loop. 3. Make sure we exit out of idle prior to sending any commands or waiting for DMCUB idle. This patch takes care of 1/2. A future patch will take care of wrapping DMCUB command submission with calls to this new interface.
5.5
Medium
CVE-2023-52624 2024-03-26 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before executing GPINT commands [Why] DMCUB can be in idle when we attempt to interface with the HW through the GPINT mailbox resulting in a system hang. [How] Add dc_wake_and_execute_gpint() to wrap the wake, execute, sleep sequence. If the GPINT executes successfully then DMCUB will be put back into sleep after the optional response is returned. It functions similar to the inbox command interface.
7.8
High
CVE-2023-52621 2024-03-26 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Check rcu_read_lock_trace_held() before calling bpf map helpers These three bpf_map_{lookup,update,delete}_elem() helpers are also available for sleepable bpf program, so add the corresponding lock assertion for sleepable bpf program, otherwise the following warning will be reported when a sleepable bpf program manipulates bpf map under interpreter mode (aka bpf_jit_enable=0): WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ...... CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:bpf_map_lookup_elem+0x54/0x60 ...... Call Trace: ? __warn+0xa5/0x240 ? bpf_map_lookup_elem+0x54/0x60 ? report_bug+0x1ba/0x1f0 ? handle_bug+0x40/0x80 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1b/0x20 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ? rcu_lockdep_current_cpu_online+0x65/0xb0 ? rcu_is_watching+0x23/0x50 ? bpf_map_lookup_elem+0x54/0x60 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ___bpf_prog_run+0x513/0x3b70 __bpf_prog_run32+0x9d/0xd0 ? __bpf_prog_enter_sleepable_recur+0xad/0x120 ? __bpf_prog_enter_sleepable_recur+0x3e/0x120 bpf_trampoline_6442580665+0x4d/0x1000 __x64_sys_getpgid+0x5/0x30 ? do_syscall_64+0x36/0xb0 entry_SYSCALL_64_after_hwframe+0x6e/0x76
7.8
High
CVE-2023-52596 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix out of bounds access for empty sysctl registers When registering tables to the sysctl subsystem there is a check to see if header is a permanently empty directory (used for mounts). This check evaluates the first element of the ctl_table. This results in an out of bounds evaluation when registering empty directories. The function register_sysctl_mount_point now passes a ctl_table of size 1 instead of size 0. It now relies solely on the type to identify a permanently empty register. Make sure that the ctl_table has at least one element before testing for permanent emptiness.
5.5
Medium
CVE-2023-52593 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: wfx: fix possible NULL pointer dereference in wfx_set_mfp_ap() Since 'ieee80211_beacon_get()' can return NULL, 'wfx_set_mfp_ap()' should check the return value before examining skb data. So convert the latter to return an appropriate error code and propagate it to return from 'wfx_start_ap()' as well. Compile tested only.
5.5
Medium
CVE-2023-52591 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: reiserfs: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change reiserfs rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
7.8
High
CVE-2023-52590 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change ocfs2 rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
5.5
Medium
CVE-2023-52589 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: rkisp1: Fix IRQ disable race issue In rkisp1_isp_stop() and rkisp1_csi_disable() the driver masks the interrupts and then apparently assumes that the interrupt handler won't be running, and proceeds in the stop procedure. This is not the case, as the interrupt handler can already be running, which would lead to the ISP being disabled while the interrupt handler handling a captured frame. This brings up two issues: 1) the ISP could be powered off while the interrupt handler is still running and accessing registers, leading to board lockup, and 2) the interrupt handler code and the code that disables the streaming might do things that conflict. It is not clear to me if 2) causes a real issue, but 1) can be seen with a suitable delay (or printk in my case) in the interrupt handler, leading to board lockup.
4.7
Medium
CVE-2023-52586 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add mutex lock in control vblank irq Add a mutex lock to control vblank irq to synchronize vblank enable/disable operations happening from different threads to prevent race conditions while registering/unregistering the vblank irq callback. v4: -Removed vblank_ctl_lock from dpu_encoder_virt, so it is only a parameter of dpu_encoder_phys. -Switch from atomic refcnt to a simple int counter as mutex has now been added v3: Mistakenly did not change wording in last version. It is done now. v2: Slightly changed wording of commit message Patchwork: https://patchwork.freedesktop.org/patch/571854/
7
High
CVE-2023-52585 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix possible NULL dereference in amdgpu_ras_query_error_status_helper() Return invalid error code -EINVAL for invalid block id. Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c:1183 amdgpu_ras_query_error_status_helper() error: we previously assumed 'info' could be null (see line 1176)
5.5
Medium
CVE-2023-52584 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: spmi: mediatek: Fix UAF on device remove The pmif driver data that contains the clocks is allocated along with spmi_controller. On device remove, spmi_controller will be freed first, and then devres , including the clocks, will be cleanup. This leads to UAF because putting the clocks will access the clocks in the pmif driver data, which is already freed along with spmi_controller. This can be reproduced by enabling DEBUG_TEST_DRIVER_REMOVE and building the kernel with KASAN. Fix the UAF issue by using unmanaged clk_bulk_get() and putting the clocks before freeing spmi_controller.
3.8
Low
CVE-2023-52582 2024-03-02 21h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfs: Only call folio_start_fscache() one time for each folio If a network filesystem using netfs implements a clamp_length() function, it can set subrequest lengths smaller than a page size. When we loop through the folios in netfs_rreq_unlock_folios() to set any folios to be written back, we need to make sure we only call folio_start_fscache() once for each folio. Otherwise, this simple testcase: mount -o fsc,rsize=1024,wsize=1024 127.0.0.1:/export /mnt/nfs dd if=/dev/zero of=/mnt/nfs/file.bin bs=4096 count=1 1+0 records in 1+0 records out 4096 bytes (4.1 kB, 4.0 KiB) copied, 0.0126359 s, 324 kB/s echo 3 > /proc/sys/vm/drop_caches cat /mnt/nfs/file.bin > /dev/null will trigger an oops similar to the following: page dumped because: VM_BUG_ON_FOLIO(folio_test_private_2(folio)) ------------[ cut here ]------------ kernel BUG at include/linux/netfs.h:44! ... CPU: 5 PID: 134 Comm: kworker/u16:5 Kdump: loaded Not tainted 6.4.0-rc5 ... RIP: 0010:netfs_rreq_unlock_folios+0x68e/0x730 [netfs] ... Call Trace: netfs_rreq_assess+0x497/0x660 [netfs] netfs_subreq_terminated+0x32b/0x610 [netfs] nfs_netfs_read_completion+0x14e/0x1a0 [nfs] nfs_read_completion+0x2f9/0x330 [nfs] rpc_free_task+0x72/0xa0 [sunrpc] rpc_async_release+0x46/0x70 [sunrpc] process_one_work+0x3bd/0x710 worker_thread+0x89/0x610 kthread+0x181/0x1c0 ret_from_fork+0x29/0x50
5.5
Medium
CVE-2023-52572 2024-03-02 21h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: cifs: Fix UAF in cifs_demultiplex_thread() There is a UAF when xfstests on cifs: BUG: KASAN: use-after-free in smb2_is_network_name_deleted+0x27/0x160 Read of size 4 at addr ffff88810103fc08 by task cifsd/923 CPU: 1 PID: 923 Comm: cifsd Not tainted 6.1.0-rc4+ #45 ... Call Trace: dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 kasan_check_range+0x145/0x1a0 smb2_is_network_name_deleted+0x27/0x160 cifs_demultiplex_thread.cold+0x172/0x5a4 kthread+0x165/0x1a0 ret_from_fork+0x1f/0x30 Allocated by task 923: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_slab_alloc+0x54/0x60 kmem_cache_alloc+0x147/0x320 mempool_alloc+0xe1/0x260 cifs_small_buf_get+0x24/0x60 allocate_buffers+0xa1/0x1c0 cifs_demultiplex_thread+0x199/0x10d0 kthread+0x165/0x1a0 ret_from_fork+0x1f/0x30 Freed by task 921: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x143/0x1b0 kmem_cache_free+0xe3/0x4d0 cifs_small_buf_release+0x29/0x90 SMB2_negotiate+0x8b7/0x1c60 smb2_negotiate+0x51/0x70 cifs_negotiate_protocol+0xf0/0x160 cifs_get_smb_ses+0x5fa/0x13c0 mount_get_conns+0x7a/0x750 cifs_mount+0x103/0xd00 cifs_smb3_do_mount+0x1dd/0xcb0 smb3_get_tree+0x1d5/0x300 vfs_get_tree+0x41/0xf0 path_mount+0x9b3/0xdd0 __x64_sys_mount+0x190/0x1d0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The UAF is because: mount(pid: 921) | cifsd(pid: 923) -------------------------------|------------------------------- | cifs_demultiplex_thread SMB2_negotiate | cifs_send_recv | compound_send_recv | smb_send_rqst | wait_for_response | wait_event_state [1] | | standard_receive3 | cifs_handle_standard | handle_mid | mid->resp_buf = buf; [2] | dequeue_mid [3] KILL the process [4] | resp_iov[i].iov_base = buf | free_rsp_buf [5] | | is_network_name_deleted [6] | callback 1. After send request to server, wait the response until mid->mid_state != SUBMITTED; 2. Receive response from server, and set it to mid; 3. Set the mid state to RECEIVED; 4. Kill the process, the mid state already RECEIVED, get 0; 5. Handle and release the negotiate response; 6. UAF. It can be easily reproduce with add some delay in [3] - [6]. Only sync call has the problem since async call's callback is executed in cifsd process. Add an extra state to mark the mid state to READY before wakeup the waitter, then it can get the resp safely.
7.8
High
CVE-2023-52569 2024-03-02 21h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: remove BUG() after failure to insert delayed dir index item Instead of calling BUG() when we fail to insert a delayed dir index item into the delayed node's tree, we can just release all the resources we have allocated/acquired before and return the error to the caller. This is fine because all existing call chains undo anything they have done before calling btrfs_insert_delayed_dir_index() or BUG_ON (when creating pending snapshots in the transaction commit path). So remove the BUG() call and do proper error handling. This relates to a syzbot report linked below, but does not fix it because it only prevents hitting a BUG(), it does not fix the issue where somehow we attempt to use twice the same index number for different index items.
5.5
Medium
CVE-2023-52532 2024-03-02 21h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix TX CQE error handling For an unknown TX CQE error type (probably from a newer hardware), still free the SKB, update the queue tail, etc., otherwise the accounting will be wrong. Also, TX errors can be triggered by injecting corrupted packets, so replace the WARN_ONCE to ratelimited error logging.
5.5
Medium
CVE-2023-52508 2024-03-02 21h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme-fc: Prevent null pointer dereference in nvme_fc_io_getuuid() The nvme_fc_fcp_op structure describing an AEN operation is initialized with a null request structure pointer. An FC LLDD may make a call to nvme_fc_io_getuuid passing a pointer to an nvmefc_fcp_req for an AEN operation. Add validation of the request structure pointer before dereference.
5.5
Medium
CVE-2023-52506 2024-03-02 21h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: LoongArch: Set all reserved memblocks on Node#0 at initialization After commit 61167ad5fecdea ("mm: pass nid to reserve_bootmem_region()") we get a panic if DEFERRED_STRUCT_PAGE_INIT is enabled: [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000000000002b82, era == 90000000040e3f28, ra == 90000000040e3f18 [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.5.0+ #733 [ 0.000000] pc 90000000040e3f28 ra 90000000040e3f18 tp 90000000046f4000 sp 90000000046f7c90 [ 0.000000] a0 0000000000000001 a1 0000000000200000 a2 0000000000000040 a3 90000000046f7ca0 [ 0.000000] a4 90000000046f7ca4 a5 0000000000000000 a6 90000000046f7c38 a7 0000000000000000 [ 0.000000] t0 0000000000000002 t1 9000000004b00ac8 t2 90000000040e3f18 t3 90000000040f0800 [ 0.000000] t4 00000000000f0000 t5 80000000ffffe07e t6 0000000000000003 t7 900000047fff5e20 [ 0.000000] t8 aaaaaaaaaaaaaaab u0 0000000000000018 s9 0000000000000000 s0 fffffefffe000000 [ 0.000000] s1 0000000000000000 s2 0000000000000080 s3 0000000000000040 s4 0000000000000000 [ 0.000000] s5 0000000000000000 s6 fffffefffe000000 s7 900000000470b740 s8 9000000004ad4000 [ 0.000000] ra: 90000000040e3f18 reserve_bootmem_region+0xec/0x21c [ 0.000000] ERA: 90000000040e3f28 reserve_bootmem_region+0xfc/0x21c [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010800 [PIL] (IS=11 ECode=1 EsubCode=0) [ 0.000000] BADV: 0000000000002b82 [ 0.000000] PRID: 0014d000 (Loongson-64bit, Loongson-3A6000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 0000000000000000 9000000002eb5430 0000003a00000020 90000000045ccd00 [ 0.000000] 900000000470e000 90000000002c1918 0000000000000000 9000000004110780 [ 0.000000] 00000000fe6c0000 0000000480000000 9000000004b4e368 9000000004110748 [ 0.000000] 0000000000000000 900000000421ca84 9000000004620000 9000000004564970 [ 0.000000] 90000000046f7d78 9000000002cc9f70 90000000002c1918 900000000470e000 [ 0.000000] 9000000004564970 90000000040bc0e0 90000000046f7d78 0000000000000000 [ 0.000000] 0000000000004000 90000000045ccd00 0000000000000000 90000000002c1918 [ 0.000000] 90000000002c1900 900000000470b700 9000000004b4df78 9000000004620000 [ 0.000000] 90000000046200a8 90000000046200a8 0000000000000000 9000000004218b2c [ 0.000000] 9000000004270008 0000000000000001 0000000000000000 90000000045ccd00 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000040e3f28>] reserve_bootmem_region+0xfc/0x21c [ 0.000000] [<900000000421ca84>] memblock_free_all+0x114/0x350 [ 0.000000] [<9000000004218b2c>] mm_core_init+0x138/0x3cc [ 0.000000] [<9000000004200e38>] start_kernel+0x488/0x7a4 [ 0.000000] [<90000000040df0d8>] kernel_entry+0xd8/0xdc [ 0.000000] [ 0.000000] Code: 02eb21ad 00410f4c 380c31ac <262b818d> 6800b70d 02c1c196 0015001c 57fe4bb1 260002cd The reason is early memblock_reserve() in memblock_init() set node id to MAX_NUMNODES, making NODE_DATA(nid) a NULL dereference in the call chain reserve_bootmem_region() -> init_reserved_page(). After memblock_init(), those late calls of memblock_reserve() operate on subregions of memblock .memory regions. As a result, these reserved regions will be set to the correct node at the first iteration of memmap_init_reserved_pages(). So set all reserved memblocks on Node#0 at initialization can avoid this panic.
5.5
Medium
CVE-2022-48628 2024-03-02 21h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: ceph: drop messages from MDS when unmounting When unmounting all the dirty buffers will be flushed and after the last osd request is finished the last reference of the i_count will be released. Then it will flush the dirty cap/snap to MDSs, and the unmounting won't wait the possible acks, which will ihold the inodes when updating the metadata locally but makes no sense any more, of this. This will make the evict_inodes() to skip these inodes. If encrypt is enabled the kernel generate a warning when removing the encrypt keys when the skipped inodes still hold the keyring: WARNING: CPU: 4 PID: 168846 at fs/crypto/keyring.c:242 fscrypt_destroy_keyring+0x7e/0xd0 CPU: 4 PID: 168846 Comm: umount Tainted: G S 6.1.0-rc5-ceph-g72ead199864c #1 Hardware name: Supermicro SYS-5018R-WR/X10SRW-F, BIOS 2.0 12/17/2015 RIP: 0010:fscrypt_destroy_keyring+0x7e/0xd0 RSP: 0018:ffffc9000b277e28 EFLAGS: 00010202 RAX: 0000000000000002 RBX: ffff88810d52ac00 RCX: ffff88810b56aa00 RDX: 0000000080000000 RSI: ffffffff822f3a09 RDI: ffff888108f59000 RBP: ffff8881d394fb88 R08: 0000000000000028 R09: 0000000000000000 R10: 0000000000000001 R11: 11ff4fe6834fcd91 R12: ffff8881d394fc40 R13: ffff888108f59000 R14: ffff8881d394f800 R15: 0000000000000000 FS: 00007fd83f6f1080(0000) GS:ffff88885fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f918d417000 CR3: 000000017f89a005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: generic_shutdown_super+0x47/0x120 kill_anon_super+0x14/0x30 ceph_kill_sb+0x36/0x90 [ceph] deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x67/0xb0 exit_to_user_mode_prepare+0x23d/0x240 syscall_exit_to_user_mode+0x25/0x60 do_syscall_64+0x40/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd83dc39e9b Later the kernel will crash when iput() the inodes and dereferencing the "sb->s_master_keys", which has been released by the generic_shutdown_super().
5.5
Medium
CVE-2023-52488 2024-02-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: convert from _raw_ to _noinc_ regmap functions for FIFO The SC16IS7XX IC supports a burst mode to access the FIFOs where the initial register address is sent ($00), followed by all the FIFO data without having to resend the register address each time. In this mode, the IC doesn't increment the register address for each R/W byte. The regmap_raw_read() and regmap_raw_write() are functions which can perform IO over multiple registers. They are currently used to read/write from/to the FIFO, and although they operate correctly in this burst mode on the SPI bus, they would corrupt the regmap cache if it was not disabled manually. The reason is that when the R/W size is more than 1 byte, these functions assume that the register address is incremented and handle the cache accordingly. Convert FIFO R/W functions to use the regmap _noinc_ versions in order to remove the manual cache control which was a workaround when using the _raw_ versions. FIFO registers are properly declared as volatile so cache will not be used/updated for FIFO accesses.
5.5
Medium
CVE-2023-52485 2024-02-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before sending a command [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] For functions that execute within a DC context or DC lock we can wrap the direct calls to dm_execute_dmub_cmd/list with code that exits idle power optimizations and reallows once we're done with the command submission on success. For DM direct submissions the DM will need to manage the enter/exit sequencing manually. We cannot invoke a DMCUB command directly within the DM execution helper or we can deadlock.
5.5
Medium
CVE-2024-26607 2024-02-29 11h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/bridge: sii902x: Fix probing race issue A null pointer dereference crash has been observed rarely on TI platforms using sii9022 bridge: [ 53.271356] sii902x_get_edid+0x34/0x70 [sii902x] [ 53.276066] sii902x_bridge_get_edid+0x14/0x20 [sii902x] [ 53.281381] drm_bridge_get_edid+0x20/0x34 [drm] [ 53.286305] drm_bridge_connector_get_modes+0x8c/0xcc [drm_kms_helper] [ 53.292955] drm_helper_probe_single_connector_modes+0x190/0x538 [drm_kms_helper] [ 53.300510] drm_client_modeset_probe+0x1f0/0xbd4 [drm] [ 53.305958] __drm_fb_helper_initial_config_and_unlock+0x50/0x510 [drm_kms_helper] [ 53.313611] drm_fb_helper_initial_config+0x48/0x58 [drm_kms_helper] [ 53.320039] drm_fbdev_dma_client_hotplug+0x84/0xd4 [drm_dma_helper] [ 53.326401] drm_client_register+0x5c/0xa0 [drm] [ 53.331216] drm_fbdev_dma_setup+0xc8/0x13c [drm_dma_helper] [ 53.336881] tidss_probe+0x128/0x264 [tidss] [ 53.341174] platform_probe+0x68/0xc4 [ 53.344841] really_probe+0x188/0x3c4 [ 53.348501] __driver_probe_device+0x7c/0x16c [ 53.352854] driver_probe_device+0x3c/0x10c [ 53.357033] __device_attach_driver+0xbc/0x158 [ 53.361472] bus_for_each_drv+0x88/0xe8 [ 53.365303] __device_attach+0xa0/0x1b4 [ 53.369135] device_initial_probe+0x14/0x20 [ 53.373314] bus_probe_device+0xb0/0xb4 [ 53.377145] deferred_probe_work_func+0xcc/0x124 [ 53.381757] process_one_work+0x1f0/0x518 [ 53.385770] worker_thread+0x1e8/0x3dc [ 53.389519] kthread+0x11c/0x120 [ 53.392750] ret_from_fork+0x10/0x20 The issue here is as follows: - tidss probes, but is deferred as sii902x is still missing. - sii902x starts probing and enters sii902x_init(). - sii902x calls drm_bridge_add(). Now the sii902x bridge is ready from DRM's perspective. - sii902x calls sii902x_audio_codec_init() and platform_device_register_data() - The registration of the audio platform device causes probing of the deferred devices. - tidss probes, which eventually causes sii902x_bridge_get_edid() to be called. - sii902x_bridge_get_edid() tries to use the i2c to read the edid. However, the sii902x driver has not set up the i2c part yet, leading to the crash. Fix this by moving the drm_bridge_add() to the end of the sii902x_init(), which is also at the very end of sii902x_probe().
4.7
Medium
CVE-2024-26595 2024-02-23 14h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix NULL pointer dereference in error path When calling mlxsw_sp_acl_tcam_region_destroy() from an error path after failing to attach the region to an ACL group, we hit a NULL pointer dereference upon 'region->group->tcam' [1]. Fix by retrieving the 'tcam' pointer using mlxsw_sp_acl_to_tcam(). [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 [...] RIP: 0010:mlxsw_sp_acl_tcam_region_destroy+0xa0/0xd0 [...] Call Trace: mlxsw_sp_acl_tcam_vchunk_get+0x88b/0xa20 mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0 mlxsw_sp_acl_rule_add+0x47/0x240 mlxsw_sp_flower_replace+0x1a9/0x1d0 tc_setup_cb_add+0xdc/0x1c0 fl_hw_replace_filter+0x146/0x1f0 fl_change+0xc17/0x1360 tc_new_tfilter+0x472/0xb90 rtnetlink_rcv_msg+0x313/0x3b0 netlink_rcv_skb+0x58/0x100 netlink_unicast+0x244/0x390 netlink_sendmsg+0x1e4/0x440 ____sys_sendmsg+0x164/0x260 ___sys_sendmsg+0x9a/0xe0 __sys_sendmsg+0x7a/0xc0 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b
5.5
Medium
CVE-2023-52452 2024-02-22 16h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix accesses to uninit stack slots Privileged programs are supposed to be able to read uninitialized stack memory (ever since 6715df8d5) but, before this patch, these accesses were permitted inconsistently. In particular, accesses were permitted above state->allocated_stack, but not below it. In other words, if the stack was already "large enough", the access was permitted, but otherwise the access was rejected instead of being allowed to "grow the stack". This undesired rejection was happening in two places: - in check_stack_slot_within_bounds() - in check_stack_range_initialized() This patch arranges for these accesses to be permitted. A bunch of tests that were relying on the old rejection had to change; all of them were changed to add also run unprivileged, in which case the old behavior persists. One tests couldn't be updated - global_func16 - because it can't run unprivileged for other reasons. This patch also fixes the tracking of the stack size for variable-offset reads. This second fix is bundled in the same commit as the first one because they're inter-related. Before this patch, writes to the stack using registers containing a variable offset (as opposed to registers with fixed, known values) were not properly contributing to the function's needed stack size. As a result, it was possible for a program to verify, but then to attempt to read out-of-bounds data at runtime because a too small stack had been allocated for it. Each function tracks the size of the stack it needs in bpf_subprog_info.stack_depth, which is maintained by update_stack_depth(). For regular memory accesses, check_mem_access() was calling update_state_depth() but it was passing in only the fixed part of the offset register, ignoring the variable offset. This was incorrect; the minimum possible value of that register should be used instead. This tracking is now fixed by centralizing the tracking of stack size in grow_stack_state(), and by lifting the calls to grow_stack_state() to check_stack_access_within_bounds() as suggested by Andrii. The code is now simpler and more convincingly tracks the correct maximum stack size. check_stack_range_initialized() can now rely on enough stack having been allocated for the access; this helps with the fix for the first issue. A few tests were changed to also check the stack depth computation. The one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
7.8
High
CVE-2024-26587 2024-02-22 16h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: netdevsim: don't try to destroy PHC on VFs PHC gets initialized in nsim_init_netdevsim(), which is only called if (nsim_dev_port_is_pf()). Create a counterpart of nsim_init_netdevsim() and move the mock_phc_destroy() there. This fixes a crash trying to destroy netdevsim with VFs instantiated, as caught by running the devlink.sh test: BUG: kernel NULL pointer dereference, address: 00000000000000b8 RIP: 0010:mock_phc_destroy+0xd/0x30 Call Trace: nsim_destroy+0x4a/0x70 [netdevsim] __nsim_dev_port_del+0x47/0x70 [netdevsim] nsim_dev_reload_destroy+0x105/0x120 [netdevsim] nsim_drv_remove+0x2f/0xb0 [netdevsim] device_release_driver_internal+0x1a1/0x210 bus_remove_device+0xd5/0x120 device_del+0x159/0x490 device_unregister+0x12/0x30 del_device_store+0x11a/0x1a0 [netdevsim] kernfs_fop_write_iter+0x130/0x1d0 vfs_write+0x30b/0x4b0 ksys_write+0x69/0xf0 do_syscall_64+0xcc/0x1e0 entry_SYSCALL_64_after_hwframe+0x6f/0x77
5.5
Medium
CVE-2024-26585 2024-02-21 14h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do.
4.7
Medium
CVE-2024-26584 2024-02-21 14h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical.
5.5
Medium
CVE-2024-26583 2024-02-21 14h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires.
4.7
Medium
CVE-2024-25739 2024-02-12 00h00 +00:00 create_empty_lvol in drivers/mtd/ubi/vtbl.c in the Linux kernel through 6.7.4 can attempt to allocate zero bytes, and crash, because of a missing check for ubi->leb_size.
5.5
Medium
CVE-2024-25741 2024-02-12 00h00 +00:00 printer_write in drivers/usb/gadget/function/f_printer.c in the Linux kernel through 6.7.4 does not properly call usb_ep_queue, which might allow attackers to cause a denial of service or have unspecified other impact.
5.5
Medium
CVE-2024-25740 2024-02-11 23h00 +00:00 A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released.
5.5
Medium
CVE-2024-25744 2024-02-11 23h00 +00:00 In the Linux kernel before 6.6.7, an untrusted VMM can trigger int80 syscall handling at any given point. This is related to arch/x86/coco/tdx/tdx.c and arch/x86/mm/mem_encrypt_amd.c.
8.8
High
CVE-2024-1151 2024-02-11 14h29 +00:00 A vulnerability was reported in the Open vSwitch sub-component in the Linux Kernel. The flaw occurs when a recursive operation of code push recursively calls into the code block. The OVS module does not validate the stack depth, pushing too many frames and causing a stack overflow. As a result, this can lead to a crash or other related issues.
5.5
Medium
CVE-2024-1312 2024-02-08 12h38 +00:00 A use-after-free flaw was found in the Linux kernel's Memory Management subsystem when a user wins two races at the same time with a fail in the mas_prev_slot function. This issue could allow a local user to crash the system.
5.1
Medium
CVE-2024-21803 2024-01-30 07h15 +00:00 Use After Free vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (bluetooth modules) allows Local Execution of Code. This vulnerability is associated with program files https://gitee.Com/anolis/cloud-kernel/blob/devel-5.10/net/bluetooth/af_bluetooth.C. This issue affects Linux kernel: from v2.6.12-rc2 before v6.8-rc1.
7.8
High
CVE-2023-6200 2024-01-28 12h19 +00:00 A race condition was found in the Linux Kernel. Under certain conditions, an unauthenticated attacker from an adjacent network could send an ICMPv6 router advertisement packet, causing arbitrary code execution.
7.5
High
CVE-2024-23307 2024-01-25 06h59 +00:00 Integer Overflow or Wraparound vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (md, raid, raid5 modules) allows Forced Integer Overflow.
7.8
High
CVE-2023-46343 2024-01-22 23h00 +00:00 In the Linux kernel before 6.5.9, there is a NULL pointer dereference in send_acknowledge in net/nfc/nci/spi.c.
5.5
Medium
CVE-2023-51042 2024-01-22 23h00 +00:00 In the Linux kernel before 6.4.12, amdgpu_cs_wait_all_fences in drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c has a fence use-after-free.
7.8
High
CVE-2023-51043 2024-01-22 23h00 +00:00 In the Linux kernel before 6.4.5, drivers/gpu/drm/drm_atomic.c has a use-after-free during a race condition between a nonblocking atomic commit and a driver unload.
7
High
CVE-2024-22705 2024-01-22 23h00 +00:00 An issue was discovered in ksmbd in the Linux kernel before 6.6.10. smb2_get_data_area_len in fs/smb/server/smb2misc.c can cause an smb_strndup_from_utf16 out-of-bounds access because the relationship between Name data and CreateContexts data is mishandled.
7.8
High
CVE-2024-23848 2024-01-22 23h00 +00:00 In the Linux kernel through 6.7.1, there is a use-after-free in cec_queue_msg_fh, related to drivers/media/cec/core/cec-adap.c and drivers/media/cec/core/cec-api.c.
5.5
Medium
CVE-2024-23849 2024-01-22 23h00 +00:00 In rds_recv_track_latency in net/rds/af_rds.c in the Linux kernel through 6.7.1, there is an off-by-one error for an RDS_MSG_RX_DGRAM_TRACE_MAX comparison, resulting in out-of-bounds access.
5.5
Medium
CVE-2024-23850 2024-01-22 23h00 +00:00 In btrfs_get_root_ref in fs/btrfs/disk-io.c in the Linux kernel through 6.7.1, there can be an assertion failure and crash because a subvolume can be read out too soon after its root item is inserted upon subvolume creation.
5.5
Medium
CVE-2024-23851 2024-01-22 23h00 +00:00 copy_params in drivers/md/dm-ioctl.c in the Linux kernel through 6.7.1 can attempt to allocate more than INT_MAX bytes, and crash, because of a missing param_kernel->data_size check. This is related to ctl_ioctl.
5.5
Medium
CVE-2024-0775 2024-01-22 13h03 +00:00 A use-after-free flaw was found in the __ext4_remount in fs/ext4/super.c in ext4 in the Linux kernel. This flaw allows a local user to cause an information leak problem while freeing the old quota file names before a potential failure, leading to a use-after-free.
7.1
High
CVE-2023-6531 2024-01-21 10h01 +00:00 A use-after-free flaw was found in the Linux Kernel due to a race problem in the unix garbage collector's deletion of SKB races with unix_stream_read_generic() on the socket that the SKB is queued on.
7
High
CVE-2024-0607 2024-01-18 15h41 +00:00 A flaw was found in the Netfilter subsystem in the Linux kernel. The issue is in the nft_byteorder_eval() function, where the code iterates through a loop and writes to the `dst` array. On each iteration, 8 bytes are written, but `dst` is an array of u32, so each element only has space for 4 bytes. That means every iteration overwrites part of the previous element corrupting this array of u32. This flaw allows a local user to cause a denial of service or potentially break NetFilter functionality.
6.6
Medium
CVE-2024-0641 2024-01-17 15h15 +00:00 A denial of service vulnerability was found in tipc_crypto_key_revoke in net/tipc/crypto.c in the Linux kernel’s TIPC subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system.
5.5
Medium
CVE-2024-0639 2024-01-17 15h14 +00:00 A denial of service vulnerability due to a deadlock was found in sctp_auto_asconf_init in net/sctp/socket.c in the Linux kernel’s SCTP subsystem. This flaw allows guests with local user privileges to trigger a deadlock and potentially crash the system.
5.5
Medium
CVE-2023-6915 2024-01-15 09h32 +00:00 A Null pointer dereference problem was found in ida_free in lib/idr.c in the Linux Kernel. This issue may allow an attacker using this library to cause a denial of service problem due to a missing check at a function return.
6.2
Medium
CVE-2022-48619 2024-01-11 23h00 +00:00 An issue was discovered in drivers/input/input.c in the Linux kernel before 5.17.10. An attacker can cause a denial of service (panic) because input_set_capability mishandles the situation in which an event code falls outside of a bitmap.
5.5
Medium
CVE-2024-0340 2024-01-09 17h36 +00:00 A vulnerability was found in vhost_new_msg in drivers/vhost/vhost.c in the Linux kernel, which does not properly initialize memory in messages passed between virtual guests and the host operating system in the vhost/vhost.c:vhost_new_msg() function. This issue can allow local privileged users to read some kernel memory contents when reading from the /dev/vhost-net device file.
5.5
Medium
CVE-2022-2602 2024-01-08 17h56 +00:00 io_uring UAF, Unix SCM garbage collection
7
High
CVE-2022-2586 2024-01-08 17h46 +00:00 It was discovered that a nft object or expression could reference a nft set on a different nft table, leading to a use-after-free once that table was deleted.
7.8
High
CVE-2023-7192 2024-01-02 19h02 +00:00 A memory leak problem was found in ctnetlink_create_conntrack in net/netfilter/nf_conntrack_netlink.c in the Linux Kernel. This issue may allow a local attacker with CAP_NET_ADMIN privileges to cause a denial of service (DoS) attack due to a refcount overflow.
5.5
Medium
CVE-2023-51780 2023-12-24 23h00 +00:00 An issue was discovered in the Linux kernel before 6.6.8. do_vcc_ioctl in net/atm/ioctl.c has a use-after-free because of a vcc_recvmsg race condition.
7
High
CVE-2023-51781 2023-12-24 23h00 +00:00 An issue was discovered in the Linux kernel before 6.6.8. atalk_ioctl in net/appletalk/ddp.c has a use-after-free because of an atalk_recvmsg race condition.
7
High
CVE-2023-51782 2023-12-24 23h00 +00:00 An issue was discovered in the Linux kernel before 6.6.8. rose_ioctl in net/rose/af_rose.c has a use-after-free because of a rose_accept race condition.
7
High
CVE-2023-6546 2023-12-21 20h01 +00:00 A race condition was found in the GSM 0710 tty multiplexor in the Linux kernel. This issue occurs when two threads execute the GSMIOC_SETCONF ioctl on the same tty file descriptor with the gsm line discipline enabled, and can lead to a use-after-free problem on a struct gsm_dlci while restarting the gsm mux. This could allow a local unprivileged user to escalate their privileges on the system.
7
High
CVE-2023-6932 2023-12-19 14h09 +00:00 A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation. A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread. We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1.
7.8
High
CVE-2023-6931 2023-12-19 14h09 +00:00 A heap out-of-bounds write vulnerability in the Linux kernel's Performance Events system component can be exploited to achieve local privilege escalation. A perf_event's read_size can overflow, leading to an heap out-of-bounds increment or write in perf_read_group(). We recommend upgrading past commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b.
7.8
High
CVE-2023-6560 2023-12-08 23h56 +00:00 An out-of-bounds memory access flaw was found in the io_uring SQ/CQ rings functionality in the Linux kernel. This issue could allow a local user to crash the system.
5.5
Medium
CVE-2023-50431 2023-12-08 23h00 +00:00 sec_attest_info in drivers/accel/habanalabs/common/habanalabs_ioctl.c in the Linux kernel through 6.6.5 allows an information leak to user space because info->pad0 is not initialized.
5.5
Medium
CVE-2023-6622 2023-12-08 17h33 +00:00 A null pointer dereference vulnerability was found in nft_dynset_init() in net/netfilter/nft_dynset.c in nf_tables in the Linux kernel. This issue may allow a local attacker with CAP_NET_ADMIN user privilege to trigger a denial of service.
5.5
Medium
CVE-2023-39198 2023-11-09 19h15 +00:00 A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation.
7.5
High
CVE-2023-6039 2023-11-09 15h08 +00:00 A use-after-free flaw was found in lan78xx_disconnect in drivers/net/usb/lan78xx.c in the network sub-component, net/usb/lan78xx in the Linux Kernel. This flaw allows a local attacker to crash the system when the LAN78XX USB device detaches.
5.5
Medium
CVE-2023-5090 2023-11-06 10h56 +00:00 A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition.
6
Medium
CVE-2023-47233 2023-11-03 00h00 +00:00 The brcm80211 component in the Linux kernel through 6.5.10 has a brcmf_cfg80211_detach use-after-free in the device unplugging (disconnect the USB by hotplug) code. For physically proximate attackers with local access, this "could be exploited in a real world scenario." This is related to brcmf_cfg80211_escan_timeout_worker in drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c.
4.3
Medium
CVE-2023-1193 2023-11-01 19h10 +00:00 A use-after-free flaw was found in setup_async_work in the KSMBD implementation of the in-kernel samba server and CIFS in the Linux kernel. This issue could allow an attacker to crash the system by accessing freed work.
6.5
Medium
CVE-2023-1192 2023-11-01 19h01 +00:00 A use-after-free flaw was found in smb2_is_status_io_timeout() in CIFS in the Linux Kernel. After CIFS transfers response data to a system call, there are still local variable points to the memory region, and if the system call frees it faster than CIFS uses it, CIFS will access a free memory region, leading to a denial of service.
6.5
Medium
CVE-2023-46862 2023-10-28 22h00 +00:00 An issue was discovered in the Linux kernel through 6.5.9. During a race with SQ thread exit, an io_uring/fdinfo.c io_uring_show_fdinfo NULL pointer dereference can occur.
4.7
Medium
CVE-2023-46813 2023-10-26 22h00 +00:00 An issue was discovered in the Linux kernel before 6.5.9, exploitable by local users with userspace access to MMIO registers. Incorrect access checking in the #VC handler and instruction emulation of the SEV-ES emulation of MMIO accesses could lead to arbitrary write access to kernel memory (and thus privilege escalation). This depends on a race condition through which userspace can replace an instruction before the #VC handler reads it.
7
High
CVE-2023-40791 2023-10-15 22h00 +00:00 extract_user_to_sg in lib/scatterlist.c in the Linux kernel before 6.4.12 fails to unpin pages in a certain situation, as demonstrated by a WARNING for try_grab_page.
6.3
Medium
CVE-2023-45862 2023-10-13 22h00 +00:00 An issue was discovered in drivers/usb/storage/ene_ub6250.c for the ENE UB6250 reader driver in the Linux kernel before 6.2.5. An object could potentially extend beyond the end of an allocation.
5.5
Medium
CVE-2023-45863 2023-10-13 22h00 +00:00 An issue was discovered in lib/kobject.c in the Linux kernel before 6.2.3. With root access, an attacker can trigger a race condition that results in a fill_kobj_path out-of-bounds write.
6.4
Medium
CVE-2023-42752 2023-10-13 01h41 +00:00 An integer overflow flaw was found in the Linux kernel. This issue leads to the kernel allocating `skb_shared_info` in the userspace, which is exploitable in systems without SMAP protection since `skb_shared_info` contains references to function pointers.
5.5
Medium
CVE-2023-39194 2023-10-09 17h57 +00:00 A flaw was found in the XFRM subsystem in the Linux kernel. The specific flaw exists within the processing of state filters, which can result in a read past the end of an allocated buffer. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, potentially leading to an information disclosure.
4.4
Medium
CVE-2023-39193 2023-10-09 17h57 +00:00 A flaw was found in the Netfilter subsystem in the Linux kernel. The sctp_mt_check did not validate the flag_count field. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, leading to a crash or information disclosure.
6.1
Medium
CVE-2023-39192 2023-10-09 17h57 +00:00 A flaw was found in the Netfilter subsystem in the Linux kernel. The xt_u32 module did not validate the fields in the xt_u32 structure. This flaw allows a local privileged attacker to trigger an out-of-bounds read by setting the size fields with a value beyond the array boundaries, leading to a crash or information disclosure.
6.7
Medium
CVE-2023-39189 2023-10-09 17h57 +00:00 A flaw was found in the Netfilter subsystem in the Linux kernel. The nfnl_osf_add_callback function did not validate the user mode controlled opt_num field. This flaw allows a local privileged (CAP_NET_ADMIN) attacker to trigger an out-of-bounds read, leading to a crash or information disclosure.
6
Medium
CVE-2023-42755 2023-10-05 18h25 +00:00 A flaw was found in the IPv4 Resource Reservation Protocol (RSVP) classifier in the Linux kernel. The xprt pointer may go beyond the linear part of the skb, leading to an out-of-bounds read in the `rsvp_classify` function. This issue may allow a local user to crash the system and cause a denial of service.
6.5
Medium
CVE-2023-42754 2023-10-05 18h25 +00:00 A NULL pointer dereference flaw was found in the Linux kernel ipv4 stack. The socket buffer (skb) was assumed to be associated with a device before calling __ip_options_compile, which is not always the case if the skb is re-routed by ipvs. This issue may allow a local user with CAP_NET_ADMIN privileges to crash the system.
5.5
Medium
CVE-2023-44466 2023-09-28 22h00 +00:00 An issue was discovered in net/ceph/messenger_v2.c in the Linux kernel before 6.4.5. There is an integer signedness error, leading to a buffer overflow and remote code execution via HELLO or one of the AUTH frames. This occurs because of an untrusted length taken from a TCP packet in ceph_decode_32.
8.8
High
CVE-2023-42756 2023-09-28 13h55 +00:00 A flaw was found in the Netfilter subsystem of the Linux kernel. A race condition between IPSET_CMD_ADD and IPSET_CMD_SWAP can lead to a kernel panic due to the invocation of `__ip_set_put` on a wrong `set`. This issue may allow a local user to crash the system.
4.7
Medium
CVE-2023-5197 2023-09-26 10h04 +00:00 A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free. We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325.
7.8
High
CVE-2023-4622 2023-09-06 13h56 +00:00 A use-after-free vulnerability in the Linux kernel's af_unix component can be exploited to achieve local privilege escalation. The unix_stream_sendpage() function tries to add data to the last skb in the peer's recv queue without locking the queue. Thus there is a race where unix_stream_sendpage() could access an skb locklessly that is being released by garbage collection, resulting in use-after-free. We recommend upgrading past commit 790c2f9d15b594350ae9bca7b236f2b1859de02c.
7.8
High
CVE-2023-4244 2023-09-06 13h53 +00:00 A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Due to a race condition between nf_tables netlink control plane transaction and nft_set element garbage collection, it is possible to underflow the reference counter causing a use-after-free vulnerability. We recommend upgrading past commit 3e91b0ebd994635df2346353322ac51ce84ce6d8.
7.8
High
CVE-2023-4611 2023-08-29 21h25 +00:00 A use-after-free flaw was found in mm/mempolicy.c in the memory management subsystem in the Linux Kernel. This issue is caused by a race between mbind() and VMA-locked page fault, and may allow a local attacker to crash the system or lead to a kernel information leak.
7
High
CVE-2023-4569 2023-08-28 21h46 +00:00 A memory leak flaw was found in nft_set_catchall_flush in net/netfilter/nf_tables_api.c in the Linux Kernel. This issue may allow a local attacker to cause double-deactivations of catchall elements, which can result in a memory leak.
5.5
Medium
CVE-2023-4459 2023-08-21 18h49 +00:00 A NULL pointer dereference flaw was found in vmxnet3_rq_cleanup in drivers/net/vmxnet3/vmxnet3_drv.c in the networking sub-component in vmxnet3 in the Linux Kernel. This issue may allow a local attacker with normal user privilege to cause a denial of service due to a missing sanity check during cleanup.
5.5
Medium
CVE-2023-4394 2023-08-17 12h49 +00:00 A use-after-free flaw was found in btrfs_get_dev_args_from_path in fs/btrfs/volumes.c in btrfs file-system in the Linux Kernel. This flaw allows a local attacker with special privileges to cause a system crash or leak internal kernel information
6.7
Medium
CVE-2023-4385 2023-08-16 16h49 +00:00 A NULL pointer dereference flaw was found in dbFree in fs/jfs/jfs_dmap.c in the journaling file system (JFS) in the Linux Kernel. This issue may allow a local attacker to crash the system due to a missing sanity check.
5.5
Medium
CVE-2023-4273 2023-08-09 14h53 +00:00 A flaw was found in the exFAT driver of the Linux kernel. The vulnerability exists in the implementation of the file name reconstruction function, which is responsible for reading file name entries from a directory index and merging file name parts belonging to one file into a single long file name. Since the file name characters are copied into a stack variable, a local privileged attacker could use this flaw to overflow the kernel stack.
6.7
Medium
CVE-2023-4194 2023-08-07 13h19 +00:00 A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate.
5.5
Medium
CVE-2023-4132 2023-08-03 14h32 +00:00 A use-after-free vulnerability was found in the siano smsusb module in the Linux kernel. The bug occurs during device initialization when the siano device is plugged in. This flaw allows a local user to crash the system, causing a denial of service condition.
5.5
Medium
CVE-2023-4133 2023-08-03 14h32 +00:00 A use-after-free vulnerability was found in the cxgb4 driver in the Linux kernel. The bug occurs when the cxgb4 device is detaching due to a possible rearming of the flower_stats_timer from the work queue. This flaw allows a local user to crash the system, causing a denial of service condition.
5.5
Medium
CVE-2023-33951 2023-07-24 15h19 +00:00 A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel.
6.7
Medium
CVE-2023-3567 2023-07-24 15h19 +00:00 A use-after-free flaw was found in vcs_read in drivers/tty/vt/vc_screen.c in vc_screen in the Linux Kernel. This issue may allow an attacker with local user access to cause a system crash or leak internal kernel information.
7.1
High
CVE-2023-33952 2023-07-24 15h19 +00:00 A double-free vulnerability was found in handling vmw_buffer_object objects in the vmwgfx driver in the Linux kernel. This issue occurs due to the lack of validating the existence of an object prior to performing further free operations on the object, which may allow a local privileged user to escalate privileges and execute code in the context of the kernel.
6.7
Medium
CVE-2023-2860 2023-07-24 15h19 +00:00 An out-of-bounds read vulnerability was found in the SR-IPv6 implementation in the Linux kernel. The flaw exists within the processing of seg6 attributes. The issue results from the improper validation of user-supplied data, which can result in a read past the end of an allocated buffer. This flaw allows a privileged local user to disclose sensitive information on affected installations of the Linux kernel.
4.4
Medium
CVE-2023-3863 2023-07-24 14h25 +00:00 A use-after-free flaw was found in nfc_llcp_find_local in net/nfc/llcp_core.c in NFC in the Linux kernel. This flaw allows a local user with special privileges to impact a kernel information leak issue.
6.4
Medium
CVE-2023-2430 2023-07-23 00h00 +00:00 A vulnerability was found due to missing lock for IOPOLL flaw in io_cqring_event_overflow() in io_uring.c in Linux Kernel. This flaw allows a local attacker with user privilege to trigger a Denial of Service threat.
5.5
Medium
CVE-2023-3609 2023-07-21 20h47 +00:00 A use-after-free vulnerability in the Linux kernel's net/sched: cls_u32 component can be exploited to achieve local privilege escalation. If tcf_change_indev() fails, u32_set_parms() will immediately return an error after incrementing or decrementing the reference counter in tcf_bind_filter(). If an attacker can control the reference counter and set it to zero, they can cause the reference to be freed, leading to a use-after-free vulnerability. We recommend upgrading past commit 04c55383fa5689357bcdd2c8036725a55ed632bc.
7.8
High
CVE-2023-0160 2023-07-18 16h08 +00:00 A deadlock flaw was found in the Linux kernel’s BPF subsystem. This flaw allows a local user to potentially crash the system.
5.5
Medium
CVE-2023-38409 2023-07-16 22h00 +00:00 An issue was discovered in set_con2fb_map in drivers/video/fbdev/core/fbcon.c in the Linux kernel before 6.2.12. Because an assignment occurs only for the first vc, the fbcon_registered_fb and fbcon_display arrays can be desynchronized in fbcon_mode_deleted (the con2fb_map points at the old fb_info).
5.5
Medium
CVE-2023-37453 2023-07-05 22h00 +00:00 An issue was discovered in the USB subsystem in the Linux kernel through 6.4.2. There is an out-of-bounds and crash in read_descriptors in drivers/usb/core/sysfs.c.
4.6
Medium
CVE-2023-37454 2023-07-05 22h00 +00:00 An issue was discovered in the Linux kernel through 6.4.2. A crafted UDF filesystem image causes a use-after-free write operation in the udf_put_super and udf_close_lvid functions in fs/udf/super.c. NOTE: the suse.com reference has a different perspective about this.
5.5
Medium
CVE-2023-3338 2023-06-30 00h00 +00:00 A null pointer dereference flaw was found in the Linux kernel's DECnet networking protocol. This issue could allow a remote user to crash the system.
6.5
Medium
CVE-2023-1206 2023-06-29 22h00 +00:00 A hash collision flaw was found in the IPv6 connection lookup table in the Linux kernel’s IPv6 functionality when a user makes a new kind of SYN flood attack. A user located in the local network or with a high bandwidth connection can increase the CPU usage of the server that accepts IPV6 connections up to 95%.
5.7
Medium
CVE-2023-3389 2023-06-28 19h33 +00:00 A use-after-free vulnerability in the Linux Kernel io_uring subsystem can be exploited to achieve local privilege escalation. Racing a io_uring cancel poll request with a linked timeout can cause a UAF in a hrtimer. We recommend upgrading past commit ef7dfac51d8ed961b742218f526bd589f3900a59 (4716c73b188566865bdd79c3a6709696a224ac04 for 5.10 stable and 0e388fce7aec40992eadee654193cad345d62663 for 5.15 stable).
7.8
High
CVE-2023-3355 2023-06-28 00h00 +00:00 A NULL pointer dereference flaw was found in the Linux kernel's drivers/gpu/drm/msm/msm_gem_submit.c code in the submit_lookup_cmds function, which fails because it lacks a check of the return value of kmalloc(). This issue allows a local user to crash the system.
5.5
Medium
CVE-2023-3357 2023-06-28 00h00 +00:00 A NULL pointer dereference flaw was found in the Linux kernel AMD Sensor Fusion Hub driver. This flaw allows a local user to crash the system.
5.5
Medium
CVE-2023-3358 2023-06-28 00h00 +00:00 A null pointer dereference was found in the Linux kernel's Integrated Sensor Hub (ISH) driver. This issue could allow a local user to crash the system.
5.5
Medium
CVE-2023-3359 2023-06-28 00h00 +00:00 An issue was discovered in the Linux kernel brcm_nvram_parse in drivers/nvmem/brcm_nvram.c. Lacks for the check of the return value of kzalloc() can cause the NULL Pointer Dereference.
5.5
Medium
CVE-2023-3439 2023-06-28 00h00 +00:00 A flaw was found in the MCTP protocol in the Linux kernel. The function mctp_unregister() reclaims the device's relevant resource when a netcard detaches. However, a running routine may be unaware of this and cause the use-after-free of the mdev->addrs object, potentially leading to a denial of service.
4.7
Medium
CVE-2023-3212 2023-06-22 22h00 +00:00 A NULL pointer dereference issue was found in the gfs2 file system in the Linux kernel. It occurs on corrupt gfs2 file systems when the evict code tries to reference the journal descriptor structure after it has been freed and set to NULL. A privileged local user could use this flaw to cause a kernel panic.
4.4
Medium
CVE-2023-3220 2023-06-20 00h00 +00:00 An issue was discovered in the Linux kernel through 6.1-rc8. dpu_crtc_atomic_check in drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c lacks check of the return value of kzalloc() and will cause the NULL Pointer Dereference.
5.5
Medium
CVE-2023-35823 2023-06-17 22h00 +00:00 An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in saa7134_finidev in drivers/media/pci/saa7134/saa7134-core.c.
7
High
CVE-2023-35824 2023-06-17 22h00 +00:00 An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in dm1105_remove in drivers/media/pci/dm1105/dm1105.c.
7
High
CVE-2023-35827 2023-06-17 22h00 +00:00 An issue was discovered in the Linux kernel through 6.3.8. A use-after-free was found in ravb_remove in drivers/net/ethernet/renesas/ravb_main.c.
7
High
CVE-2023-3268 2023-06-16 00h00 +00:00 An out of bounds (OOB) memory access flaw was found in the Linux kernel in relay_file_read_start_pos in kernel/relay.c in the relayfs. This flaw could allow a local attacker to crash the system or leak kernel internal information.
7.1
High
CVE-2023-3161 2023-06-12 00h00 +00:00 A flaw was found in the Framebuffer Console (fbcon) in the Linux Kernel. When providing font->width and font->height greater than 32 to fbcon_set_font, since there are no checks in place, a shift-out-of-bounds occurs leading to undefined behavior and possible denial of service.
5.5
Medium
CVE-2023-3159 2023-06-11 22h00 +00:00 A use after free issue was discovered in driver/firewire in outbound_phy_packet_callback in the Linux Kernel. In this flaw a local attacker with special privilege may cause a use after free problem when queue_event() fails.
6.7
Medium
CVE-2023-2985 2023-06-01 00h00 +00:00 A use after free flaw was found in hfsplus_put_super in fs/hfsplus/super.c in the Linux Kernel. This flaw could allow a local user to cause a denial of service problem.
5.5
Medium
CVE-2023-34256 2023-05-31 00h00 +00:00 An issue was discovered in the Linux kernel before 6.3.3. There is an out-of-bounds read in crc16 in lib/crc16.c when called from fs/ext4/super.c because ext4_group_desc_csum does not properly check an offset. NOTE: this is disputed by third parties because the kernel is not intended to defend against attackers with the stated "When modifying the block device while it is mounted by the filesystem" access.
5.5
Medium
CVE-2023-2002 2023-05-25 22h00 +00:00 A vulnerability was found in the HCI sockets implementation due to a missing capability check in net/bluetooth/hci_sock.c in the Linux Kernel. This flaw allows an attacker to unauthorized execution of management commands, compromising the confidentiality, integrity, and availability of Bluetooth communication.
6.8
Medium
CVE-2023-33288 2023-05-22 00h00 +00:00 An issue was discovered in the Linux kernel before 6.2.9. A use-after-free was found in bq24190_remove in drivers/power/supply/bq24190_charger.c. It could allow a local attacker to crash the system due to a race condition.
4.7
Medium
CVE-2023-1195 2023-05-18 00h00 +00:00 A use-after-free flaw was found in reconn_set_ipaddr_from_hostname in fs/cifs/connect.c in the Linux kernel. The issue occurs when it forgets to set the free pointer server->hostname to NULL, leading to an invalid pointer request.
5.5
Medium
CVE-2023-33203 2023-05-17 22h00 +00:00 The Linux kernel before 6.2.9 has a race condition and resultant use-after-free in drivers/net/ethernet/qualcomm/emac/emac.c if a physically proximate attacker unplugs an emac based device.
6.4
Medium
CVE-2023-1859 2023-05-17 00h00 +00:00 A use-after-free flaw was found in xen_9pfs_front_removet in net/9p/trans_xen.c in Xen transport for 9pfs in the Linux Kernel. This flaw could allow a local attacker to crash the system due to a race problem, possibly leading to a kernel information leak.
4.7
Medium
CVE-2023-2124 2023-05-14 22h00 +00:00 An out-of-bounds memory access flaw was found in the Linux kernel’s XFS file system in how a user restores an XFS image after failure (with a dirty log journal). This flaw allows a local user to crash or potentially escalate their privileges on the system.
7.8
High
CVE-2023-2513 2023-05-07 22h00 +00:00 A use-after-free vulnerability was found in the Linux kernel's ext4 filesystem in the way it handled the extra inode size for extended attributes. This flaw could allow a privileged local user to cause a system crash or other undefined behaviors.
6.7
Medium
CVE-2023-32269 2023-05-04 22h00 +00:00 An issue was discovered in the Linux kernel before 6.1.11. In net/netrom/af_netrom.c, there is a use-after-free because accept is also allowed for a successfully connected AF_NETROM socket. However, in order for an attacker to exploit this, the system must have netrom routing configured or the attacker must have the CAP_NET_ADMIN capability.
6.7
Medium
CVE-2023-0458 2023-04-26 18h03 +00:00 A speculative pointer dereference problem exists in the Linux Kernel on the do_prlimit() function. The resource argument value is controlled and is used in pointer arithmetic for the 'rlim' variable and can be used to leak the contents. We recommend upgrading past version 6.1.8 or commit 739790605705ddcf18f21782b9c99ad7d53a8c11
5.3
Medium
CVE-2023-2019 2023-04-24 00h00 +00:00 A flaw was found in the Linux kernel's netdevsim device driver, within the scheduling of events. This issue results from the improper management of a reference count. This may allow an attacker to create a denial of service condition on the system.
4.4
Medium
CVE-2023-2007 2023-04-23 22h00 +00:00 The specific flaw exists within the DPT I2O Controller driver. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this in conjunction with other vulnerabilities to escalate privileges and execute arbitrary code in the context of the kernel.
7.8
High
CVE-2023-1998 2023-04-21 14h51 +00:00 The Linux kernel allows userspace processes to enable mitigations by calling prctl with PR_SET_SPECULATION_CTRL which disables the speculation feature as well as by using seccomp. We had noticed that on VMs of at least one major cloud provider, the kernel still left the victim process exposed to attacks in some cases even after enabling the spectre-BTI mitigation with prctl. The same behavior can be observed on a bare-metal machine when forcing the mitigation to IBRS on boot command line. This happened because when plain IBRS was enabled (not enhanced IBRS), the kernel had some logic that determined that STIBP was not needed. The IBRS bit implicitly protects against cross-thread branch target injection. However, with legacy IBRS, the IBRS bit was cleared on returning to userspace, due to performance reasons, which disabled the implicit STIBP and left userspace threads vulnerable to cross-thread branch target injection against which STIBP protects.
5.6
Medium
CVE-2023-2177 2023-04-20 00h00 +00:00 A null pointer dereference issue was found in the sctp network protocol in net/sctp/stream_sched.c in Linux Kernel. If stream_in allocation is failed, stream_out is freed which would further be accessed. A local user could use this flaw to crash the system or potentially cause a denial of service.
5.5
Medium
CVE-2023-2194 2023-04-20 00h00 +00:00 An out-of-bounds write vulnerability was found in the Linux kernel's SLIMpro I2C device driver. The userspace "data->block[0]" variable was not capped to a number between 0-255 and was used as the size of a memcpy, possibly writing beyond the end of dma_buffer. This flaw could allow a local privileged user to crash the system or potentially achieve code execution.
6.7
Medium
CVE-2023-1382 2023-04-19 00h00 +00:00 A data race flaw was found in the Linux kernel, between where con is allocated and con->sock is set. This issue leads to a NULL pointer dereference when accessing con->sock->sk in net/tipc/topsrv.c in the tipc protocol in the Linux kernel.
4.7
Medium
CVE-2023-2162 2023-04-19 00h00 +00:00 A use-after-free vulnerability was found in iscsi_sw_tcp_session_create in drivers/scsi/iscsi_tcp.c in SCSI sub-component in the Linux Kernel. In this flaw an attacker could leak kernel internal information.
5.5
Medium
CVE-2023-2166 2023-04-19 00h00 +00:00 A null pointer dereference issue was found in can protocol in net/can/af_can.c in the Linux before Linux. ml_priv may not be initialized in the receive path of CAN frames. A local user could use this flaw to crash the system or potentially cause a denial of service.
5.5
Medium
CVE-2023-28327 2023-04-19 00h00 +00:00 A NULL pointer dereference flaw was found in the UNIX protocol in net/unix/diag.c In unix_diag_get_exact in the Linux Kernel. The newly allocated skb does not have sk, leading to a NULL pointer. This flaw allows a local user to crash or potentially cause a denial of service.
5.5
Medium
CVE-2023-28328 2023-04-19 00h00 +00:00 A NULL pointer dereference flaw was found in the az6027 driver in drivers/media/usb/dev-usb/az6027.c in the Linux Kernel. The message from user space is not checked properly before transferring into the device. This flaw allows a local user to crash the system or potentially cause a denial of service.
5.5
Medium
CVE-2023-30772 2023-04-15 22h00 +00:00 The Linux kernel before 6.2.9 has a race condition and resultant use-after-free in drivers/power/supply/da9150-charger.c if a physically proximate attacker unplugs a device.
6.4
Medium
CVE-2023-2008 2023-04-13 22h00 +00:00 A flaw was found in the Linux kernel's udmabuf device driver. The specific flaw exists within a fault handler. The issue results from the lack of proper validation of user-supplied data, which can result in a memory access past the end of an array. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the kernel.
7.8
High
CVE-2023-1872 2023-04-12 15h40 +00:00 A use-after-free vulnerability in the Linux Kernel io_uring system can be exploited to achieve local privilege escalation. The io_file_get_fixed function lacks the presence of ctx->uring_lock which can lead to a Use-After-Free vulnerability due a race condition with fixed files getting unregistered. We recommend upgrading past commit da24142b1ef9fd5d36b76e36bab328a5b27523e8.
7.8
High
CVE-2023-1990 2023-04-12 00h00 +00:00 A use-after-free flaw was found in ndlc_remove in drivers/nfc/st-nci/ndlc.c in the Linux Kernel. This flaw could allow an attacker to crash the system due to a race problem.
4.7
Medium
CVE-2023-30456 2023-04-10 00h00 +00:00 An issue was discovered in arch/x86/kvm/vmx/nested.c in the Linux kernel before 6.2.8. nVMX on x86_64 lacks consistency checks for CR0 and CR4.
6.5
Medium
CVE-2023-1855 2023-04-05 00h00 +00:00 A use-after-free flaw was found in xgene_hwmon_remove in drivers/hwmon/xgene-hwmon.c in the Hardware Monitoring Linux Kernel Driver (xgene-hwmon). This flaw could allow a local attacker to crash the system due to a race problem. This vulnerability could even lead to a kernel information leak problem.
6.3
Medium
CVE-2023-1079 2023-03-27 00h00 +00:00 A flaw was found in the Linux kernel. A use-after-free may be triggered in asus_kbd_backlight_set when plugging/disconnecting in a malicious USB device, which advertises itself as an Asus device. Similarly to the previous known CVE-2023-25012, but in asus devices, the work_struct may be scheduled by the LED controller while the device is disconnecting, triggering a use-after-free on the struct asus_kbd_leds *led structure. A malicious USB device may exploit the issue to cause memory corruption with controlled data.
6.8
Medium
CVE-2023-28866 2023-03-26 22h00 +00:00 In the Linux kernel through 6.2.8, net/bluetooth/hci_sync.c allows out-of-bounds access because amp_init1[] and amp_init2[] are supposed to have an intentionally invalid element, but do not.
5.3
Medium
CVE-2023-1249 2023-03-23 00h00 +00:00 A use-after-free flaw was found in the Linux kernel’s core dump subsystem. This flaw allows a local user to crash the system. Only if patch 390031c94211 ("coredump: Use the vma snapshot in fill_files_note") not applied yet, then kernel could be affected.
5.5
Medium
CVE-2023-1513 2023-03-23 00h00 +00:00 A flaw was found in KVM. When calling the KVM_GET_DEBUGREGS ioctl, on 32-bit systems, there might be some uninitialized portions of the kvm_debugregs structure that could be copied to userspace, causing an information leak.
3.3
Low
CVE-2023-0590 2023-03-22 23h00 +00:00 A use-after-free flaw was found in qdisc_graft in net/sched/sch_api.c in the Linux Kernel due to a race problem. This flaw leads to a denial of service issue. If patch ebda44da44f6 ("net: sched: fix race condition in qdisc_graft()") not applied yet, then kernel could be affected.
4.7
Medium
CVE-2022-48423 2023-03-19 00h00 +00:00 In the Linux kernel before 6.1.3, fs/ntfs3/record.c does not validate resident attribute names. An out-of-bounds write may occur.
7.8
High
CVE-2022-3707 2023-03-06 00h00 +00:00 A double-free memory flaw was found in the Linux kernel. The Intel GVT-g graphics driver triggers VGA card system resource overload, causing a fail in the intel_gvt_dma_map_guest_page function. This issue could allow a local user to crash the system.
5.5
Medium
CVE-2023-23000 2023-03-01 00h00 +00:00 In the Linux kernel before 5.17, drivers/phy/tegra/xusb.c mishandles the tegra_xusb_find_port_node return value. Callers expect NULL in the error case, but an error pointer is used.
5.5
Medium
CVE-2023-23001 2023-03-01 00h00 +00:00 In the Linux kernel before 5.16.3, drivers/scsi/ufs/ufs-mediatek.c misinterprets the regulator_get return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-23002 2023-03-01 00h00 +00:00 In the Linux kernel before 5.16.3, drivers/bluetooth/hci_qca.c misinterprets the devm_gpiod_get_index_optional return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-23003 2023-03-01 00h00 +00:00 In the Linux kernel before 5.16, tools/perf/util/expr.c lacks a check for the hashmap__new return value.
4
Medium
CVE-2023-23004 2023-03-01 00h00 +00:00 In the Linux kernel before 5.19, drivers/gpu/drm/arm/malidp_planes.c misinterprets the get_sg_table return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-23005 2023-03-01 00h00 +00:00 In the Linux kernel before 6.2, mm/memory-tiers.c misinterprets the alloc_memory_type return value (expects it to be NULL in the error case, whereas it is actually an error pointer). NOTE: this is disputed by third parties because there are no realistic cases in which a user can cause the alloc_memory_type error case to be reached.
5.5
Medium
CVE-2023-1095 2023-02-28 00h00 +00:00 In nf_tables_updtable, if nf_tables_table_enable returns an error, nft_trans_destroy is called to free the transaction object. nft_trans_destroy() calls list_del(), but the transaction was never placed on a list -- the list head is all zeroes, this results in a NULL pointer dereference.
5.5
Medium
CVE-2023-22996 2023-02-28 00h00 +00:00 In the Linux kernel before 5.17.2, drivers/soc/qcom/qcom_aoss.c does not release an of_find_device_by_node reference after use, e.g., with put_device.
5.5
Medium
CVE-2023-22997 2023-02-28 00h00 +00:00 In the Linux kernel before 6.1.2, kernel/module/decompress.c misinterprets the module_get_next_page return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-22998 2023-02-28 00h00 +00:00 In the Linux kernel before 6.0.3, drivers/gpu/drm/virtio/virtgpu_object.c misinterprets the drm_gem_shmem_get_sg_table return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-22999 2023-02-28 00h00 +00:00 In the Linux kernel before 5.16.3, drivers/usb/dwc3/dwc3-qcom.c misinterprets the dwc3_qcom_create_urs_usb_platdev return value (expects it to be NULL in the error case, whereas it is actually an error pointer).
5.5
Medium
CVE-2023-22995 2023-02-27 23h00 +00:00 In the Linux kernel before 5.17, an error path in dwc3_qcom_acpi_register_core in drivers/usb/dwc3/dwc3-qcom.c lacks certain platform_device_put and kfree calls.
7.8
High
CVE-2023-26545 2023-02-25 00h00 +00:00 In the Linux kernel before 6.1.13, there is a double free in net/mpls/af_mpls.c upon an allocation failure (for registering the sysctl table under a new location) during the renaming of a device.
4.7
Medium
CVE-2023-23039 2023-02-22 00h00 +00:00 An issue was discovered in the Linux kernel through 6.2.0-rc2. drivers/tty/vcc.c has a race condition and resultant use-after-free if a physically proximate attacker removes a VCC device while calling open(), aka a race condition between vcc_open() and vcc_remove().
5.7
Medium
CVE-2023-26242 2023-02-20 23h00 +00:00 afu_mmio_region_get_by_offset in drivers/fpga/dfl-afu-region.c in the Linux kernel through 6.1.12 has an integer overflow.
7.8
High
CVE-2023-0615 2023-02-06 00h00 +00:00 A memory leak flaw and potential divide by zero and Integer overflow was found in the Linux kernel V4L2 and vivid test code functionality. This issue occurs when a user triggers ioctls, such as VIDIOC_S_DV_TIMINGS ioctl. This could allow a local user to crash the system if vivid test code enabled.
5.5
Medium
CVE-2023-25012 2023-01-31 23h00 +00:00 The Linux kernel through 6.1.9 has a Use-After-Free in bigben_remove in drivers/hid/hid-bigbenff.c via a crafted USB device because the LED controllers remain registered for too long.
4.6
Medium
CVE-2023-0468 2023-01-24 23h00 +00:00 A use-after-free flaw was found in io_uring/poll.c in io_poll_check_events in the io_uring subcomponent in the Linux Kernel due to a race condition of poll_refs. This flaw may cause a NULL pointer dereference.
4.7
Medium
CVE-2023-0469 2023-01-24 23h00 +00:00 A use-after-free flaw was found in io_uring/filetable.c in io_install_fixed_file in the io_uring subcomponent in the Linux Kernel during call cleanup. This flaw may lead to a denial of service.
5.5
Medium
CVE-2023-0394 2023-01-23 23h00 +00:00 A NULL pointer dereference flaw was found in rawv6_push_pending_frames in net/ipv6/raw.c in the network subcomponent in the Linux kernel. This flaw causes the system to crash.
5.5
Medium
CVE-2022-47929 2023-01-16 23h00 +00:00 In the Linux kernel before 6.1.6, a NULL pointer dereference bug in the traffic control subsystem allows an unprivileged user to trigger a denial of service (system crash) via a crafted traffic control configuration that is set up with "tc qdisc" and "tc class" commands. This affects qdisc_graft in net/sched/sch_api.c.
5.5
Medium
CVE-2023-23454 2023-01-12 00h00 +00:00 cbq_classify in net/sched/sch_cbq.c in the Linux kernel through 6.1.4 allows attackers to cause a denial of service (slab-out-of-bounds read) because of type confusion (non-negative numbers can sometimes indicate a TC_ACT_SHOT condition rather than valid classification results).
5.5
Medium
CVE-2023-23455 2023-01-12 00h00 +00:00 atm_tc_enqueue in net/sched/sch_atm.c in the Linux kernel through 6.1.4 allows attackers to cause a denial of service because of type confusion (non-negative numbers can sometimes indicate a TC_ACT_SHOT condition rather than valid classification results).
5.5
Medium
CVE-2022-4543 2023-01-10 23h00 +00:00 A flaw named "EntryBleed" was found in the Linux Kernel Page Table Isolation (KPTI). This issue could allow a local attacker to leak KASLR base via prefetch side-channels based on TLB timing for Intel systems.
5.5
Medium
CVE-2022-47938 2022-12-22 23h00 +00:00 An issue was discovered in ksmbd in the Linux kernel 5.15 through 5.19 before 5.19.2. fs/ksmbd/smb2misc.c has an out-of-bounds read and OOPS for SMB2_TREE_CONNECT.
6.5
Medium
CVE-2022-4662 2022-12-21 23h00 +00:00 A flaw incorrect access control in the Linux kernel USB core subsystem was found in the way user attaches usb device. A local user could use this flaw to crash the system.
5.5
Medium
CVE-2022-3104 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. lkdtm_ARRAY_BOUNDS in drivers/misc/lkdtm/bugs.c lacks check of the return value of kmalloc() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3105 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. uapi_finalize in drivers/infiniband/core/uverbs_uapi.c lacks check of kmalloc_array().
5.5
Medium
CVE-2022-3106 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. ef100_update_stats in drivers/net/ethernet/sfc/ef100_nic.c lacks check of the return value of kmalloc().
5.5
Medium
CVE-2022-3107 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. netvsc_get_ethtool_stats in drivers/net/hyperv/netvsc_drv.c lacks check of the return value of kvmalloc_array() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3108 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. kfd_parse_subtype_iolink in drivers/gpu/drm/amd/amdkfd/kfd_crat.c lacks check of the return value of kmemdup().
5.5
Medium
CVE-2022-3110 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. _rtw_init_xmit_priv in drivers/staging/r8188eu/core/rtw_xmit.c lacks check of the return value of rtw_alloc_hwxmits() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3111 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. free_charger_irq() in drivers/power/supply/wm8350_power.c lacks free of WM8350_IRQ_CHG_FAST_RDY, which is registered in wm8350_init_charger().
5.5
Medium
CVE-2022-3112 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. amvdec_set_canvases in drivers/staging/media/meson/vdec/vdec_helpers.c lacks check of the return value of kzalloc() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3113 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. mtk_vcodec_fw_vpu_init in drivers/media/platform/mtk-vcodec/mtk_vcodec_fw_vpu.c lacks check of the return value of devm_kzalloc() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3114 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. imx_register_uart_clocks in drivers/clk/imx/clk.c lacks check of the return value of kcalloc() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-3115 2022-12-13 23h00 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. malidp_crtc_reset in drivers/gpu/drm/arm/malidp_crtc.c lacks check of the return value of kzalloc() and will cause the null pointer dereference.
5.5
Medium
CVE-2022-42328 2022-12-06 23h00 +00:00 Guests can trigger deadlock in Linux netback driver T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] The patch for XSA-392 introduced another issue which might result in a deadlock when trying to free the SKB of a packet dropped due to the XSA-392 handling (CVE-2022-42328). Additionally when dropping packages for other reasons the same deadlock could occur in case of netpoll being active for the interface the xen-netback driver is connected to (CVE-2022-42329).
5.5
Medium
CVE-2022-42329 2022-12-06 23h00 +00:00 Guests can trigger deadlock in Linux netback driver T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] The patch for XSA-392 introduced another issue which might result in a deadlock when trying to free the SKB of a packet dropped due to the XSA-392 handling (CVE-2022-42328). Additionally when dropping packages for other reasons the same deadlock could occur in case of netpoll being active for the interface the xen-netback driver is connected to (CVE-2022-42329).
5.5
Medium
CVE-2022-45869 2022-11-29 23h00 +00:00 A race condition in the x86 KVM subsystem in the Linux kernel through 6.1-rc6 allows guest OS users to cause a denial of service (host OS crash or host OS memory corruption) when nested virtualisation and the TDP MMU are enabled.
5.5
Medium
CVE-2022-4127 2022-11-27 23h00 +00:00 A NULL pointer dereference issue was discovered in the Linux kernel in io_files_update_with_index_alloc. A local user could use this flaw to potentially crash the system causing a denial of service.
5.5
Medium
CVE-2022-45884 2022-11-24 23h00 +00:00 An issue was discovered in the Linux kernel through 6.0.9. drivers/media/dvb-core/dvbdev.c has a use-after-free, related to dvb_register_device dynamically allocating fops.
7
High
CVE-2022-45885 2022-11-24 23h00 +00:00 An issue was discovered in the Linux kernel through 6.0.9. drivers/media/dvb-core/dvb_frontend.c has a race condition that can cause a use-after-free when a device is disconnected.
7
High
CVE-2022-45887 2022-11-24 23h00 +00:00 An issue was discovered in the Linux kernel through 6.0.9. drivers/media/usb/ttusb-dec/ttusb_dec.c has a memory leak because of the lack of a dvb_frontend_detach call.
4.7
Medium
CVE-2022-45888 2022-11-24 23h00 +00:00 An issue was discovered in the Linux kernel through 6.0.9. drivers/char/xillybus/xillyusb.c has a race condition and use-after-free during physical removal of a USB device.
6.4
Medium
CVE-2022-43945 2022-11-03 23h00 +00:00 The Linux kernel NFSD implementation prior to versions 5.19.17 and 6.0.2 are vulnerable to buffer overflow. NFSD tracks the number of pages held by each NFSD thread by combining the receive and send buffers of a remote procedure call (RPC) into a single array of pages. A client can force the send buffer to shrink by sending an RPC message over TCP with garbage data added at the end of the message. The RPC message with garbage data is still correctly formed according to the specification and is passed forward to handlers. Vulnerable code in NFSD is not expecting the oversized request and writes beyond the allocated buffer space. CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
7.5
High
CVE-2022-44032 2022-10-29 22h00 +00:00 An issue was discovered in the Linux kernel through 6.0.6. drivers/char/pcmcia/cm4000_cs.c has a race condition and resultant use-after-free if a physically proximate attacker removes a PCMCIA device while calling open(), aka a race condition between cmm_open() and cm4000_detach().
6.4
Medium
CVE-2022-44033 2022-10-29 22h00 +00:00 An issue was discovered in the Linux kernel through 6.0.6. drivers/char/pcmcia/cm4040_cs.c has a race condition and resultant use-after-free if a physically proximate attacker removes a PCMCIA device while calling open(), aka a race condition between cm4040_open() and reader_detach().
6.4
Medium
CVE-2022-44034 2022-10-29 22h00 +00:00 An issue was discovered in the Linux kernel through 6.0.6. drivers/char/pcmcia/scr24x_cs.c has a race condition and resultant use-after-free if a physically proximate attacker removes a PCMCIA device while calling open(), aka a race condition between scr24x_open() and scr24x_remove().
6.4
Medium
CVE-2022-3344 2022-10-23 22h00 +00:00 A flaw was found in the KVM's AMD nested virtualization (SVM). A malicious L1 guest could purposely fail to intercept the shutdown of a cooperative nested guest (L2), possibly leading to a page fault and kernel panic in the host (L0).
5.5
Medium
CVE-2022-3586 2022-10-18 22h00 +00:00 A flaw was found in the Linux kernel’s networking code. A use-after-free was found in the way the sch_sfb enqueue function used the socket buffer (SKB) cb field after the same SKB had been enqueued (and freed) into a child qdisc. This flaw allows a local, unprivileged user to crash the system, causing a denial of service.
5.5
Medium
CVE-2022-3606 2022-10-18 22h00 +00:00 A vulnerability was found in Linux Kernel. It has been classified as problematic. This affects the function find_prog_by_sec_insn of the file tools/lib/bpf/libbpf.c of the component BPF. The manipulation leads to null pointer dereference. It is recommended to apply a patch to fix this issue. The identifier VDB-211749 was assigned to this vulnerability.
5.5
Medium
CVE-2022-3594 2022-10-17 22h00 +00:00 A vulnerability was found in Linux Kernel. It has been declared as problematic. Affected by this vulnerability is the function intr_callback of the file drivers/net/usb/r8152.c of the component BPF. The manipulation leads to logging of excessive data. The attack can be launched remotely. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-211363.
5.3
Medium
CVE-2022-3595 2022-10-17 22h00 +00:00 A vulnerability was found in Linux Kernel. It has been rated as problematic. Affected by this issue is the function sess_free_buffer of the file fs/cifs/sess.c of the component CIFS Handler. The manipulation leads to double free. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211364.
5.5
Medium
CVE-2022-3533 2022-10-16 22h00 +00:00 A vulnerability was found in Linux Kernel. It has been rated as problematic. This issue affects the function parse_usdt_arg of the file tools/lib/bpf/usdt.c of the component BPF. The manipulation of the argument reg_name leads to memory leak. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-211031.
5.7
Medium
CVE-2022-3543 2022-10-16 22h00 +00:00 A vulnerability, which was classified as problematic, has been found in Linux Kernel. This issue affects the function unix_sock_destructor/unix_release_sock of the file net/unix/af_unix.c of the component BPF. The manipulation leads to memory leak. It is recommended to apply a patch to fix this issue. The associated identifier of this vulnerability is VDB-211043.
5.5
Medium
CVE-2022-3544 2022-10-16 22h00 +00:00 A vulnerability, which was classified as problematic, was found in Linux Kernel. Affected is the function damon_sysfs_add_target of the file mm/damon/sysfs.c of the component Netfilter. The manipulation leads to memory leak. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211044.
5.5
Medium
CVE-2022-3521 2022-10-15 22h00 +00:00 A vulnerability has been found in Linux Kernel and classified as problematic. This vulnerability affects the function kcm_tx_work of the file net/kcm/kcmsock.c of the component kcm. The manipulation leads to race condition. It is recommended to apply a patch to fix this issue. VDB-211018 is the identifier assigned to this vulnerability.
2.6
Low
CVE-2022-42721 2022-10-12 22h00 +00:00 A list management bug in BSS handling in the mac80211 stack in the Linux kernel 5.1 through 5.19.x before 5.19.16 could be used by local attackers (able to inject WLAN frames) to corrupt a linked list and, in turn, potentially execute code.
5.5
Medium
CVE-2022-42722 2022-10-12 22h00 +00:00 In the Linux kernel 5.8 through 5.19.x before 5.19.16, local attackers able to inject WLAN frames into the mac80211 stack could cause a NULL pointer dereference denial-of-service attack against the beacon protection of P2P devices.
5.5
Medium
CVE-2022-42703 2022-10-08 22h00 +00:00 mm/rmap.c in the Linux kernel before 5.19.7 has a use-after-free related to leaf anon_vma double reuse.
5.5
Medium
CVE-2022-41848 2022-09-30 03h15 +00:00 drivers/char/pcmcia/synclink_cs.c in the Linux kernel through 5.19.12 has a race condition and resultant use-after-free if a physically proximate attacker removes a PCMCIA device while calling ioctl, aka a race condition between mgslpc_ioctl and mgslpc_detach.
4.2
Medium
CVE-2022-41849 2022-09-29 22h00 +00:00 drivers/video/fbdev/smscufx.c in the Linux kernel through 5.19.12 has a race condition and resultant use-after-free if a physically proximate attacker removes a USB device while calling open(), aka a race condition between ufx_ops_open and ufx_usb_disconnect.
4.2
Medium
CVE-2022-41850 2022-09-29 22h00 +00:00 roccat_report_event in drivers/hid/hid-roccat.c in the Linux kernel through 5.19.12 has a race condition and resultant use-after-free in certain situations where a report is received while copying a report->value is in progress.
4.7
Medium
CVE-2022-3303 2022-09-26 22h00 +00:00 A race condition flaw was found in the Linux kernel sound subsystem due to improper locking. It could lead to a NULL pointer dereference while handling the SNDCTL_DSP_SYNC ioctl. A privileged local user (root or member of the audio group) could use this flaw to crash the system, resulting in a denial of service condition
4.7
Medium
CVE-2022-2785 2022-09-23 11h10 +00:00 There exists an arbitrary memory read within the Linux Kernel BPF - Constants provided to fill pointers in structs passed in to bpf_sys_bpf are not verified and can point anywhere, including memory not owned by BPF. An attacker with CAP_BPF can arbitrarily read memory from anywhere on the system. We recommend upgrading past commit 86f44fcec22c
6.7
Medium
CVE-2022-41218 2022-09-20 22h00 +00:00 In drivers/media/dvb-core/dmxdev.c in the Linux kernel through 5.19.10, there is a use-after-free caused by refcount races, affecting dvb_demux_open and dvb_dmxdev_release.
5.5
Medium
CVE-2022-40768 2022-09-17 22h00 +00:00 drivers/scsi/stex.c in the Linux kernel through 5.19.9 allows local users to obtain sensitive information from kernel memory because stex_queuecommand_lck lacks a memset for the PASSTHRU_CMD case.
5.5
Medium
CVE-2022-40133 2022-09-09 14h39 +00:00 A use-after-free(UAF) vulnerability was found in function 'vmw_execbuf_tie_context' in drivers/gpu/vmxgfx/vmxgfx_execbuf.c in Linux kernel's vmwgfx driver with device file '/dev/dri/renderD128 (or Dxxx)'. This flaw allows a local attacker with a user account on the system to gain privilege, causing a denial of service(DoS).
6.3
Medium
CVE-2022-38457 2022-09-09 14h39 +00:00 A use-after-free(UAF) vulnerability was found in function 'vmw_cmd_res_check' in drivers/gpu/vmxgfx/vmxgfx_execbuf.c in Linux kernel's vmwgfx driver with device file '/dev/dri/renderD128 (or Dxxx)'. This flaw allows a local attacker with a user account on the system to gain privilege, causing a denial of service(DoS).
6.3
Medium
CVE-2022-38096 2022-09-09 14h39 +00:00 A NULL pointer dereference vulnerability was found in vmwgfx driver in drivers/gpu/vmxgfx/vmxgfx_execbuf.c in GPU component of Linux kernel with device file '/dev/dri/renderD128 (or Dxxx)'. This flaw allows a local attacker with a user account on the system to gain privilege, causing a denial of service(DoS).
6.3
Medium
CVE-2022-3077 2022-09-09 12h39 +00:00 A buffer overflow vulnerability was found in the Linux kernel Intel’s iSMT SMBus host controller driver in the way it handled the I2C_SMBUS_BLOCK_PROC_CALL case (via the ioctl I2C_SMBUS) with malicious input data. This flaw could allow a local user to crash the system.
5.5
Medium
CVE-2022-2905 2022-09-08 22h00 +00:00 An out-of-bounds memory read flaw was found in the Linux kernel's BPF subsystem in how a user calls the bpf_tail_call function with a key larger than the max_entries of the map. This flaw allows a local user to gain unauthorized access to data.
5.5
Medium
CVE-2022-40307 2022-09-08 22h00 +00:00 An issue was discovered in the Linux kernel through 5.19.8. drivers/firmware/efi/capsule-loader.c has a race condition with a resultant use-after-free.
4.7
Medium
CVE-2022-39842 2022-09-04 22h00 +00:00 An issue was discovered in the Linux kernel before 5.19. In pxa3xx_gcu_write in drivers/video/fbdev/pxa3xx-gcu.c, the count parameter has a type conflict of size_t versus int, causing an integer overflow and bypassing the size check. After that, because it is used as the third argument to copy_from_user(), a heap overflow may occur. NOTE: the original discoverer disputes that the overflow can actually happen.
6.1
Medium
CVE-2022-39188 2022-09-01 22h00 +00:00 An issue was discovered in include/asm-generic/tlb.h in the Linux kernel before 5.19. Because of a race condition (unmap_mapping_range versus munmap), a device driver can free a page while it still has stale TLB entries. This only occurs in situations with VM_PFNMAP VMAs.
4.7
Medium
CVE-2022-39190 2022-09-01 22h00 +00:00 An issue was discovered in net/netfilter/nf_tables_api.c in the Linux kernel before 5.19.6. A denial of service can occur upon binding to an already bound chain.
5.5
Medium
CVE-2022-3078 2022-09-01 18h52 +00:00 An issue was discovered in the Linux kernel through 5.16-rc6. There is a lack of check after calling vzalloc() and lack of free after allocation in drivers/media/test-drivers/vidtv/vidtv_s302m.c.
5.5
Medium
CVE-2022-1263 2022-08-31 13h33 +00:00 A NULL pointer dereference issue was found in KVM when releasing a vCPU with dirty ring support enabled. This flaw allows an unprivileged local attacker on the host to issue specific ioctl calls, causing a kernel oops condition that results in a denial of service.
5.5
Medium
CVE-2022-1205 2022-08-31 13h32 +00:00 A NULL pointer dereference flaw was found in the Linux kernel’s Amateur Radio AX.25 protocol functionality in the way a user connects with the protocol. This flaw allows a local user to crash the system.
4.7
Medium
CVE-2022-2153 2022-08-30 22h00 +00:00 A flaw was found in the Linux kernel’s KVM when attempting to set a SynIC IRQ. This issue makes it possible for a misbehaving VMM to write to SYNIC/STIMER MSRs, causing a NULL pointer dereference. This flaw allows an unprivileged local attacker on the host to issue specific ioctl calls, causing a kernel oops condition that results in a denial of service.
5.5
Medium
CVE-2022-1198 2022-08-29 12h03 +00:00 A use-after-free vulnerabilitity was discovered in drivers/net/hamradio/6pack.c of linux that allows an attacker to crash linux kernel by simulating ax25 device using 6pack driver from user space.
5.5
Medium
CVE-2022-1204 2022-08-29 12h03 +00:00 A use-after-free flaw was found in the Linux kernel’s Amateur Radio AX.25 protocol functionality in the way a user connects with the protocol. This flaw allows a local user to crash the system.
5.5
Medium
CVE-2022-1016 2022-08-29 12h03 +00:00 A flaw was found in the Linux kernel in net/netfilter/nf_tables_core.c:nft_do_chain, which can cause a use-after-free. This issue needs to handle 'return' with proper preconditions, as it can lead to a kernel information leak problem caused by a local, unprivileged attacker.
5.5
Medium
CVE-2022-1199 2022-08-28 22h00 +00:00 A flaw was found in the Linux kernel. This flaw allows an attacker to crash the Linux kernel by simulating amateur radio from the user space, resulting in a null-ptr-deref vulnerability and a use-after-free vulnerability.
7.5
High
CVE-2022-2961 2022-08-28 22h00 +00:00 A use-after-free flaw was found in the Linux kernel’s PLP Rose functionality in the way a user triggers a race condition by calling bind while simultaneously triggering the rose_bind() function. This flaw allows a local user to crash or potentially escalate their privileges on the system.
7
High
CVE-2022-0168 2022-08-26 15h25 +00:00 A denial of service (DOS) issue was found in the Linux kernel’s smb2_ioctl_query_info function in the fs/cifs/smb2ops.c Common Internet File System (CIFS) due to an incorrect return from the memdup_user function. This flaw allows a local, privileged (CAP_SYS_ADMIN) attacker to crash the system.
4.4
Medium
CVE-2021-3669 2022-08-26 13h25 +00:00 A flaw was found in the Linux kernel. Measuring usage of the shared memory does not scale with large shared memory segment counts which could lead to resource exhaustion and DoS.
5.5
Medium
CVE-2022-0171 2022-08-25 22h00 +00:00 A flaw was found in the Linux kernel. The existing KVM SEV API has a vulnerability that allows a non-root (host) user-level application to crash the host kernel by creating a confidential guest VM instance in AMD CPU that supports Secure Encrypted Virtualization (SEV).
5.5
Medium
CVE-2021-4155 2022-08-24 13h10 +00:00 A data leak flaw was found in the way XFS_IOC_ALLOCSP IOCTL in the XFS filesystem allowed for size increase of files with unaligned size. A local attacker could use this flaw to leak data on the XFS filesystem otherwise not accessible to them.
5.5
Medium
CVE-2022-2873 2022-08-21 22h00 +00:00 An out-of-bounds memory access flaw was found in the Linux kernel Intel’s iSMT SMBus host controller driver in the way a user triggers the I2C_SMBUS_BLOCK_DATA (with the ioctl I2C_SMBUS) with malicious input data. This flaw allows a local user to crash the system.
5.5
Medium
CVE-2022-2503 2022-08-11 22h00 +00:00 Dm-verity is used for extending root-of-trust to root filesystems. LoadPin builds on this property to restrict module/firmware loads to just the trusted root filesystem. Device-mapper table reloads currently allow users with root privileges to switch out the target with an equivalent dm-linear target and bypass verification till reboot. This allows root to bypass LoadPin and can be used to load untrusted and unverified kernel modules and firmware, which implies arbitrary kernel execution and persistence for peripherals that do not verify firmware updates. We recommend upgrading past commit 4caae58406f8ceb741603eee460d79bacca9b1b5
6.9
Medium
CVE-2022-1012 2022-08-04 22h00 +00:00 A memory leak problem was found in the TCP source port generation algorithm in net/ipv4/tcp.c due to the small table perturb size. This flaw may allow an attacker to information leak and may cause a denial of service problem.
8.2
High
CVE-2022-36123 2022-07-29 11h43 +00:00 The Linux kernel before 5.18.13 lacks a certain clear operation for the block starting symbol (.bss). This allows Xen PV guest OS users to cause a denial of service or gain privileges.
7.8
High
CVE-2022-36879 2022-07-27 01h27 +00:00 An issue was discovered in the Linux kernel through 5.18.14. xfrm_expand_policies in net/xfrm/xfrm_policy.c can cause a refcount to be dropped twice.
5.5
Medium
CVE-2021-33655 2022-07-18 12h45 +00:00 When sending malicous data to kernel by ioctl cmd FBIOPUT_VSCREENINFO,kernel will write memory out of bounds.
6.7
Medium
CVE-2021-4135 2022-07-14 17h30 +00:00 A memory leak vulnerability was found in the Linux kernel's eBPF for the Simulated networking device driver in the way user uses BPF for the device such that function nsim_map_alloc_elem being called. A local user could use this flaw to get unauthorized access to some data.
5.5
Medium
CVE-2022-2380 2022-07-13 16h29 +00:00 The Linux kernel was found vulnerable out of bounds memory access in the drivers/video/fbdev/sm712fb.c:smtcfb_read() function. The vulnerability could result in local attackers being able to crash the kernel.
5.5
Medium
CVE-2022-2318 2022-07-05 22h00 +00:00 There are use-after-free vulnerabilities caused by timer handler in net/rose/rose_timer.c of linux that allow attackers to crash linux kernel without any privileges.
5.5
Medium
CVE-2022-33743 2022-07-05 10h50 +00:00 network backend may cause Linux netfront to use freed SKBs While adding logic to support XDP (eXpress Data Path), a code label was moved in a way allowing for SKBs having references (pointers) retained for further processing to nevertheless be freed.
7.8
High
CVE-2022-33744 2022-07-05 10h50 +00:00 Arm guests can cause Dom0 DoS via PV devices When mapping pages of guests on Arm, dom0 is using an rbtree to keep track of the foreign mappings. Updating of that rbtree is not always done completely with the related lock held, resulting in a small race window, which can be used by unprivileged guests via PV devices to cause inconsistencies of the rbtree. These inconsistencies can lead to Denial of Service (DoS) of dom0, e.g. by causing crashes or the inability to perform further mappings of other guests' memory pages.
4.7
Medium
CVE-2022-1852 2022-06-30 10h42 +00:00 A NULL pointer dereference flaw was found in the Linux kernel’s KVM module, which can lead to a denial of service in the x86_emulate_insn in arch/x86/kvm/emulate.c. This flaw occurs while executing an illegal instruction in guest in the Intel CPU.
5.5
Medium
CVE-2022-2078 2022-06-29 22h00 +00:00 A vulnerability was found in the Linux kernel's nft_set_desc_concat_parse() function .This flaw allows an attacker to trigger a buffer overflow via nft_set_desc_concat_parse() , causing a denial of service and possibly to run code.
5.5
Medium
CVE-2022-34494 2022-06-26 13h28 +00:00 rpmsg_virtio_add_ctrl_dev in drivers/rpmsg/virtio_rpmsg_bus.c in the Linux kernel before 5.18.4 has a double free.
5.5
Medium
CVE-2022-34495 2022-06-26 13h28 +00:00 rpmsg_probe in drivers/rpmsg/virtio_rpmsg_bus.c in the Linux kernel before 5.18.4 has a double free.
5.5
Medium
CVE-2022-33981 2022-06-18 13h27 +00:00 drivers/block/floppy.c in the Linux kernel before 5.17.6 is vulnerable to a denial of service, because of a concurrency use-after-free flaw after deallocating raw_cmd in the raw_cmd_ioctl function.
3.3
Low
CVE-2022-32981 2022-06-10 17h42 +00:00 An issue was discovered in the Linux kernel through 5.18.3 on powerpc 32-bit platforms. There is a buffer overflow in ptrace PEEKUSER and POKEUSER (aka PEEKUSR and POKEUSR) when accessing floating point registers.
7.8
High
CVE-2022-32296 2022-06-05 19h53 +00:00 The Linux kernel before 5.17.9 allows TCP servers to identify clients by observing what source ports are used. This occurs because of use of Algorithm 4 ("Double-Hash Port Selection Algorithm") of RFC 6056.
3.3
Low
CVE-2022-1734 2022-05-18 14h28 +00:00 A flaw in Linux Kernel found in nfcmrvl_nci_unregister_dev() in drivers/nfc/nfcmrvl/main.c can lead to use after free both read or write when non synchronized between cleanup routine and firmware download routine.
7
High
CVE-2022-29968 2022-05-02 02h00 +00:00 An issue was discovered in the Linux kernel through 5.17.5. io_rw_init_file in fs/io_uring.c lacks initialization of kiocb->private.
7.8
High
CVE-2022-1353 2022-04-29 13h46 +00:00 A vulnerability was found in the pfkey_register function in net/key/af_key.c in the Linux kernel. This flaw allows a local, unprivileged user to gain access to kernel memory, leading to a system crash or a leak of internal kernel information.
7.1
High
CVE-2022-1195 2022-04-29 13h40 +00:00 A use-after-free vulnerability was found in the Linux kernel in drivers/net/hamradio. This flaw allows a local attacker with a user privilege to cause a denial of service (DOS) when the mkiss or sixpack device is detached and reclaim resources early.
5.5
Medium
CVE-2022-1015 2022-04-28 22h00 +00:00 A flaw was found in the Linux kernel in linux/net/netfilter/nf_tables_api.c of the netfilter subsystem. This flaw allows a local user to cause an out-of-bounds write issue.
6.6
Medium
CVE-2022-29582 2022-04-21 22h00 +00:00 In the Linux kernel before 5.17.3, fs/io_uring.c has a use-after-free due to a race condition in io_uring timeouts. This can be triggered by a local user who has no access to any user namespace; however, the race condition perhaps can only be exploited infrequently.
7
High
CVE-2022-28388 2022-04-03 18h07 +00:00 usb_8dev_start_xmit in drivers/net/can/usb/usb_8dev.c in the Linux kernel through 5.17.1 has a double free.
5.5
Medium
CVE-2022-28389 2022-04-03 18h07 +00:00 mcba_usb_start_xmit in drivers/net/can/usb/mcba_usb.c in the Linux kernel through 5.17.1 has a double free.
5.5
Medium
CVE-2022-28390 2022-04-03 18h07 +00:00 ems_usb_start_xmit in drivers/net/can/usb/ems_usb.c in the Linux kernel through 5.17.1 has a double free.
7.8
High
CVE-2022-28356 2022-04-02 18h36 +00:00 In the Linux kernel before 5.17.1, a refcount leak bug was found in net/llc/af_llc.c.
5.5
Medium
CVE-2021-3847 2022-04-01 20h17 +00:00 An unauthorized access to the execution of the setuid file with capabilities flaw in the Linux kernel OverlayFS subsystem was found in the way user copying a capable file from a nosuid mount into another mount. A local user could use this flaw to escalate their privileges on the system.
7.8
High
CVE-2020-35501 2022-03-29 22h00 +00:00 A flaw was found in the Linux kernels implementation of audit rules, where a syscall can unexpectedly not be correctly not be logged by the audit subsystem
3.4
Low
CVE-2022-1055 2022-03-29 13h05 +00:00 A use-after-free exists in the Linux Kernel in tc_new_tfilter that could allow a local attacker to gain privilege escalation. The exploit requires unprivileged user namespaces. We recommend upgrading past commit 04c2a47ffb13c29778e2a14e414ad4cb5a5db4b5
8.6
High
CVE-2022-27950 2022-03-28 01h45 +00:00 In drivers/hid/hid-elo.c in the Linux kernel before 5.16.11, a memory leak exists for a certain hid_parse error condition.
5.5
Medium
CVE-2022-0494 2022-03-25 17h03 +00:00 A kernel information leak flaw was identified in the scsi_ioctl function in drivers/scsi/scsi_ioctl.c in the Linux kernel. This flaw allows a local attacker with a special user privilege (CAP_SYS_ADMIN or CAP_SYS_RAWIO) to create issues with confidentiality.
4.4
Medium
CVE-2022-0330 2022-03-24 23h00 +00:00 A random memory access flaw was found in the Linux kernel's GPU i915 kernel driver functionality in the way a user may run malicious code on the GPU. This flaw allows a local user to crash the system or escalate their privileges on the system.
7.8
High
CVE-2022-0854 2022-03-23 18h46 +00:00 A memory leak flaw was found in the Linux kernel’s DMA subsystem, in the way a user calls DMA_FROM_DEVICE. This flaw allows a local user to read random memory from the kernel space.
5.5
Medium
CVE-2022-27666 2022-03-23 04h07 +00:00 A heap buffer overflow flaw was found in IPsec ESP transformation code in net/ipv4/esp4.c and net/ipv6/esp6.c. This flaw allows a local attacker with a normal user privilege to overwrite kernel heap objects and may cause a local privilege escalation threat.
7.8
High
CVE-2022-1011 2022-03-17 23h00 +00:00 A use-after-free flaw was found in the Linux kernel’s FUSE filesystem in the way a user triggers write(). This flaw allows a local user to gain unauthorized access to data from the FUSE filesystem, resulting in privilege escalation.
7.8
High
CVE-2022-26966 2022-03-12 20h30 +00:00 An issue was discovered in the Linux kernel before 5.16.12. drivers/net/usb/sr9700.c allows attackers to obtain sensitive information from heap memory via crafted frame lengths from a device.
5.5
Medium
CVE-2022-0433 2022-03-09 15h32 +00:00 A NULL pointer dereference flaw was found in the Linux kernel's BPF subsystem in the way a user triggers the map_get_next_key function of the BPF bloom filter. This flaw allows a local user to crash the system. This flaw affects Linux kernel versions prior to 5.17-rc1.
5.5
Medium
CVE-2022-0516 2022-03-08 13h06 +00:00 A vulnerability was found in kvm_s390_guest_sida_op in the arch/s390/kvm/kvm-s390.c function in KVM for s390 in the Linux kernel. This flaw allows a local attacker with a normal user privilege to obtain unauthorized memory write access. This flaw affects Linux kernel versions prior to 5.17-rc4.
7.8
High
CVE-2021-4095 2022-03-08 13h05 +00:00 A NULL pointer dereference was found in the Linux kernel's KVM when dirty ring logging is enabled without an active vCPU context. An unprivileged local attacker on the host may use this flaw to cause a kernel oops condition and thus a denial of service by issuing a KVM_XEN_HVM_SET_ATTR ioctl. This flaw affects Linux kernel versions prior to 5.17-rc1.
5.5
Medium
CVE-2022-26490 2022-03-06 02h58 +00:00 st21nfca_connectivity_event_received in drivers/nfc/st21nfca/se.c in the Linux kernel through 5.16.12 has EVT_TRANSACTION buffer overflows because of untrusted length parameters.
7.8
High
CVE-2021-3743 2022-03-04 14h52 +00:00 An out-of-bounds (OOB) memory read flaw was found in the Qualcomm IPC router protocol in the Linux kernel. A missing sanity check allows a local attacker to gain access to out-of-bounds memory, leading to a system crash or a leak of internal kernel information. The highest threat from this vulnerability is to system availability.
7.1
High
CVE-2021-4002 2022-03-03 20h42 +00:00 A memory leak flaw in the Linux kernel's hugetlbfs memory usage was found in the way the user maps some regions of memory twice using shmget() which are aligned to PUD alignment with the fault of some of the memory pages. A local user could use this flaw to get unauthorized access to some data.
4.4
Medium
CVE-2022-25375 2022-02-20 18h47 +00:00 An issue was discovered in drivers/usb/gadget/function/rndis.c in the Linux kernel before 5.16.10. The RNDIS USB gadget lacks validation of the size of the RNDIS_MSG_SET command. Attackers can obtain sensitive information from kernel memory.
5.5
Medium
CVE-2021-4090 2022-02-17 23h00 +00:00 An out-of-bounds (OOB) memory write flaw was found in the NFSD in the Linux kernel. Missing sanity may lead to a write beyond bmval[bmlen-1] in nfsd4_decode_bitmap4 in fs/nfsd/nfs4xdr.c. In this flaw, a local attacker with user privilege may gain access to out-of-bounds memory, leading to a system integrity and confidentiality threat.
7.1
High
CVE-2022-25265 2022-02-16 19h30 +00:00 In the Linux kernel through 5.16.10, certain binary files may have the exec-all attribute if they were built in approximately 2003 (e.g., with GCC 3.2.2 and Linux kernel 2.4.20). This can cause execution of bytes located in supposedly non-executable regions of a file.
7.8
High
CVE-2022-0617 2022-02-16 15h38 +00:00 A flaw null pointer dereference in the Linux kernel UDF file system functionality was found in the way user triggers udf_file_write_iter function for the malicious UDF image. A local user could use this flaw to crash the system. Actual from Linux kernel 4.2-rc1 till 5.17-rc2.
5.5
Medium
CVE-2022-25258 2022-02-15 23h00 +00:00 An issue was discovered in drivers/usb/gadget/composite.c in the Linux kernel before 5.16.10. The USB Gadget subsystem lacks certain validation of interface OS descriptor requests (ones with a large array index and ones associated with NULL function pointer retrieval). Memory corruption might occur.
4.6
Medium
CVE-2021-44879 2022-02-12 23h00 +00:00 In gc_data_segment in fs/f2fs/gc.c in the Linux kernel before 5.16.3, special files are not considered, leading to a move_data_page NULL pointer dereference.
5.5
Medium
CVE-2021-45402 2022-02-11 13h36 +00:00 The check_alu_op() function in kernel/bpf/verifier.c in the Linux kernel through v5.16-rc5 did not properly update bounds while handling the mov32 instruction, which allows local users to obtain potentially sensitive address information, aka a "pointer leak."
5.5
Medium
CVE-2022-24958 2022-02-11 03h21 +00:00 drivers/usb/gadget/legacy/inode.c in the Linux kernel through 5.16.8 mishandles dev->buf release.
7.8
High
CVE-2022-24959 2022-02-11 03h21 +00:00 An issue was discovered in the Linux kernel before 5.16.5. There is a memory leak in yam_siocdevprivate in drivers/net/hamradio/yam.c.
5.5
Medium
CVE-2022-0382 2022-02-10 23h00 +00:00 An information leak flaw was found due to uninitialized memory in the Linux kernel's TIPC protocol subsystem, in the way a user sends a TIPC datagram to one or more destinations. This flaw allows a local user to read some kernel memory. This issue is limited to no more than 7 bytes, and the user cannot control what is read. This flaw affects the Linux kernel versions prior to 5.17-rc1.
5.5
Medium
CVE-2022-24448 2022-02-04 18h45 +00:00 An issue was discovered in fs/nfs/dir.c in the Linux kernel before 5.16.5. If an application sets the O_DIRECTORY flag, and tries to open a regular file, nfs_atomic_open() performs a regular lookup. If a regular file is found, ENOTDIR should occur, but the server instead returns uninitialized data in the file descriptor.
3.3
Low
CVE-2022-0264 2022-02-03 23h00 +00:00 A vulnerability was found in the Linux kernel's eBPF verifier when handling internal data structures. Internal memory locations could be returned to userspace. A local attacker with the permissions to insert eBPF code to the kernel can use this to leak internal kernel memory details defeating some of the exploit mitigations in place for the kernel. This flaws affects kernel versions < v5.16-rc6
5.5
Medium
CVE-2021-3564 2021-06-08 09h59 +00:00 A flaw double-free memory corruption in the Linux kernel HCI device initialization subsystem was found in the way user attach malicious HCI TTY Bluetooth device. A local user could use this flaw to crash the system. This flaw affects all the Linux kernel versions starting from 3.13.
5.5
Medium
CVE-2020-27815 2021-05-26 10h18 +00:00 A flaw was found in the JFS filesystem code in the Linux Kernel which allows a local attacker with the ability to set extended attributes to panic the system, causing memory corruption or escalating privileges. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability.
7.8
High
CVE-2020-25672 2021-05-25 17h38 +00:00 A memory leak vulnerability was found in Linux kernel in llcp_sock_connect
7.5
High
CVE-2021-20194 2021-02-23 21h33 +00:00 There is a vulnerability in the linux kernel versions higher than 5.2 (if kernel compiled with config params CONFIG_BPF_SYSCALL=y , CONFIG_BPF=y , CONFIG_CGROUPS=y , CONFIG_CGROUP_BPF=y , CONFIG_HARDENED_USERCOPY not set, and BPF hook to getsockopt is registered). As result of BPF execution, the local user can trigger bug in __cgroup_bpf_run_filter_getsockopt() function that can lead to heap overflow (because of non-hardened usercopy). The impact of attack could be deny of service or possibly privileges escalation.
7.8
High
CVE-2019-3016 2020-01-31 18h50 +00:00 In a Linux KVM guest that has PV TLB enabled, a process in the guest kernel may be able to read memory locations from another process in the same guest. This problem is limit to the host running linux kernel 4.10 with a guest running linux kernel 4.16 or later. The problem mainly affects AMD processors but Intel CPUs cannot be ruled out.
6.2
Medium
CVE-2019-3887 2019-04-08 22h00 +00:00 A flaw was found in the way KVM hypervisor handled x2APIC Machine Specific Rregister (MSR) access with nested(=1) virtualization enabled. In that, L1 guest could access L0's APIC register values via L2 guest, when 'virtualize x2APIC mode' is enabled. A guest could use this flaw to potentially crash the host kernel resulting in DoS issue. Kernel versions from 4.16 and newer are vulnerable to this issue.
5.6
Medium
CVE-2019-3819 2019-01-25 17h00 +00:00 A flaw was found in the Linux kernel in the function hid_debug_events_read() in drivers/hid/hid-debug.c file which may enter an infinite loop with certain parameters passed from a userspace. A local privileged user ("root") can cause a system lock up and a denial of service. Versions from v4.18 and newer are vulnerable.
4.4
Medium
CVE-2018-1781 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to obtain root access by exploiting a symbolic link attack to read/write/corrupt a file that they originally did not have permission to access. IBM X-Force ID: 148804.
8.4
High
CVE-2018-1799 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local unprivileged user to overwrite files on the system which could cause damage to the database. IBM X-Force ID: 149429.
6.2
Medium
CVE-2018-1802 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 binaries load shared libraries from an untrusted path potentially giving low privilege user full access to the DB2 instance account by loading a malicious shared library. IBM X-Force ID: 149640.
8.4
High
CVE-2018-1458 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10,1, 10.5 and 11.1 could allow a local user to execute arbitrary code and conduct DLL hijacking attacks. IBM X-Force ID: 140209.
7.8
High
CVE-2018-1487 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5 and 11.1 binaries load shared libraries from an untrusted path potentially giving low privilege users full access to the DB2 instance account by loading a malicious shared library. IBM X-Force ID: 140972.
8.4
High
CVE-2018-1566 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to execute arbitrary code due to a format string error. IBM X-Force ID: 143023.
8.4
High
CVE-2017-7836 2018-06-11 19h00 +00:00 The "pingsender" executable used by the Firefox Health Report dynamically loads a system copy of libcurl, which an attacker could replace. This allows for privilege escalation as the replaced libcurl code will run with Firefox's privileges. Note: This attack requires an attacker have local system access and only affects OS X and Linux. Windows systems are not affected. This vulnerability affects Firefox < 57.
7.8
High
CVE-2018-1449 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140044.
5.5
Medium
CVE-2018-1450 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140045.
5.5
Medium
CVE-2018-1451 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140046.
5.5
Medium
CVE-2018-1452 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140047.
5.5
Medium
CVE-2018-1459 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to stack based buffer overflow, caused by improper bounds checking which could lead an attacker to execute arbitrary code. IBM X-Force ID: 140210.
7.8
High
CVE-2018-1488 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-Force ID: 140973.
8.4
High
CVE-2018-1515 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1, under specific or unusual conditions, could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 141624.
7.4
High
CVE-2018-1544 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 142648.
8.4
High
CVE-2018-1565 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 143022.
8.4
High
CVE-2018-1426 2018-03-22 12h00 +00:00 IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) duplicates the PRNG state across fork() system calls when multiple ICC instances are loaded which could result in duplicate Session IDs and a risk of duplicate key material. IBM X-Force ID: 139071.
9.1
Critical
CVE-2018-1427 2018-03-22 12h00 +00:00 IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) contains several environment variables that a local attacker could overflow and cause a denial of service. IBM X-Force ID: 139072.
6.2
Medium
CVE-2015-5191 2017-07-28 21h00 +00:00 VMware Tools prior to 10.0.9 contains multiple file system races in libDeployPkg, related to the use of hard-coded paths under /tmp. Successful exploitation of this issue may result in a local privilege escalation. CVSS:3.0/AV:L/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H
6.7
Medium
CVE-2017-8290 2017-07-06 14h00 +00:00 A potential Buffer Overflow Vulnerability (from a BB Code handling issue) has been identified in TeamSpeak Server version 3.0.13.6 (08/11/2016 09:48:33), it enables the users to Crash any WINDOWS Client that clicked into a Vulnerable Channel of a TeamSpeak Server.
7.5
High
CVE-2017-8391 2017-05-05 22h00 +00:00 The OS Installation Management component in CA Client Automation r12.9, r14.0, and r14.0 SP1 places an encrypted password into a readable local file during operating system installation, which allows local users to obtain sensitive information by reading this file after operating system installation.
5.5
Medium
CVE-2016-6110 2017-02-01 21h00 +00:00 IBM Tivoli Storage Manager discloses unencrypted login credentials to Vmware vCenter that could be obtained by a local user.
6.5
Medium
CVE-2016-8963 2017-02-01 21h00 +00:00 IBM BigFix Inventory v9 stores potentially sensitive information in log files that could be read by a local user.
5.5
Medium
CVE-2016-8977 2017-02-01 21h00 +00:00 IBM BigFix Inventory v9 could disclose sensitive information to an unauthorized user using HTTP GET requests. This information could be used to mount further attacks against the system.
5.3
Medium
CVE-2016-8967 2017-02-01 20h00 +00:00 IBM BigFix Inventory v9 9.2 stores user credentials in plain in clear text which can be read by a local user.
5.5
Medium
CVE-2016-8961 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 could allow a remote attacker to conduct phishing attacks, using an open redirect attack. By persuading a victim to visit a specially-crafted Web site, a remote attacker could exploit this vulnerability to spoof the URL displayed to redirect a user to a malicious Web site that would appear to be trusted. This could allow the attacker to obtain highly sensitive information or conduct further attacks against the victim.
6.1
Medium
CVE-2016-8966 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques.
5.9
Medium
CVE-2016-8980 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 is vulnerable to a denial of service, caused by an XML External Entity Injection (XXE) error when processing XML data. A remote attacker could exploit this vulnerability to expose highly sensitive information or consume all available memory resources.
8.1
High
CVE-2016-8981 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 allows web pages to be stored locally which can be read by another user on the system.
5.5
Medium
CVE-2016-9795 2017-01-27 21h01 +00:00 The casrvc program in CA Common Services, as used in CA Client Automation 12.8, 12.9, and 14.0; CA SystemEDGE 5.8.2 and 5.9; CA Systems Performance for Infrastructure Managers 12.8 and 12.9; CA Universal Job Management Agent 11.2; CA Virtual Assurance for Infrastructure Managers 12.8 and 12.9; CA Workload Automation AE 11, 11.3, 11.3.5, and 11.3.6 on AIX, HP-UX, Linux, and Solaris allows local users to modify arbitrary files and consequently gain root privileges via vectors related to insufficient validation.
7.8
High
CVE-2016-10086 2017-01-18 21h00 +00:00 RESTful web services in CA Service Desk Manager 12.9 and CA Service Desk Management 14.1 might allow remote authenticated users to read or modify task information by leveraging incorrect permissions applied to a RESTful request.
8.1
High
CVE-2016-7389 2016-11-08 19h37 +00:00 For the NVIDIA Quadro, NVS, GeForce, and Tesla products, NVIDIA GPU Display Driver on Linux R304 before 304.132, R340 before 340.98, R367 before 367.55, R361_93 before 361.93.03, and R370 before 370.28 contains a vulnerability in the kernel mode layer (nvidia.ko) handler for mmap() where improper input validation may allow users to gain access to arbitrary physical memory, leading to an escalation of privileges.
7.8
High
CVE-2016-5995 2016-09-30 23h00 +00:00 Untrusted search path vulnerability in IBM DB2 9.7 through FP11, 10.1 through FP5, 10.5 before FP8, and 11.1 GA on Linux, AIX, and HP-UX allows local users to gain privileges via a Trojan horse library that is accessed by a setuid or setgid program.
7.3
High
CVE-2016-2839 2016-08-04 23h00 +00:00 Mozilla Firefox before 48.0 and Firefox ESR 45.x before 45.3 on Linux make cairo _cairo_surface_get_extents calls that do not properly interact with libav header allocation in FFmpeg 0.10, which allows remote attackers to cause a denial of service (application crash) via a crafted video.
6.5
Medium
CVE-2016-4171 2016-06-16 14h00 +00:00 Unspecified vulnerability in Adobe Flash Player 21.0.0.242 and earlier allows remote attackers to execute arbitrary code via unknown vectors, as exploited in the wild in June 2016.
9.8
Critical
CVE-2015-2344 2016-03-16 09h00 +00:00 Cross-site scripting (XSS) vulnerability in VMware vRealize Automation 6.x before 6.2.4 on Linux allows remote authenticated users to inject arbitrary web script or HTML via unspecified vectors.
5.4
Medium
CVE-2016-2075 2016-03-16 09h00 +00:00 Cross-site scripting (XSS) vulnerability in VMware vRealize Business Advanced and Enterprise 8.x before 8.2.5 on Linux allows remote authenticated users to inject arbitrary web script or HTML via unspecified vectors.
5.4
Medium
CVE-2016-1956 2016-03-13 17h00 +00:00 Mozilla Firefox before 45.0 on Linux, when an Intel video driver is used, allows remote attackers to cause a denial of service (memory consumption or stack memory corruption) by triggering use of a WebGL shader.
6.5
Medium
CVE-2016-0955 2016-02-10 19h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Experience Manager (AEM) 6.1.0 allows remote authenticated users to inject arbitrary web script or HTML via a folder title field that is mishandled in the Deletion popup dialog.
6.1
Medium
CVE-2016-0956 2016-02-10 19h00 +00:00 The Servlets Post component 2.3.6 in Apache Sling, as used in Adobe Experience Manager 5.6.1, 6.0.0, and 6.1.0, allows remote attackers to obtain sensitive information via unspecified vectors.
7.5
High
CVE-2016-0958 2016-02-10 19h00 +00:00 Adobe Experience Manager 5.6.1, 6.0.0, and 6.1.0 might allow remote attackers to have an unspecified impact via a crafted serialized Java object.
7.5
High
CVE-2015-8651 2015-12-28 23h00 +00:00 Integer overflow in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors.
8.8
High
CVE-2015-8459 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8460, CVE-2015-8636, and CVE-2015-8645.
10
Critical
CVE-2015-8460 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8636, and CVE-2015-8645.
8.8
High
CVE-2015-8634 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8635 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8636 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8460, and CVE-2015-8645.
8.8
High
CVE-2015-8638 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8639 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8640 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8641 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8642 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8643 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8644 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion."
8.8
High
CVE-2015-8645 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8460, and CVE-2015-8636.
8.8
High
CVE-2015-8646 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8647 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8648 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8649 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, and CVE-2015-8650.
8.8
High
CVE-2015-8650 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, and CVE-2015-8649.
8.8
High
CVE-2015-8045 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8047 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8048 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8049 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the TextField object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted autoSize property value, a different vulnerability than CVE-2015-8048, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8050 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted beginGradientFill call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8055 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8056 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8057 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8058 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8059 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8060 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8061 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8062 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8063 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8064 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8065 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8066 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8067 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8068 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8069 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8070 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8071 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8401 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8402 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8403 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8404 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8405 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8406 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8407 2015-12-10 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8457.
10
CVE-2015-8408 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8409 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2015-8440 and CVE-2015-8453.
10
CVE-2015-8410 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8411 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8412 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8413 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8414 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8415 2015-12-10 01h00 +00:00 Buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-8416 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8417 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8418 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8419 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8420 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8421 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8422 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8423 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8424 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8425 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8426 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8427 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8428 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8429 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8430 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8431 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8432 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8433 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8434 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8435 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8436 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the PrintJob object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via crafted addPage arguments, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8437 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the Selection object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted setFocus call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8438 2015-12-10 01h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted XML object that is mishandled during a toString call, a different vulnerability than CVE-2015-8446.
9.3
CVE-2015-8439 2015-12-10 01h00 +00:00 The SharedObject object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code by leveraging an unspecified "type confusion" during a getRemote call, a different vulnerability than CVE-2015-8456.
9.3
CVE-2015-8440 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2015-8409 and CVE-2015-8453.
10
CVE-2015-8441 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8442 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted filters property value, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8443 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8444 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8445 2015-12-10 01h00 +00:00 Integer overflow in the Shader filter implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a large BitmapData source object.
9.3
CVE-2015-8446 2015-12-10 01h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via an MP3 file with COMM tags that are mishandled during memory allocation, a different vulnerability than CVE-2015-8438.
9.3
CVE-2015-8447 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the Color object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via crafted setTransform arguments, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8448 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the DisplacementMapFilter object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted mapBitmap property value, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8449 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted lineTo method call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8450 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted filters property value in a TextField object, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8451 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, and CVE-2015-8455.
10
CVE-2015-8452 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, and CVE-2015-8454.
10
CVE-2015-8453 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass the ASLR protection mechanism via JIT data, a different vulnerability than CVE-2015-8409 and CVE-2015-8440.
4.3
CVE-2015-8454 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, and CVE-2015-8452.
10
CVE-2015-8455 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, and CVE-2015-8451.
10
CVE-2015-8456 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2015-8439.
9.3
CVE-2015-8457 2015-12-10 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8407.
10
CVE-2015-7869 2015-11-24 19h00 +00:00 Multiple integer overflows in the kernel mode driver for the NVIDIA GPU graphics driver R340 before 341.92, R352 before 354.35, and R358 before 358.87 on Windows and R304 before 304.131, R340 before 340.96, R352 before 352.63, and R358 before 358.16 on Linux allow local users to obtain sensitive information, cause a denial of service (crash), or possibly gain privileges via unknown vectors, which trigger uninitialized or out of bounds memory access. NOTE: this identifier has been SPLIT per ADT2 and ADT3 due to different vulnerability type and affected versions. See CVE-2015-8328 for the vulnerability in the NVAPI support layer in NVIDIA drivers for Windows.
6.6
CVE-2015-6306 2015-09-24 23h00 +00:00 Cisco AnyConnect Secure Mobility Client 4.1(8) on OS X and Linux does not verify pathnames before installation actions, which allows local users to obtain root privileges via a crafted installation file, aka Bug ID CSCuv11947.
7.2
CVE-2015-4512 2015-09-23 23h00 +00:00 gfx/2d/DataSurfaceHelpers.cpp in Mozilla Firefox before 41.0 on Linux improperly attempts to use the Cairo library with 32-bit color-depth surface creation followed by 16-bit color-depth surface display, which allows remote attackers to obtain sensitive information from process memory or cause a denial of service (out-of-bounds read) by using a CANVAS element to trigger 2D rendering.
6.4
CVE-2015-5571 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API. NOTE: this issue exists because of an incomplete fix for CVE-2014-4671 and CVE-2014-5333.
4.3
CVE-2015-5574 2015-09-22 08h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-5570, CVE-2015-5581, CVE-2015-5584, and CVE-2015-6682.
10
CVE-2015-5576 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
5
CVE-2015-5579 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to execute arbitrary code or cause a denial of service (stack memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-5567.
10
CVE-2015-5587 2015-09-22 08h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-6679 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
5
CVE-2015-4491 2015-08-15 23h00 +00:00 Integer overflow in the make_filter_table function in pixops/pixops.c in gdk-pixbuf before 2.31.5, as used in Mozilla Firefox before 40.0 and Firefox ESR 38.x before 38.2 on Linux, Google Chrome on Linux, and other products, allows remote attackers to execute arbitrary code or cause a denial of service (heap-based buffer overflow and application crash) via crafted bitmap dimensions that are mishandled during scaling.
6.8
CVE-2015-1900 2015-06-29 08h00 +00:00 IBM InfoSphere DataStage 8.1, 8.5, 8.7, 9.1, and 11.3 through 11.3.1.2 on UNIX allows local users to write to executable files, and consequently obtain root privileges, via unspecified vectors.
7.2
CVE-2015-3316 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, allows local users to gain privileges via an unspecified environment variable.
4.6
CVE-2015-3317 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, does not properly perform bounds checking, which allows local users to gain privileges via unspecified vectors.
4.6
CVE-2015-3318 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, does not properly validate an unspecified variable, which allows local users to gain privileges via unknown vectors.
4.6
CVE-2015-1233 2015-04-01 19h00 +00:00 Google Chrome before 41.0.2272.118 does not properly handle the interaction of IPC, the Gamepad API, and Google V8, which allows remote attackers to execute arbitrary code via unspecified vectors.
7.5
CVE-2015-1234 2015-04-01 19h00 +00:00 Race condition in gpu/command_buffer/service/gles2_cmd_decoder.cc in Google Chrome before 41.0.2272.118 allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact by manipulating OpenGL ES commands.
6.8
CVE-2015-0813 2015-04-01 08h00 +00:00 Use-after-free vulnerability in the AppendElements function in Mozilla Firefox before 37.0, Firefox ESR 31.x before 31.6, and Thunderbird before 31.6 on Linux, when the Fluendo MP3 plugin for GStreamer is used, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted MP3 file.
5.1
CVE-2015-1483 2015-03-06 01h00 +00:00 Symantec NetBackup OpsCenter 7.6.0.2 through 7.6.1 on Linux and UNIX allows remote attackers to execute arbitrary JavaScript code via unspecified vectors.
7.5
CVE-2014-4813 2015-02-13 01h00 +00:00 Race condition in the client in IBM Tivoli Storage Manager (TSM) 5.4.0.0 through 5.4.3.6, 5.5.0.0 through 5.5.4.3, 6.1.0.0 through 6.1.5.6, 6.2 before 6.2.5.4, 6.3 before 6.3.2.3, 6.4 before 6.4.2.1, and 7.1 before 7.1.1 on UNIX and Linux allows local users to obtain root privileges via unspecified vectors.
6.9
CVE-2014-6154 2015-02-13 01h00 +00:00 Directory traversal vulnerability in IBM Optim Performance Manager for DB2 4.1.0.1 through 4.1.1 on Linux, UNIX, and Windows and IBM InfoSphere Optim Performance Manager for DB2 5.1 through 5.3.1 on Linux, UNIX, and Windows allows remote attackers to access arbitrary files via a .. (dot dot) in a URL.
7.8
CVE-2015-0301 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 do not properly validate files, which has unspecified impact and attack vectors.
10
CVE-2015-0302 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to obtain sensitive keystroke information via unspecified vectors.
5
CVE-2015-0303 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-0306.
10
CVE-2015-0304 2015-01-13 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-0309.
10
CVE-2015-0305 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion."
9.3
CVE-2015-0306 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-0303.
10
CVE-2015-0307 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow remote attackers to obtain sensitive information from process memory or cause a denial of service (out-of-bounds read) via unspecified vectors.
8.5
CVE-2015-0308 2015-01-13 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-0309 2015-01-13 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-0304.
10
CVE-2014-9163 2014-12-10 21h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 13.0.0.259 and 14.x and 15.x before 15.0.0.246 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in December 2014.
9.8
Critical
CVE-2014-0580 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows remote attackers to bypass the Same Origin Policy via unspecified vectors.
10
CVE-2014-0587 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-9164.
10
CVE-2014-8443 2014-12-10 20h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-9162 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to obtain sensitive information via unspecified vectors.
10
CVE-2014-9164 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0587.
10
CVE-2014-0573 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0588 and CVE-2014-8438.
10
CVE-2014-0574 2014-11-11 22h00 +00:00 Double free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0576 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0581, CVE-2014-8440, and CVE-2014-8441.
10
CVE-2014-0577 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0584, CVE-2014-0585, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0581 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-8440, and CVE-2014-8441.
10
CVE-2014-0582 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0589.
10
CVE-2014-0583 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to complete a transition from Low Integrity to Medium Integrity via unspecified vectors.
7.5
CVE-2014-0584 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0585, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0585 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0586 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0585, and CVE-2014-0590.
10
CVE-2014-0588 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0573 and CVE-2014-8438.
10
CVE-2014-0589 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0582.
10
CVE-2014-0590 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0585, and CVE-2014-0586.
10
CVE-2014-8437 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow remote attackers to discover session tokens via unspecified vectors.
5
CVE-2014-8438 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0573 and CVE-2014-0588.
10
CVE-2014-8440 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-0581, and CVE-2014-8441.
10
CVE-2014-8441 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-0581, and CVE-2014-8440.
10
CVE-2014-8442 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to complete a transition from Low Integrity to Medium Integrity by leveraging incorrect permissions.
7.5
CVE-2014-0490 2014-11-03 21h00 +00:00 The apt-get download command in APT before 1.0.9 does not properly validate signatures for packages, which allows remote attackers to execute arbitrary code via a crafted package.
7.5
CVE-2014-0558 2014-10-15 08h00 +00:00 Adobe Flash Player before 13.0.0.250 and 14.x and 15.x before 15.0.0.189 on Windows and OS X and before 11.2.202.411 on Linux, Adobe AIR before 15.0.0.293, Adobe AIR SDK before 15.0.0.302, and Adobe AIR SDK & Compiler before 15.0.0.302 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0564.
10
CVE-2014-0554 2014-09-10 08h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to bypass intended access restrictions via unspecified vectors.
10
CVE-2014-0547 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0548 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow remote attackers to bypass the Same Origin Policy via unspecified vectors.
7.5
CVE-2014-0549 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0550, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0550 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0551 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0552 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, and CVE-2014-0555.
10
CVE-2014-0553 2014-09-09 23h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0555 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, and CVE-2014-0552.
10
CVE-2014-0556 2014-09-09 23h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0559.
10
CVE-2014-0557 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
10
CVE-2014-0559 2014-09-09 23h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0556.
10
CVE-2014-3094 2014-09-04 08h00 +00:00 Stack-based buffer overflow in IBM DB2 9.7 through FP9a, 9.8 through FP5, 10.1 through FP4, and 10.5 before FP4 on Linux, UNIX, and Windows allows remote authenticated users to execute arbitrary code via a crafted ALTER MODULE statement.
8.5
CVE-2014-3095 2014-09-04 08h00 +00:00 The SQL engine in IBM DB2 9.5 through FP10, 9.7 through FP9a, 9.8 through FP5, 10.1 through FP4, and 10.5 before FP4 on Linux, UNIX, and Windows allows remote authenticated users to cause a denial of service (daemon crash) via a crafted UNION clause in a subquery of a SELECT statement.
3.5
CVE-2014-4805 2014-09-04 08h00 +00:00 IBM DB2 10.5 before FP4 on Linux and AIX creates temporary files during CDE table LOAD operations, which allows local users to obtain sensitive information by reading a file while a LOAD is occurring.
2.1
CVE-2013-5467 2014-08-29 08h00 +00:00 Monitoring Agent for UNIX Logs 6.2.0 through FP03, 6.2.1 through FP04, 6.2.2 through FP09, and 6.2.3 through FP04 and Monitoring Server (ms) and Shared Libraries (ax) 6.2.0 through FP03, 6.2.1 through FP04, 6.2.2 through FP08, 6.2.3 through FP01, and 6.3.0 through FP01 in IBM Tivoli Monitoring (ITM) on UNIX allow local users to gain privileges via unspecified vectors.
7.2
CVE-2014-4806 2014-08-29 08h00 +00:00 The installation process in IBM Security AppScan Enterprise 8.x before 8.6.0.2 iFix 003, 8.7.x before 8.7.0.1 iFix 003, 8.8.x before 8.8.0.1 iFix 002, and 9.0.x before 9.0.0.1 iFix 001 on Linux places a cleartext password in a temporary file, which allows local users to obtain sensitive information by reading this file.
5.5
Medium
CVE-2014-5333 2014-08-19 08h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API, in conjunction with a manipulation involving a '$' (dollar sign) or '(' (open parenthesis) character. NOTE: this issue exists because of an incomplete fix for CVE-2014-4671.
4.3
CVE-2014-0538 2014-08-12 20h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0540 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0542, CVE-2014-0543, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0541 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 allow attackers to bypass intended access restrictions via unspecified vectors.
10
CVE-2014-0542 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0543, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0543 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0544 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0543, and CVE-2014-0545.
10
CVE-2014-0545 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0543, and CVE-2014-0544.
10
CVE-2014-3532 2014-07-19 17h00 +00:00 dbus 1.3.0 before 1.6.22 and 1.8.x before 1.8.6, when running on Linux 2.6.37-rc4 or later, allows local users to cause a denial of service (system-bus disconnect of other services or applications) by sending a message containing a file descriptor, then exceeding the maximum recursion depth before the initial message is forwarded.
2.1
CVE-2014-0537 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0539.
7.5
CVE-2014-0539 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0537.
7.5
CVE-2014-4671 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API.
4.3
CVE-2014-2612 2014-06-28 13h00 +00:00 Unspecified vulnerability in HP Release Control 9.x before 9.13 p3 and 9.2x before RC 9.21.0003 p1 on Windows and 9.2x before RC 9.21.0002 p1 on Linux allows remote authenticated users to obtain sensitive information via unknown vectors.
4
CVE-2014-2613 2014-06-28 13h00 +00:00 Unspecified vulnerability in HP Release Control 9.x before 9.13 p3 and 9.2x before RC 9.21.0003 p1 on Windows and 9.2x before RC 9.21.0002 p1 on Linux allows remote authenticated users to gain privileges via unknown vectors.
9
CVE-2014-0531 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0532 and CVE-2014-0533.
4.3
CVE-2014-0532 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0531 and CVE-2014-0533.
4.3
CVE-2014-0533 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0531 and CVE-2014-0532.
4.3
CVE-2014-0534 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0535.
7.5
CVE-2014-0535 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0534.
7.5
CVE-2014-0536 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2014-0516 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow remote attackers to bypass the Same Origin Policy via unspecified vectors.
7.5
CVE-2014-0517 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0518, CVE-2014-0519, and CVE-2014-0520.
7.5
CVE-2014-0518 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0519, and CVE-2014-0520.
7.5
CVE-2014-0519 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0518, and CVE-2014-0520.
7.5
CVE-2014-0520 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0518, and CVE-2014-0519.
7.5
CVE-2014-0515 2014-04-29 08h00 +00:00 Buffer overflow in Adobe Flash Player before 11.7.700.279 and 11.8.x through 13.0.x before 13.0.0.206 on Windows and OS X, and before 11.2.202.356 on Linux, allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in April 2014.
10
CVE-2014-0892 2014-04-23 17h00 +00:00 IBM Notes and Domino 8.5.x before 8.5.3 FP6 IF3 and 9.x before 9.0.1 FP1 on 32-bit Linux platforms use incorrect gcc options, which makes it easier for remote attackers to execute arbitrary code by leveraging the absence of the NX protection mechanism and placing crafted x86 code on the stack, aka SPR KLYH9GGS9W.
5
CVE-2014-0507 2014-04-08 19h00 +00:00 Buffer overflow in Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allows attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2014-0508 2014-04-08 19h00 +00:00 Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allow attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
5
CVE-2014-0509 2014-04-08 19h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
4.3
CVE-2013-6208 2014-03-16 09h00 +00:00 Unspecified vulnerability in HP Smart Update Manager 5.3.5 before build 70 on Linux allows local users to gain privileges via unknown vectors.
7.2
CVE-2014-0503 2014-03-12 00h00 +00:00 Adobe Flash Player before 11.7.700.272 and 11.8.x through 12.0.x before 12.0.0.77 on Windows and OS X, and before 11.2.202.346 on Linux, allows remote attackers to bypass the Same Origin Policy via unspecified vectors.
6.4
CVE-2014-0504 2014-03-12 00h00 +00:00 Adobe Flash Player before 11.7.700.272 and 11.8.x through 12.0.x before 12.0.0.77 on Windows and OS X, and before 11.2.202.346 on Linux, allows attackers to read the clipboard via unspecified vectors.
5
CVE-2014-0498 2014-02-21 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 11.7.700.269 and 11.8.x through 12.0.x before 12.0.0.70 on Windows and Mac OS X and before 11.2.202.341 on Linux, Adobe AIR before 4.0.0.1628 on Android, Adobe AIR SDK before 4.0.0.1628, and Adobe AIR SDK & Compiler before 4.0.0.1628 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0499 2014-02-21 01h00 +00:00 Adobe Flash Player before 11.7.700.269 and 11.8.x through 12.0.x before 12.0.0.70 on Windows and Mac OS X and before 11.2.202.341 on Linux, Adobe AIR before 4.0.0.1628 on Android, Adobe AIR SDK before 4.0.0.1628, and Adobe AIR SDK & Compiler before 4.0.0.1628 do not prevent access to address information, which makes it easier for attackers to bypass the ASLR protection mechanism via unspecified vectors.
7.8
CVE-2014-0497 2014-02-05 01h00 +00:00 Integer underflow in Adobe Flash Player before 11.7.700.261 and 11.8.x through 12.0.x before 12.0.0.44 on Windows and Mac OS X, and before 11.2.202.336 on Linux, allows remote attackers to execute arbitrary code via unspecified vectors.
9.8
Critical
CVE-2014-0491 2014-01-15 01h00 +00:00 Adobe Flash Player before 11.7.700.260 and 11.8.x and 11.9.x before 12.0.0.38 on Windows and Mac OS X and before 11.2.202.335 on Linux, Adobe AIR before 4.0.0.1390, Adobe AIR SDK before 4.0.0.1390, and Adobe AIR SDK & Compiler before 4.0.0.1390 allow attackers to bypass unspecified protection mechanisms via unknown vectors.
10
CVE-2014-0492 2014-01-15 01h00 +00:00 Adobe Flash Player before 11.7.700.260 and 11.8.x and 11.9.x before 12.0.0.38 on Windows and Mac OS X and before 11.2.202.335 on Linux, Adobe AIR before 4.0.0.1390, Adobe AIR SDK before 4.0.0.1390, and Adobe AIR SDK & Compiler before 4.0.0.1390 allow attackers to defeat the ASLR protection mechanism by leveraging an "address leak."
10
CVE-2013-6886 2013-12-28 01h00 +00:00 RealVNC VNC 5.0.6 on Mac OS X, Linux, and UNIX allows local users to gain privileges via a crafted argument to the (1) vncserver, (2) vncserver-x11, or (3) Xvnc helper.
7.2
CVE-2013-6672 2013-12-11 14h00 +00:00 Mozilla Firefox before 26.0 and SeaMonkey before 2.23 on Linux allow user-assisted remote attackers to read clipboard data by leveraging certain middle-click paste operations.
4.3
CVE-2013-4878 2013-07-18 16h00 +00:00 The default configuration of Parallels Plesk Panel 9.0.x and 9.2.x on UNIX, and Small Business Panel 10.x on UNIX, has an improper ScriptAlias directive for phppath, which makes it easier for remote attackers to execute arbitrary code via a crafted request, a different vulnerability than CVE-2012-1823.
7.5
CVE-2013-3344 2013-07-10 08h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-3345 2013-07-10 08h00 +00:00 Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-3347 2013-07-10 08h00 +00:00 Integer overflow in Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code via PCM data that is not properly handled during resampling.
10
CVE-2013-4669 2013-06-25 14h00 +00:00 FortiClient before 4.3.5.472 on Windows, before 4.0.3.134 on Mac OS X, and before 4.0 on Android; FortiClient Lite before 4.3.4.461 on Windows; FortiClient Lite 2.0 through 2.0.0223 on Android; and FortiClient SSL VPN before 4.0.2258 on Linux proceed with an SSL session after determining that the server's X.509 certificate is invalid, which allows man-in-the-middle attackers to obtain sensitive information by leveraging a password transmission that occurs before the user warning about the certificate problem.
5.4
CVE-2013-2728 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3324 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3325 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3326 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3327 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3328 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3329 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3330 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3331 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3332 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3333 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3334 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, and CVE-2013-3335.
10
CVE-2013-3335 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, and CVE-2013-3334.
10
CVE-2013-2977 2013-05-10 08h00 +00:00 Integer overflow in IBM Notes 8.5.x before 8.5.3 FP4 Interim Fix 1 and 9.x before 9.0 Interim Fix 1 on Windows, and 8.5.x before 8.5.3 FP5 and 9.x before 9.0.1 on Linux, allows remote attackers to execute arbitrary code via a malformed PNG image in a previewed e-mail message, aka SPR NPEI96K82Q.
6.8
CVE-2013-1378 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-1380.
10
CVE-2013-1379 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 do not properly initialize pointer arrays, which allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-1380 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-1378.
10
CVE-2013-0919 2013-03-28 10h00 +00:00 Use-after-free vulnerability in Google Chrome before 26.0.1410.43 on Linux allows remote attackers to cause a denial of service or possibly have unspecified other impact by leveraging the presence of an extension that creates a pop-up window.
7.5
CVE-2013-0646 2013-03-13 09h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-0650 2013-03-13 09h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-1371 2013-03-13 09h00 +00:00 Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-1375 2013-03-13 09h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-2268 2013-02-23 20h00 +00:00 Unspecified vulnerability in the MathML implementation in WebKit in Google Chrome before 25.0.1364.97 on Windows and Linux, and before 25.0.1364.99 on Mac OS X, has unknown impact and remote attack vectors, related to a "high severity security issue."
7.5
CVE-2012-6392 2013-01-17 15h00 +00:00 Cisco Prime LAN Management Solution (LMS) 4.1 through 4.2.2 on Linux does not properly validate authentication and authorization requests in TCP sessions, which allows remote attackers to execute arbitrary commands via a crafted session, aka Bug ID CSCuc79779.
10
CVE-2013-0838 2013-01-15 20h00 +00:00 Google Chrome before 24.0.1312.52 on Linux uses weak permissions for shared memory segments, which has unspecified impact and attack vectors.
7.5
CVE-2013-0630 2013-01-11 21h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.50 and 11.x before 11.5.502.146 on Windows and Mac OS X, before 10.3.183.50 and 11.x before 11.2.202.261 on Linux, before 11.1.111.31 on Android 2.x and 3.x, and before 11.1.115.36 on Android 4.x; Adobe AIR before 3.5.0.1060; and Adobe AIR SDK before 3.5.0.1060 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2012-3329 2012-12-19 10h00 +00:00 IBM Advanced Settings Utility (ASU) through 3.62 and 3.70 through 9.21 and Bootable Media Creator (BoMC) through 2.30 and 3.00 through 9.21 on Linux allow local users to overwrite arbitrary files via a symlink attack on a (1) temporary file or (2) log file.
3.3
CVE-2012-5975 2012-12-04 23h00 +00:00 The SSH USERAUTH CHANGE REQUEST feature in SSH Tectia Server 6.0.4 through 6.0.20, 6.1.0 through 6.1.12, 6.2.0 through 6.2.5, and 6.3.0 through 6.3.2 on UNIX and Linux, when old-style password authentication is enabled, allows remote attackers to bypass authentication via a crafted session involving entry of blank passwords, as demonstrated by a root login session from a modified OpenSSH client with an added input_userauth_passwd_changereq call in sshconnect2.c.
9.3
CVE-2012-5286 2012-11-13 10h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5287 2012-11-13 10h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5128 2012-11-07 10h00 +00:00 Google V8 before 3.13.7.5, as used in Google Chrome before 23.0.1271.64, does not properly perform write operations, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors.
7.5
CVE-2012-3151 2012-10-16 21h00 +00:00 Unspecified vulnerability in the Core RDBMS component in Oracle Database Server 10.2.0.4, 10.2.0.5, 11.1.0.7, 11.2.0.2, and 11.2.0.3, when running on Unix and Linux platforms, allows local users to affect integrity and availability via unknown vectors.
3.3
CVE-2012-5248 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5249 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5250 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5251 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5252 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5253 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5254 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5255 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5256 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5257 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5258 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5259 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5260 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5261 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5262 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5263 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5264 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5265 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5266 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5267 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5268 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5269 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5270 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5271 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5272 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-3094 2012-09-16 08h00 +00:00 The VPN downloader in the download_install component in Cisco AnyConnect Secure Mobility Client 3.1.x before 3.1.00495 on Linux accepts arbitrary X.509 server certificates without user interaction, which allows remote attackers to obtain sensitive information via vectors involving an invalid certificate, aka Bug ID CSCua11967.
5
CVE-2012-4171 2012-08-31 17h00 +00:00 Adobe Flash Player before 10.3.183.23 and 11.x before 11.4.402.265 on Windows and Mac OS X, before 10.3.183.23 and 11.x before 11.2.202.238 on Linux, before 11.1.111.16 on Android 2.x and 3.x, and before 11.1.115.17 on Android 4.x; Adobe AIR before 3.4.0.2540; and Adobe AIR SDK before 3.4.0.2540 allow attackers to cause a denial of service (application crash) by leveraging a logic error during handling of Firefox dialogs.
5
CVE-2012-3967 2012-08-29 08h00 +00:00 The WebGL implementation in Mozilla Firefox before 15.0, Firefox ESR 10.x before 10.0.7, Thunderbird before 15.0, Thunderbird ESR 10.x before 10.0.7, and SeaMonkey before 2.12 on Linux, when a large number of sampler uniforms are used, does not properly interact with Mesa drivers, which allows remote attackers to execute arbitrary code or cause a denial of service (stack memory corruption) via a crafted web site.
9.3
CVE-2012-0713 2012-08-24 08h00 +00:00 Unspecified vulnerability in the XML feature in IBM DB2 9.7 before FP6 on Linux, UNIX, and Windows allows remote authenticated users to read arbitrary XML files via unknown vectors.
3.5
CVE-2012-4363 2012-08-21 08h00 +00:00 Multiple unspecified vulnerabilities in Adobe Reader through 10.1.4 allow remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted PDF document, related to "sixteen more crashes affecting Windows, OS X, or both systems."
9.3
CVE-2012-4142 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, ignores some characters in HTML documents in unspecified circumstances, which makes it easier for remote attackers to conduct cross-site scripting (XSS) attacks via a crafted document.
4.3
CVE-2012-4143 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, allows user-assisted remote attackers to trick users into downloading and executing arbitrary files via a small window for the download dialog, a different vulnerability than CVE-2012-1924.
6.8
CVE-2012-4144 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, does not properly escape characters in DOM elements, which makes it easier for remote attackers to bypass cross-site scripting (XSS) protection mechanisms via a crafted HTML document.
4.3
CVE-2012-4145 2012-08-06 16h00 +00:00 Unspecified vulnerability in Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, has unknown impact and attack vectors, related to a "low severity issue."
10
CVE-2012-2846 2012-08-06 15h00 +00:00 Google Chrome before 21.0.1180.57 on Linux does not properly isolate renderer processes, which allows remote attackers to cause a denial of service (cross-process interference) via unspecified vectors.
5
CVE-2012-2859 2012-08-06 15h00 +00:00 Google Chrome before 21.0.1180.57 on Linux does not properly handle tabs, which allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via unspecified vectors.
7.5
CVE-2012-2847 2012-08-06 13h00 +00:00 Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not request user confirmation before continuing a large series of downloads, which allows user-assisted remote attackers to cause a denial of service (resource consumption) via a crafted web site.
4.3
CVE-2012-2848 2012-08-06 13h00 +00:00 The drag-and-drop implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows user-assisted remote attackers to bypass intended file access restrictions via a crafted web site.
4.3
CVE-2012-2849 2012-08-06 13h00 +00:00 Off-by-one error in the GIF decoder in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted image.
4.3
CVE-2012-2850 2012-08-06 13h00 +00:00 Multiple unspecified vulnerabilities in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allow remote attackers to have an unknown impact via a crafted document.
6.8
CVE-2012-2851 2012-08-06 13h00 +00:00 Multiple integer overflows in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allow remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2852 2012-08-06 13h00 +00:00 The PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not properly handle object linkage, which allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2853 2012-08-06 13h00 +00:00 The webRequest API in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not properly interact with the Chrome Web Store, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted web site.
6.8
CVE-2012-2854 2012-08-06 13h00 +00:00 Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to obtain potentially sensitive information about pointer values by leveraging access to a WebUI renderer process.
5
CVE-2012-2855 2012-08-06 13h00 +00:00 Use-after-free vulnerability in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2856 2012-08-06 13h00 +00:00 The PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that trigger out-of-bounds write operations.
7.5
CVE-2012-2857 2012-08-06 13h00 +00:00 Use-after-free vulnerability in the Cascading Style Sheets (CSS) DOM implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2858 2012-08-06 13h00 +00:00 Buffer overflow in the WebP decoder in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted WebP image.
6.8
CVE-2012-2860 2012-08-06 13h00 +00:00 The date-picker implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows user-assisted remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted web site.
6.8
CVE-2012-2012 2012-06-29 22h00 +00:00 HP System Management Homepage (SMH) before 7.1.1 does not have an off autocomplete attribute for unspecified form fields, which makes it easier for remote attackers to obtain access by leveraging an unattended workstation.
10
CVE-2012-2013 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows remote attackers to cause a denial of service, or possibly obtain sensitive information or modify data, via unknown vectors.
7.5
CVE-2012-2014 2012-06-29 22h00 +00:00 HP System Management Homepage (SMH) before 7.1.1 does not properly validate input, which allows remote authenticated users to have an unspecified impact via unknown vectors.
9
CVE-2012-2015 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows remote authenticated users to gain privileges and obtain sensitive information via unknown vectors.
9
CVE-2012-2016 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows local users to obtain sensitive information via unknown vectors.
4.9
CVE-2012-2493 2012-06-20 20h00 +00:00 The VPN downloader implementation in the WebLaunch feature in Cisco AnyConnect Secure Mobility Client 2.x before 2.5 MR6 on Windows, and 2.x before 2.5 MR6 and 3.x before 3.0 MR8 on Mac OS X and Linux, does not properly validate binaries that are received by the downloader process, which allows remote attackers to execute arbitrary code via vectors involving (1) ActiveX or (2) Java components, aka Bug ID CSCtw47523.
9.3
CVE-2011-3109 2012-05-24 16h00 +00:00 Google Chrome before 19.0.1084.52 on Linux does not properly perform a cast of an unspecified variable, which allows remote attackers to cause a denial of service or possibly have unknown other impact by leveraging an error in the GTK implementation of the UI.
7.5
CVE-2012-0711 2012-03-20 19h00 +00:00 Integer signedness error in the db2dasrrm process in the DB2 Administration Server (DAS) in IBM DB2 9.1 through FP11, 9.5 before FP9, and 9.7 through FP5 on UNIX platforms allows remote attackers to execute arbitrary code via a crafted request that triggers a heap-based buffer overflow.
7.5
CVE-2012-1796 2012-03-20 19h00 +00:00 Unspecified vulnerability in IBM Tivoli Monitoring Agent (ITMA), as used in IBM DB2 9.5 before FP9 on UNIX, allows local users to gain privileges via unknown vectors.
7.2
CVE-2012-0768 2012-03-05 20h00 +00:00 The Matrix3D component in Adobe Flash Player before 10.3.183.16 and 11.x before 11.1.102.63 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.7 on Android 2.x and 3.x; and before 11.1.115.7 on Android 4.x allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2012-0769 2012-03-05 20h00 +00:00 Adobe Flash Player before 10.3.183.16 and 11.x before 11.1.102.63 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.7 on Android 2.x and 3.x; and before 11.1.115.7 on Android 4.x does not properly handle integers, which allows attackers to obtain sensitive information via unspecified vectors.
5
CVE-2010-4563 2012-02-02 17h00 +00:00 The Linux kernel, when using IPv6, allows remote attackers to determine whether a host is sniffing the network by sending an ICMPv6 Echo Request to a multicast address and determining whether an Echo Reply is sent, as demonstrated by thcping.
5
CVE-2011-4194 2012-02-02 02h00 +00:00 Buffer overflow in Novell iPrint Server in Novell Open Enterprise Server 2 (OES2) through SP3 on Linux allows remote attackers to execute arbitrary code via a crafted attributes-natural-language field.
7.5
CVE-2012-0450 2012-02-01 15h00 +00:00 Mozilla Firefox 4.x through 9.0 and SeaMonkey before 2.7 on Linux and Mac OS X set weak permissions for Firefox Recovery Key.html, which might allow local users to read a Firefox Sync key via standard filesystem operations.
2.1
CVE-2011-4160 2011-11-24 01h00 +00:00 Unspecified vulnerability in HP Operations Agent 11.00 and Performance Agent 4.73 and 5.0 on AIX, HP-UX, Linux, and Solaris allows local users to bypass intended directory-access restrictions via unknown vectors.
3.2
CVE-2011-2426 2011-09-21 23h00 +00:00 Stack-based buffer overflow in the ActionScript Virtual Machine (AVM) component in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2011-2427 2011-09-21 23h00 +00:00 Stack-based buffer overflow in the ActionScript Virtual Machine (AVM) component in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to execute arbitrary code or cause a denial of service via unspecified vectors.
9.3
CVE-2011-2428 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to execute arbitrary code or cause a denial of service (browser crash) via unspecified vectors, related to a "logic error issue."
9.3
CVE-2011-2429 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors, related to a "security control bypass."
5
CVE-2011-2430 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to execute arbitrary code via crafted streaming media, related to a "logic error vulnerability."
9.3
CVE-2011-2444 2011-09-21 23h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to inject arbitrary web script or HTML via a crafted URL, related to a "universal cross-site scripting issue," as exploited in the wild in September 2011.
4.3
CVE-2011-2837 2011-09-17 08h00 +00:00 Google Chrome before 14.0.835.163 on Linux does not use the PIC and PIE compiler options for position-independent code, which has unspecified impact and attack vectors.
7.5
CVE-2011-2424 2011-08-15 19h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted SWF file, as demonstrated by "about 400 unique crash signatures."
9.3
CVE-2011-2729 2011-08-15 19h00 +00:00 native/unix/native/jsvc-unix.c in jsvc in the Daemon component 1.0.3 through 1.0.6 in Apache Commons, as used in Apache Tomcat 5.5.32 through 5.5.33, 6.0.30 through 6.0.32, and 7.0.x before 7.0.20 on Linux, does not drop capabilities, which allows remote attackers to bypass read permissions for files via a request to an application.
5
CVE-2011-2135 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2140, CVE-2011-2417, and CVE-2011-2425.
10
CVE-2011-2136 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2138 and CVE-2011-2416.
10
CVE-2011-2138 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2136 and CVE-2011-2416.
10
CVE-2011-2139 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows remote attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
6.4
CVE-2011-2140 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2417, and CVE-2011-2425.
10
CVE-2011-2414 2011-08-10 20h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2137, and CVE-2011-2415.
10
CVE-2011-2415 2011-08-10 20h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2137, and CVE-2011-2414.
10
CVE-2011-2416 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2136 and CVE-2011-2138.
10
CVE-2011-2417 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2140, and CVE-2011-2425.
10
CVE-2011-2425 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2140, and CVE-2011-2417.
10
CVE-2011-3123 2011-08-10 20h00 +00:00 IBM InfoSphere Information Server 8.5 and 8.5.0.1 on Unix and Linux, as used in IBM InfoSphere DataStage 8.5 and 8.5.0.1 and other products, uses weak permissions for unspecified files, which allows local users to gain privileges via unknown vectors.
7.2
CVE-2011-3124 2011-08-10 20h00 +00:00 IBM InfoSphere Information Server 8.5 and 8.5.0.1 on Unix and Linux, as used in IBM InfoSphere DataStage 8.5 and 8.5.0.1 and other products, assigns incorrect ownership to unspecified files, which allows local users to gain privileges via unknown vectors.
7.2
CVE-2011-2130 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2134, CVE-2011-2137, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-2134 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2137, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-2137 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-1412 2011-08-03 23h00 +00:00 sys/sys_unix.c in the ioQuake3 engine on Unix and Linux, as used in World of Padman 1.5.x before 1.5.1.1 and OpenArena 0.8.x-15 and 0.8.x-16, allows remote game servers to execute arbitrary commands via shell metacharacters in a long fs_game variable.
7.5
CVE-2011-2887 2011-07-27 18h00 +00:00 IBM Lotus Symphony 3 before FP3 on Linux allows remote attackers to cause a denial of service (application crash) via a certain sample document.
4.3
CVE-2011-2110 2011-06-16 21h00 +00:00 Adobe Flash Player before 10.3.181.26 on Windows, Mac OS X, Linux, and Solaris, and 10.3.185.23 and earlier on Android, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, as exploited in the wild in June 2011.
10
CVE-2011-2040 2011-06-02 17h00 +00:00 The helper application in Cisco AnyConnect Secure Mobility Client (formerly AnyConnect VPN Client) before 2.5.3041, and 3.0.x before 3.0.629, on Linux and Mac OS X downloads a client executable file (vpndownloader.exe) without verifying its authenticity, which allows remote attackers to execute arbitrary code via the url property to a Java applet, aka Bug ID CSCsy05934.
9.3
CVE-2011-0628 2011-05-31 18h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows remote attackers to execute arbitrary code via ActionScript that improperly handles a long array object.
9.3
CVE-2011-0579 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to obtain sensitive information via unspecified vectors.
5
CVE-2011-0618 2011-05-13 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2011-0619 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0620, CVE-2011-0621, and CVE-2011-0622.
9.3
CVE-2011-0620 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0621, and CVE-2011-0622.
9.3
CVE-2011-0621 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0622.
9.3
CVE-2011-0622 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0621.
9.3
CVE-2011-0623 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0624, CVE-2011-0625, and CVE-2011-0626.
9.3
CVE-2011-0624 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0625, and CVE-2011-0626.
9.3
CVE-2011-0625 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0624, and CVE-2011-0626.
9.3
CVE-2011-0626 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0624, and CVE-2011-0625.
9.3
CVE-2011-0627 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted Flash content, as possibly exploited in the wild in May 2011 by a Microsoft Office document with an embedded .swf file.
9.3
CVE-2010-4785 2011-04-21 10h00 +00:00 The do_extendedOp function in ibmslapd in IBM Tivoli Directory Server (TDS) 6.0 before 6.0.0.62 (aka 6.0.0.8-TIV-ITDS-IF0004) on Linux, Solaris, and Windows allows remote authenticated users to cause a denial of service (ABEND) via a malformed LDAP extended operation that triggers certain comparisons involving the NULL operation OID.
4
CVE-2011-1126 2011-04-01 19h00 +00:00 VMware vmrun, as used in VIX API 1.x before 1.10.3 and VMware Workstation 6.5.x and 7.x before 7.1.4 build 385536 on Linux, might allow local users to gain privileges via a Trojan horse shared library in an unspecified directory.
6.9
CVE-2010-4773 2011-03-23 20h00 +00:00 Unspecified vulnerability in Hitachi EUR Form Client before 05-10 -/D 2010.11.15 and 05-10-CA (* 2) 2010.11.15; Hitachi EUR Form Service before 05-10 -/D 2010.11.15; and uCosminexus EUR Form Service before 07-60 -/D 2010.11.15 on Windows, before 05-10 -/D 2010.11.15 and 07-50 -/D 2010.11.15 on Linux, and before 07-50 -/C 2010.11.15 on AIX; allows remote attackers to execute arbitrary code via unknown attack vectors.
10
CVE-2010-4111 2010-12-22 19h00 +00:00 Cross-site scripting (XSS) vulnerability in HP Insight Diagnostics Online Edition before 8.5.1.3712 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
4.3
CVE-2010-0121 2010-12-14 14h00 +00:00 The cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 does not properly perform initialization, which has unspecified impact and attack vectors.
10
CVE-2010-2579 2010-12-14 14h00 +00:00 The cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 does not properly initialize the number of channels, which allows attackers to obtain unspecified "memory access" via unknown vectors.
5
CVE-2010-2997 2010-12-14 14h00 +00:00 Use-after-free vulnerability in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.0.1, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted StreamTitle tag in an ICY SHOUTcast stream, related to the SMIL file format.
9.3
CVE-2010-2999 2010-12-14 14h00 +00:00 Integer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.0.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a malformed MLLT atom in an AAC file.
9.3
CVE-2010-4375 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via malformed multi-rate data in an audio stream.
9.3
CVE-2010-4376 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a large Screen Width value in the Screen Descriptor header of a GIF87a file in an RTSP stream.
9.3
CVE-2010-4377 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code by specifying many subbands in cook audio codec information in a Real Audio file.
9.3
CVE-2010-4378 2010-12-14 14h00 +00:00 The drv2.dll (aka RV20 decompression) module in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, RealPlayer Enterprise 2.1.2 and 2.1.3, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted value of an unspecified length field in an RV20 video stream.
9.3
CVE-2010-4379 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via a crafted SIPR file.
9.3
CVE-2010-4382 2010-12-14 14h00 +00:00 Multiple heap-based buffer overflows in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allow remote attackers to have an unspecified impact via a crafted RealMedia file.
9.3
CVE-2010-4383 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 12.0.0.1444, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via a crafted RA5 file.
9.3
CVE-2010-4384 2010-12-14 14h00 +00:00 Array index error in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via a malformed Media Properties Header (aka MDPR) in a RealMedia file.
9.3
CVE-2010-4385 2010-12-14 14h00 +00:00 Integer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via crafted frame dimensions in an SIPR stream.
9.3
CVE-2010-4386 2010-12-14 14h00 +00:00 RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allow remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted RealMedia video file.
9.3
CVE-2010-4387 2010-12-14 14h00 +00:00 The RealAudio codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted audio stream in a RealMedia file.
9.3
CVE-2010-4389 2010-12-14 14h00 +00:00 Heap-based buffer overflow in the cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via unspecified data in the initialization buffer.
9.3
CVE-2010-4390 2010-12-14 14h00 +00:00 Multiple heap-based buffer overflows in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allow remote attackers to have an unspecified impact via a crafted header in an IVR file.
9.3
CVE-2010-4392 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, RealPlayer Enterprise 2.1.2 and 2.1.3, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via crafted ImageMap data in a RealMedia file, related to certain improper integer calculations.
9.3
CVE-2010-4395 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a crafted conditional component in AAC frame data.
9.3
CVE-2010-4397 2010-12-14 14h00 +00:00 Integer overflow in the pnen3260.dll module in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a crafted TIT2 atom in an AAC file.
9.3
CVE-2010-4302 2010-11-22 19h00 +00:00 /opt/rv/Versions/CurrentVersion/Mcu/Config/Mcu.val in Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, uses a weak hashing algorithm for the (1) administrator and (2) operator passwords, which makes it easier for local users to obtain sensitive information by recovering the cleartext values, aka Bug ID CSCti54010.
4.9
CVE-2010-4303 2010-11-22 19h00 +00:00 Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, uses world-readable permissions for the /etc/shadow file, which allows local users to discover encrypted passwords by reading this file, aka Bug ID CSCti54043.
4.9
CVE-2010-3038 2010-11-22 18h00 +00:00 Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, has a default password for the (1) root, (2) cs, and (3) develop accounts, which makes it easier for remote attackers to obtain access via the (a) FTP or (b) SSH daemon, aka Bug ID CSCti54008.
10
CVE-2010-3654 2010-10-29 16h00 +00:00 Adobe Flash Player before 9.0.289.0 and 10.x before 10.1.102.64 on Windows, Mac OS X, Linux, and Solaris and 10.1.95.1 on Android, and authplay.dll (aka AuthPlayLib.bundle or libauthplay.so.0.0.0) in Adobe Reader and Acrobat 9.x through 9.4, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via crafted SWF content, as exploited in the wild in October 2010.
9.3
CVE-2010-3416 2010-09-16 18h00 +00:00 Google Chrome before 6.0.472.59 on Linux does not properly implement the Khmer locale, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors.
9.8
Critical
CVE-2010-3009 2010-09-15 17h26 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) for Linux 6.0 and 6.1 allows remote authenticated users to obtain sensitive information and gain root privileges via unknown vectors.
9
CVE-2010-2217 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to execute arbitrary code via unspecified vectors, related to a "JS method vulnerability."
10
CVE-2010-2218 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service via unspecified vectors, related to a "JS method issue."
5
CVE-2010-2219 2010-08-11 18h00 +00:00 Unspecified vulnerability in Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service (memory consumption) via unknown vectors.
5
CVE-2010-2220 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service via unspecified vectors, related to an "input validation issue."
5
CVE-2010-2221 2010-07-08 16h00 +00:00 Multiple buffer overflows in the iSNS implementation in isns.c in (1) Linux SCSI target framework (aka tgt or scsi-target-utils) before 1.0.6, (2) iSCSI Enterprise Target (aka iscsitarget or IET) 1.4.20.1 and earlier, and (3) Generic SCSI Target Subsystem for Linux (aka SCST or iscsi-scst) 1.0.1.1 and earlier allow remote attackers to cause a denial of service (memory corruption and daemon crash) or possibly execute arbitrary code via (a) a long iSCSI Name string in an SCN message or (b) an invalid PDU.
5
CVE-2010-2027 2010-05-24 17h00 +00:00 Mathematica 7, when running on Linux, allows local users to overwrite arbitrary files via a symlink attack on (1) files within /tmp/MathLink/ or (2) /tmp/fonts$$.conf.
1.9
CVE-2010-1034 2010-04-23 12h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) 6.0 before 6.0.0-95 on Linux, and 6.0 before 6.0.0.96 on Windows, allows remote authenticated users to obtain sensitive information, modify data, and cause a denial of service via unknown vectors.
4.6
CVE-2010-1139 2010-04-12 16h00 +00:00 Format string vulnerability in vmrun in VMware VIX API 1.6.x, VMware Workstation 6.5.x before 6.5.4 build 246459, VMware Player 2.5.x before 2.5.4 build 246459, and VMware Server 2.x on Linux, and VMware Fusion 2.x before 2.0.7 build 246742, allows local users to gain privileges via format string specifiers in process metadata.
7.2
CVE-2010-1347 2010-04-12 15h00 +00:00 Director Agent 6.1 before 6.1.2.3 in IBM Systems Director on AIX and Linux uses incorrect permissions for the (1) diruninstall and (2) opt/ibm/director/bin/wcitinst scripts, which allows local users to gain privileges by executing these scripts.
7.2
CVE-2009-4664 2010-03-03 19h00 +00:00 Firewall Builder 3.0.4, 3.0.5, and 3.0.6, when running on Linux, allows local users to gain privileges via a symlink attack on an unspecified temporary file that is created by the iptables script.
3.3
CVE-2010-0148 2010-02-23 19h00 +00:00 Unspecified vulnerability in Cisco Security Agent 5.2 before 5.2.0.285, when running on Linux, allows remote attackers to cause a denial of service (kernel panic) via "a series of TCP packets."
7.8
CVE-2010-0312 2010-01-14 19h00 +00:00 The do_extendedOp function in ibmslapd in IBM Tivoli Directory Server (TDS) 6.2 on Linux allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted SecureWay 3.2 Event Registration Request (aka a 1.3.18.0.2.12.1 request).
5
CVE-2009-3875 2009-11-05 15h00 +00:00 The MessageDigest.isEqual function in Java Runtime Environment (JRE) in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to spoof HMAC-based digital signatures, and possibly bypass authentication, via unspecified vectors related to "timing attack vulnerabilities," aka Bug Id 6863503.
5
CVE-2009-3876 2009-11-05 15h00 +00:00 Unspecified vulnerability in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to cause a denial of service (memory consumption) via crafted DER encoded data, which is not properly decoded by the ASN.1 DER input stream parser, aka Bug Id 6864911.
5
CVE-2009-3877 2009-11-05 15h00 +00:00 Unspecified vulnerability in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to cause a denial of service (memory consumption) via crafted HTTP headers, which are not properly parsed by the ASN.1 DER input stream parser, aka Bug Id 6864911.
5
CVE-2009-3088 2009-09-08 18h00 +00:00 Heap-based buffer overflow in ibmdiradm in IBM Tivoli Directory Server (TDS) 6.0 on Linux allows remote attackers to have an unspecified impact via unknown vectors that trigger heap corruption, as demonstrated by a certain module in VulnDisco Pack Professional 8.11. NOTE: as of 20090903, this disclosure has no actionable information. However, because the VulnDisco Pack author is a reliable researcher, the issue is being assigned a CVE identifier for tracking purposes.
7.5
CVE-2009-3090 2009-09-08 18h00 +00:00 Unspecified vulnerability in IBM Tivoli Directory Server (TDS) 6.0 on Linux allows remote attackers to cause a denial of service via unknown vectors, as demonstrated by a certain module in VulnDisco Pack Professional 8.11. NOTE: as of 20090903, this disclosure has no actionable information. However, because the VulnDisco Pack author is a reliable researcher, the issue is being assigned a CVE identifier for tracking purposes.
5
CVE-2009-1792 2009-05-29 16h00 +00:00 The system.openURL function in StoneTrip Ston3D StandalonePlayer (aka S3DPlayer StandAlone) 1.6.2.4 and 1.7.0.1 and WebPlayer (aka S3DPlayer Web) 1.6.0.0 allows remote attackers to execute arbitrary commands via shell metacharacters in the first argument (the sURL argument).
9.3
CVE-2009-1250 2009-04-08 22h00 +00:00 The cache manager in the client in OpenAFS 1.0 through 1.4.8 and 1.5.0 through 1.5.58, and IBM AFS 3.6 before Patch 19, on Linux allows remote attackers to cause a denial of service (system crash) via an RX response with a large error-code value that is interpreted as a pointer and dereferenced, related to use of the ERR_PTR macro.
7.8
CVE-2009-0876 2009-03-12 14h00 +00:00 Sun xVM VirtualBox 2.0.0, 2.0.2, 2.0.4, 2.0.6r39760, 2.1.0, 2.1.2, and 2.1.4r42893 on Linux allows local users to gain privileges via a hardlink attack, which preserves setuid/setgid bits on Linux, related to DT_RPATH:$ORIGIN.
6.9
CVE-2008-5499 2008-12-17 23h00 +00:00 Unspecified vulnerability in Adobe Flash Player for Linux 10.0.12.36, and 9.0.151.0 and earlier, allows remote attackers to execute arbitrary code via a crafted SWF file.
9.3
CVE-2008-3671 2008-08-13 19h00 +00:00 Acronis True Image Echo Server 9.x build 8072 on Linux does not properly encrypt backups to an FTP server, which allows remote attackers to obtain sensitive information. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
5
CVE-2008-3579 2008-08-10 19h00 +00:00 Calacode @Mail 5.41 on Linux does not require administrative authentication for build-plesk-upgrade.php, which allows remote attackers to obtain sensitive information by creating and downloading a backup archive of the entire @Mail directory tree. NOTE: this can be leveraged for remote exploitation of CVE-2008-3395. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
7.8
CVE-2008-3389 2008-08-05 17h20 +00:00 Stack-based buffer overflow in the libbecompat library in Ingres 2.6, Ingres 2006 release 1 (aka 9.0.4), and Ingres 2006 release 2 (aka 9.1.0) on Linux and HP-UX allows local users to gain privileges by setting a long value of an environment variable before running (1) verifydb, (2) iimerge, or (3) csreport.
4.6
CVE-2008-1810 2008-08-01 12h00 +00:00 Untrusted search path vulnerability in dbmsrv in SAP MaxDB 7.6.03.15 on Linux allows local users to gain privileges via a modified PATH environment variable.
4.4
CVE-2008-3395 2008-07-31 14h00 +00:00 Calacode @Mail 5.41 on Linux uses weak world-readable permissions for (1) webmail/libs/Atmail/Config.php and (2) webmail/webadmin/.htpasswd, which allows local users to obtain sensitive information by reading these files. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
5
CVE-2008-1286 2008-03-11 16h00 +00:00 Unspecified vulnerability in Sun Java Web Console 3.0.2, 3.0.3, and 3.0.4 allows remote attackers to bypass intended access restrictions and determine the existence of files or directories via unknown vectors.
7.8
CVE-2008-1213 2008-03-07 23h00 +00:00 Cross-site scripting (XSS) vulnerability in Numara FootPrints for Linux 8.1 allows remote attackers to inject arbitrary web script or HTML via the Title form field when setting an appointment. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
4.3
CVE-2008-1214 2008-03-07 23h00 +00:00 MRcgi/MRProcessIncomingForms.pl in Numara FootPrints 8.1 on Linux allows remote attackers to execute arbitrary code via shell metacharacters in the PROJECTNUM parameter. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
7.5
CVE-2008-0072 2008-03-05 23h00 +00:00 Format string vulnerability in the emf_multipart_encrypted function in mail/em-format.c in Evolution 2.12.3 and earlier allows remote attackers to execute arbitrary code via a crafted encrypted message, as demonstrated using the Version field.
6.8
CVE-2008-0304 2008-02-29 18h00 +00:00 Heap-based buffer overflow in Mozilla Thunderbird before 2.0.0.12 and SeaMonkey before 1.1.8 might allow remote attackers to execute arbitrary code via a crafted external-body MIME type in an e-mail message, related to an incorrect memory allocation during message preview.
7.5
CVE-2008-0212 2008-02-06 19h00 +00:00 ovtopmd in HP OpenView Network Node Manager (OV NNM) 6.41, 7.01, and 7.51 allows remote attackers to cause a denial of service (crash) via a crafted TCP request that triggers an out-of-bounds memory access.
7.8
CVE-2007-4998 2008-01-31 19h00 +00:00 cp, when running with an option to preserve symlinks on multiple OSes, allows local, user-assisted attackers to overwrite arbitrary files via a symlink attack using crafted directories containing multiple source files that are copied to the same destination.
6.9
CVE-2007-6514 2007-12-21 21h00 +00:00 Apache HTTP Server, when running on Linux with a document root on a Windows share mounted using smbfs, allows remote attackers to obtain unprocessed content such as source files for .php programs via a trailing "\" (backslash), which is not handled by the intended AddType directive.
4.3
CVE-2007-6482 2007-12-20 19h00 +00:00 Unspecified vulnerability in the Device Manager daemon (utdevmgrd) in Sun Ray Server Software 2.0, 3.0, 3.1, and 3.1.1 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors.
7.8
CVE-2007-6246 2007-12-20 00h00 +00:00 Adobe Flash Player 9.x up to 9.0.48.0, 8.x up to 8.0.35.0, and 7.x up to 7.0.70.0, when running on Linux, uses insecure permissions for memory, which might allow local users to gain privileges.
4.4
CVE-2007-6305 2007-12-10 20h00 +00:00 Multiple unspecified vulnerabilities in IBM Hardware Management Console (HMC) 7 R3.2.0 allow attackers to gain privileges via "some HMC commands."
4.6
CVE-2007-6232 2007-12-04 17h00 +00:00 Cross-site scripting (XSS) vulnerability in index.php in FTP Admin 0.1.0 allows remote attackers to inject arbitrary web script or HTML via the error parameter in an error page action.
4.3
CVE-2007-6209 2007-12-03 23h00 +00:00 Util/difflog.pl in zsh 4.3.4 allows local users to overwrite arbitrary files via a symlink attack on temporary files.
4.6
CVE-2007-6045 2007-11-20 19h00 +00:00 Unspecified vulnerability in (1) DB2WATCH and (2) DB2FREEZE in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors.
10
CVE-2007-6046 2007-11-20 19h00 +00:00 Unspecified vulnerability in unspecified setuid programs in IBM DB2 UDB 9.1 before Fixpak 4 allows local users to have an unknown impact.
7.2
CVE-2007-6047 2007-11-20 19h00 +00:00 Unspecified vulnerability in the DB2DART tool in IBM DB2 UDB 9.1 before Fixpak 4 allows attackers to execute arbitrary commands as the DB2 instance owner, related to invocation of TPUT by DB2DART.
10
CVE-2007-6048 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 uses incorrect permissions on ACLs for DB2NODES.CFG, which has unknown impact and attack vectors. NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
10
CVE-2007-6049 2007-11-20 19h00 +00:00 Unspecified vulnerability in the SSL LOAD GSKIT action in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors, involving a call to dlopen when the effective uid is root.
7.2
CVE-2007-6050 2007-11-20 19h00 +00:00 Unspecified vulnerability in DB2LICD in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors, related to creation of an "insecure directory."
7.2
CVE-2007-6051 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 assigns incorrect privileges to the (1) DB2ADMNS and (2) DB2USERS alternative groups, which has unknown impact. NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
10
CVE-2007-6052 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 does not properly perform vector aggregation, which might allow attackers to cause a denial of service (divide-by-zero error and DBMS crash), related to an "overflow." NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
7.8
CVE-2007-6053 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 does not properly handle use of large numbers of file descriptors, which might allow attackers to have an unknown impact involving "memory corruption." NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
9.3
CVE-2003-1467 2007-10-24 21h00 +00:00 Multiple cross-site scripting (XSS) vulnerabilities in (1) login.php, (2) register.php, (3) post.php, and (4) common.php in Phorum before 3.4.3 allow remote attackers to inject arbitrary web script or HTML via unknown attack vectors.
4.3
CVE-2003-1430 2007-10-22 23h00 +00:00 Directory traversal vulnerability in Unreal Tournament Server 436 and earlier allows remote attackers to access known files via a ".." (dot dot) in an unreal:// URL.
5
CVE-2003-1454 2007-10-22 23h00 +00:00 Invision Power Services Invision Board 1.0 through 1.1.1, when a forum is password protected, stores the administrator password in a cookie in plaintext, which could allow remote attackers to gain access.
5
CVE-2003-1456 2007-10-22 23h00 +00:00 Album.pl 6.1 allows remote attackers to execute arbitrary commands, when an alternative configuration file is used, via unknown attack vectors.
5
CVE-2007-5337 2007-10-21 18h00 +00:00 Mozilla Firefox before 2.0.0.8 and SeaMonkey before 1.1.5, when running on Linux systems with gnome-vfs support, might allow remote attackers to read arbitrary files on SSH/sftp servers that accept key authentication by creating a web page on the target server, in which the web page contains URIs with (1) smb: or (2) sftp: schemes that access other files from the server.
4.3
CVE-2003-1423 2007-10-20 08h00 +00:00 Petitforum stores the liste.txt data file under the web document root with insufficient access control, which allows remote attackers to obtain sensitive information such as e-mail addresses and encrypted passwords.
5
CVE-2003-1428 2007-10-20 08h00 +00:00 Gallery 1.3.3 creates directories with insecure permissions, which allows local users to read, modify, or delete photos.
4.8
CVE-2003-1372 2007-10-16 23h00 +00:00 Cross-site scripting (XSS) vulnerability in links.php script in myPHPNuke 1.8.8, and possibly earlier versions, allows remote attackers to inject arbitrary HTML and web script via the (1) ratenum or (2) query parameters.
4.3
CVE-2007-4938 2007-09-18 17h00 +00:00 Heap-based buffer overflow in libmpdemux/aviheader.c in MPlayer 1.0rc1 and earlier allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a .avi file with certain large "indx truck size" and nEntriesInuse values, and a certain wLongsPerEntry value.
7.6
CVE-2007-3794 2007-07-15 21h00 +00:00 Buffer overflow in Hitachi Cosminexus V4 through V7, Processing Kit for XML before 20070511, Developer's Kit for Java before 20070312, and third-party products that use this software, allows attackers to have an unknown impact via certain GIF images, related to use of GIF image processing APIs by a Java application.
10
CVE-2003-1332 2007-06-25 22h00 +00:00 Stack-based buffer overflow in the reply_nttrans function in Samba 2.2.7a and earlier allows remote attackers to execute arbitrary code via a crafted request, a different vulnerability than CVE-2003-0201.
7.5
CVE-2007-2736 2007-05-17 17h00 +00:00 PHP remote file inclusion vulnerability in index.php in Achievo 1.1.0 allows remote attackers to execute arbitrary PHP code via a URL in the config_atkroot parameter.
10
CVE-2007-1898 2007-05-16 20h00 +00:00 formmail.php in Jetbox CMS 2.1 allows remote attackers to send arbitrary e-mails (spam) via modified recipient, _SETTINGS[allowed_email_hosts][], and subject parameters.
5.8
CVE-2007-2445 2007-05-16 20h00 +00:00 The png_handle_tRNS function in pngrutil.c in libpng before 1.0.25 and 1.2.x before 1.2.17 allows remote attackers to cause a denial of service (application crash) via a grayscale PNG image with a bad tRNS chunk CRC value.
5
CVE-2003-1327 2007-05-15 08h00 +00:00 Buffer overflow in the SockPrintf function in wu-ftpd 2.6.2 and earlier, when compiled with MAIL_ADMIN option enabled on a system that supports very long pathnames, might allow remote anonymous users to execute arbitrary code by uploading a file with a long pathname, which triggers the overflow when wu-ftpd constructs a notification message to the administrator.
9.3
CVE-2007-2191 2007-04-24 15h00 +00:00 Multiple cross-site scripting (XSS) vulnerabilities in freePBX 2.2.x allow remote attackers to inject arbitrary web script or HTML via the (1) From, (2) To, (3) Call-ID, (4) User-Agent, and unspecified other SIP protocol fields, which are stored in /var/log/asterisk/full and displayed by admin/modules/logfiles/asterisk-full-log.php.
6.8
CVE-2007-1945 2007-04-10 23h00 +00:00 Unspecified vulnerability in the Servlet Engine/Web Container in IBM WebSphere Application Server (WAS) before 6.1.0.7 has unknown impact and attack vectors.
7.5
CVE-2007-1918 2007-04-10 21h00 +00:00 The RFC_SET_REG_SERVER_PROPERTY function in the SAP RFC Library 6.40 and 7.00 before 20070109 implements an option for exclusive access to an RFC server, which allows remote attackers to cause a denial of service (client lockout) via unspecified vectors. NOTE: This information is based upon a vague initial disclosure. Details will be updated after the grace period has ended.
5
CVE-2006-7034 2007-02-23 00h00 +00:00 SQL injection vulnerability in directory.php in Super Link Exchange Script 1.0 might allow remote attackers to execute arbitrary SQL queries via the cat parameter.
7.5
CVE-2007-1043 2007-02-21 16h00 +00:00 Ezboo webstats, possibly 3.0.3, allows remote attackers to bypass authentication and gain access via a direct request to (1) update.php and (2) config.php.
7.5
CVE-2006-2916 2006-06-15 08h00 +00:00 artswrapper in aRts, when running setuid root on Linux 2.6.0 or later versions, does not check the return value of the setuid function call, which allows local users to gain root privileges by causing setuid to fail, which prevents artsd from dropping privileges.
7.8
High
CVE-1999-0656 2000-02-04 04h00 +00:00 The ugidd RPC interface, by design, allows remote attackers to enumerate valid usernames by specifying arbitrary UIDs that ugidd maps to local user and group names.
5