Linux Kernel 6.6.60

CPE Details

Linux Kernel 6.6.60
6.6.60
2024-12-17
14h04 +00:00
2024-12-17
14h04 +00:00
Alerte pour un CPE
Stay informed of any changes for a specific CPE.
Notifications manage

CPE Name: cpe:2.3:o:linux:linux_kernel:6.6.60:*:*:*:*:*:*:*

Informations

Vendor

linux

Product

linux_kernel

Version

6.6.60

Related CVE

Open and find in CVE List

CVE ID Published Description Score Severity
CVE-2025-21866 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/code-patching: Fix KASAN hit by not flagging text patching area as VM_ALLOC Erhard reported the following KASAN hit while booting his PowerMac G4 with a KASAN-enabled kernel 6.13-rc6: BUG: KASAN: vmalloc-out-of-bounds in copy_to_kernel_nofault+0xd8/0x1c8 Write of size 8 at addr f1000000 by task chronyd/1293 CPU: 0 UID: 123 PID: 1293 Comm: chronyd Tainted: G W 6.13.0-rc6-PMacG4 #2 Tainted: [W]=WARN Hardware name: PowerMac3,6 7455 0x80010303 PowerMac Call Trace: [c2437590] [c1631a84] dump_stack_lvl+0x70/0x8c (unreliable) [c24375b0] [c0504998] print_report+0xdc/0x504 [c2437610] [c050475c] kasan_report+0xf8/0x108 [c2437690] [c0505a3c] kasan_check_range+0x24/0x18c [c24376a0] [c03fb5e4] copy_to_kernel_nofault+0xd8/0x1c8 [c24376c0] [c004c014] patch_instructions+0x15c/0x16c [c2437710] [c00731a8] bpf_arch_text_copy+0x60/0x7c [c2437730] [c0281168] bpf_jit_binary_pack_finalize+0x50/0xac [c2437750] [c0073cf4] bpf_int_jit_compile+0xb30/0xdec [c2437880] [c0280394] bpf_prog_select_runtime+0x15c/0x478 [c24378d0] [c1263428] bpf_prepare_filter+0xbf8/0xc14 [c2437990] [c12677ec] bpf_prog_create_from_user+0x258/0x2b4 [c24379d0] [c027111c] do_seccomp+0x3dc/0x1890 [c2437ac0] [c001d8e0] system_call_exception+0x2dc/0x420 [c2437f30] [c00281ac] ret_from_syscall+0x0/0x2c --- interrupt: c00 at 0x5a1274 NIP: 005a1274 LR: 006a3b3c CTR: 005296c8 REGS: c2437f40 TRAP: 0c00 Tainted: G W (6.13.0-rc6-PMacG4) MSR: 0200f932 CR: 24004422 XER: 00000000 GPR00: 00000166 af8f3fa0 a7ee3540 00000001 00000000 013b6500 005a5858 0200f932 GPR08: 00000000 00001fe9 013d5fc8 005296c8 2822244c 00b2fcd8 00000000 af8f4b57 GPR16: 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000002 GPR24: 00afdbb0 00000000 00000000 00000000 006e0004 013ce060 006e7c1c 00000001 NIP [005a1274] 0x5a1274 LR [006a3b3c] 0x6a3b3c --- interrupt: c00 The buggy address belongs to the virtual mapping at [f1000000, f1002000) created by: text_area_cpu_up+0x20/0x190 The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x76e30 flags: 0x80000000(zone=2) raw: 80000000 00000000 00000122 00000000 00000000 00000000 ffffffff 00000001 raw: 00000000 page dumped because: kasan: bad access detected Memory state around the buggy address: f0ffff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0ffff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >f1000000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ f1000080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f1000100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== f8 corresponds to KASAN_VMALLOC_INVALID which means the area is not initialised hence not supposed to be used yet. Powerpc text patching infrastructure allocates a virtual memory area using get_vm_area() and flags it as VM_ALLOC. But that flag is meant to be used for vmalloc() and vmalloc() allocated memory is not supposed to be used before a call to __vmalloc_node_range() which is never called for that area. That went undetected until commit e4137f08816b ("mm, kasan, kmsan: instrument copy_from/to_kernel_nofault") The area allocated by text_area_cpu_up() is not vmalloc memory, it is mapped directly on demand when needed by map_kernel_page(). There is no VM flag corresponding to such usage, so just pass no flag. That way the area will be unpoisonned and usable immediately.
5.5
Medium
CVE-2025-21864 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: tcp: drop secpath at the same time as we currently drop dst Xiumei reported hitting the WARN in xfrm6_tunnel_net_exit while running tests that boil down to: - create a pair of netns - run a basic TCP test over ipcomp6 - delete the pair of netns The xfrm_state found on spi_byaddr was not deleted at the time we delete the netns, because we still have a reference on it. This lingering reference comes from a secpath (which holds a ref on the xfrm_state), which is still attached to an skb. This skb is not leaked, it ends up on sk_receive_queue and then gets defer-free'd by skb_attempt_defer_free. The problem happens when we defer freeing an skb (push it on one CPU's defer_list), and don't flush that list before the netns is deleted. In that case, we still have a reference on the xfrm_state that we don't expect at this point. We already drop the skb's dst in the TCP receive path when it's no longer needed, so let's also drop the secpath. At this point, tcp_filter has already called into the LSM hooks that may require the secpath, so it should not be needed anymore. However, in some of those places, the MPTCP extension has just been attached to the skb, so we cannot simply drop all extensions.
5.5
Medium
CVE-2025-21863 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: prevent opcode speculation sqe->opcode is used for different tables, make sure we santitise it against speculations.
7.8
High
CVE-2025-21862 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: drop_monitor: fix incorrect initialization order Syzkaller reports the following bug: BUG: spinlock bad magic on CPU#1, syz-executor.0/7995 lock: 0xffff88805303f3e0, .magic: 00000000, .owner: /-1, .owner_cpu: 0 CPU: 1 PID: 7995 Comm: syz-executor.0 Tainted: G E 5.10.209+ #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x119/0x179 lib/dump_stack.c:118 debug_spin_lock_before kernel/locking/spinlock_debug.c:83 [inline] do_raw_spin_lock+0x1f6/0x270 kernel/locking/spinlock_debug.c:112 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:117 [inline] _raw_spin_lock_irqsave+0x50/0x70 kernel/locking/spinlock.c:159 reset_per_cpu_data+0xe6/0x240 [drop_monitor] net_dm_cmd_trace+0x43d/0x17a0 [drop_monitor] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739 genl_family_rcv_msg net/netlink/genetlink.c:783 [inline] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800 netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2497 genl_rcv+0x29/0x40 net/netlink/genetlink.c:811 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x914/0xe00 net/netlink/af_netlink.c:1916 sock_sendmsg_nosec net/socket.c:651 [inline] __sock_sendmsg+0x157/0x190 net/socket.c:663 ____sys_sendmsg+0x712/0x870 net/socket.c:2378 ___sys_sendmsg+0xf8/0x170 net/socket.c:2432 __sys_sendmsg+0xea/0x1b0 net/socket.c:2461 do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x62/0xc7 RIP: 0033:0x7f3f9815aee9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f3f972bf0c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f3f9826d050 RCX: 00007f3f9815aee9 RDX: 0000000020000000 RSI: 0000000020001300 RDI: 0000000000000007 RBP: 00007f3f981b63bd R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000006e R14: 00007f3f9826d050 R15: 00007ffe01ee6768 If drop_monitor is built as a kernel module, syzkaller may have time to send a netlink NET_DM_CMD_START message during the module loading. This will call the net_dm_monitor_start() function that uses a spinlock that has not yet been initialized. To fix this, let's place resource initialization above the registration of a generic netlink family. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with Syzkaller.
5.5
Medium
CVE-2025-21861 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/migrate_device: don't add folio to be freed to LRU in migrate_device_finalize() If migration succeeded, we called folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the old to the new folio. This will set memcg_data of the old folio to 0. Similarly, if migration failed, memcg_data of the dst folio is left unset. If we call folio_putback_lru() on such folios (memcg_data == 0), we will add the folio to be freed to the LRU, making memcg code unhappy. Running the hmm selftests: # ./hmm-tests ... # RUN hmm.hmm_device_private.migrate ... [ 102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00 [ 102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff) [ 102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9 [ 102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000 [ 102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled()) [ 102.087230][T14893] ------------[ cut here ]------------ [ 102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.090478][T14893] Modules linked in: [ 102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151 [ 102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 [ 102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.096104][T14893] Code: ... [ 102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293 [ 102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426 [ 102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880 [ 102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000 [ 102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8 [ 102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000 [ 102.108830][T14893] FS: 00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000 [ 102.110643][T14893] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0 [ 102.113478][T14893] PKRU: 55555554 [ 102.114172][T14893] Call Trace: [ 102.114805][T14893] [ 102.115397][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.116547][T14893] ? __warn.cold+0x110/0x210 [ 102.117461][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.118667][T14893] ? report_bug+0x1b9/0x320 [ 102.119571][T14893] ? handle_bug+0x54/0x90 [ 102.120494][T14893] ? exc_invalid_op+0x17/0x50 [ 102.121433][T14893] ? asm_exc_invalid_op+0x1a/0x20 [ 102.122435][T14893] ? __wake_up_klogd.part.0+0x76/0xd0 [ 102.123506][T14893] ? dump_page+0x4f/0x60 [ 102.124352][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170 [ 102.125500][T14893] folio_batch_move_lru+0xd4/0x200 [ 102.126577][T14893] ? __pfx_lru_add+0x10/0x10 [ 102.127505][T14893] __folio_batch_add_and_move+0x391/0x720 [ 102.128633][T14893] ? __pfx_lru_add+0x10/0x10 [ 102.129550][T14893] folio_putback_lru+0x16/0x80 [ 102.130564][T14893] migrate_device_finalize+0x9b/0x530 [ 102.131640][T14893] dmirror_migrate_to_device.constprop.0+0x7c5/0xad0 [ 102.133047][T14893] dmirror_fops_unlocked_ioctl+0x89b/0xc80 Likely, nothing else goes wrong: putting the last folio reference will remove the folio from the LRU again. So besides memcg complaining, adding the folio to be freed to the LRU is just an unnecessary step. The new flow resembles what we have in migrate_folio_move(): add the dst to the lru, rem ---truncated---
5.5
Medium
CVE-2025-21859 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: gadget: f_midi: f_midi_complete to call queue_work When using USB MIDI, a lock is attempted to be acquired twice through a re-entrant call to f_midi_transmit, causing a deadlock. Fix it by using queue_work() to schedule the inner f_midi_transmit() via a high priority work queue from the completion handler.
5.5
Medium
CVE-2025-21858 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: geneve: Fix use-after-free in geneve_find_dev(). syzkaller reported a use-after-free in geneve_find_dev() [0] without repro. geneve_configure() links struct geneve_dev.next to net_generic(net, geneve_net_id)->geneve_list. The net here could differ from dev_net(dev) if IFLA_NET_NS_PID, IFLA_NET_NS_FD, or IFLA_TARGET_NETNSID is set. When dev_net(dev) is dismantled, geneve_exit_batch_rtnl() finally calls unregister_netdevice_queue() for each dev in the netns, and later the dev is freed. However, its geneve_dev.next is still linked to the backend UDP socket netns. Then, use-after-free will occur when another geneve dev is created in the netns. Let's call geneve_dellink() instead in geneve_destroy_tunnels(). [0]: BUG: KASAN: slab-use-after-free in geneve_find_dev drivers/net/geneve.c:1295 [inline] BUG: KASAN: slab-use-after-free in geneve_configure+0x234/0x858 drivers/net/geneve.c:1343 Read of size 2 at addr ffff000054d6ee24 by task syz.1.4029/13441 CPU: 1 UID: 0 PID: 13441 Comm: syz.1.4029 Not tainted 6.13.0-g0ad9617c78ac #24 dc35ca22c79fb82e8e7bc5c9c9adafea898b1e3d Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x38/0x50 arch/arm64/kernel/stacktrace.c:466 (C) __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0xbc/0x108 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x16c/0x6f0 mm/kasan/report.c:489 kasan_report+0xc0/0x120 mm/kasan/report.c:602 __asan_report_load2_noabort+0x20/0x30 mm/kasan/report_generic.c:379 geneve_find_dev drivers/net/geneve.c:1295 [inline] geneve_configure+0x234/0x858 drivers/net/geneve.c:1343 geneve_newlink+0xb8/0x128 drivers/net/geneve.c:1634 rtnl_newlink_create+0x23c/0x868 net/core/rtnetlink.c:3795 __rtnl_newlink net/core/rtnetlink.c:3906 [inline] rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021 rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543 rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x618/0x838 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x5fc/0x8b0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:713 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x410/0x6f8 net/socket.c:2568 ___sys_sendmsg+0x178/0x1d8 net/socket.c:2622 __sys_sendmsg net/socket.c:2654 [inline] __do_sys_sendmsg net/socket.c:2659 [inline] __se_sys_sendmsg net/socket.c:2657 [inline] __arm64_sys_sendmsg+0x12c/0x1c8 net/socket.c:2657 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x90/0x278 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x13c/0x250 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x54/0x70 arch/arm64/kernel/syscall.c:151 el0_svc+0x4c/0xa8 arch/arm64/kernel/entry-common.c:744 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:762 el0t_64_sync+0x198/0x1a0 arch/arm64/kernel/entry.S:600 Allocated by task 13247: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x68 mm/kasan/common.c:68 kasan_save_alloc_info+0x44/0x58 mm/kasan/generic.c:568 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x84/0xa0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4298 [inline] __kmalloc_node_noprof+0x2a0/0x560 mm/slub.c:4304 __kvmalloc_node_noprof+0x9c/0x230 mm/util.c:645 alloc_netdev_mqs+0xb8/0x11a0 net/core/dev.c:11470 rtnl_create_link+0x2b8/0xb50 net/core/rtnetlink.c:3604 rtnl_newlink_create+0x19c/0x868 net/core/rtnetlink.c:3780 __rtnl_newlink net/core/rtnetlink.c:3906 [inline] rtnl_newlink+0x1054/0x1630 net/core/rtnetlink.c:4021 rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2543 rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6938 netlink_unicast_kernel net/netlink/af_n ---truncated---
7.8
High
CVE-2025-21857 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: cls_api: fix error handling causing NULL dereference tcf_exts_miss_cookie_base_alloc() calls xa_alloc_cyclic() which can return 1 if the allocation succeeded after wrapping. This was treated as an error, with value 1 returned to caller tcf_exts_init_ex() which sets exts->actions to NULL and returns 1 to caller fl_change(). fl_change() treats err == 1 as success, calling tcf_exts_validate_ex() which calls tcf_action_init() with exts->actions as argument, where it is dereferenced. Example trace: BUG: kernel NULL pointer dereference, address: 0000000000000000 CPU: 114 PID: 16151 Comm: handler114 Kdump: loaded Not tainted 5.14.0-503.16.1.el9_5.x86_64 #1 RIP: 0010:tcf_action_init+0x1f8/0x2c0 Call Trace: tcf_action_init+0x1f8/0x2c0 tcf_exts_validate_ex+0x175/0x190 fl_change+0x537/0x1120 [cls_flower]
5.5
Medium
CVE-2025-21856 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/ism: add release function for struct device According to device_release() in /drivers/base/core.c, a device without a release function is a broken device and must be fixed. The current code directly frees the device after calling device_add() without waiting for other kernel parts to release their references. Thus, a reference could still be held to a struct device, e.g., by sysfs, leading to potential use-after-free issues if a proper release function is not set.
7.8
High
CVE-2025-21855 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: ibmvnic: Don't reference skb after sending to VIOS Previously, after successfully flushing the xmit buffer to VIOS, the tx_bytes stat was incremented by the length of the skb. It is invalid to access the skb memory after sending the buffer to the VIOS because, at any point after sending, the VIOS can trigger an interrupt to free this memory. A race between reading skb->len and freeing the skb is possible (especially during LPM) and will result in use-after-free: ================================================================== BUG: KASAN: slab-use-after-free in ibmvnic_xmit+0x75c/0x1808 [ibmvnic] Read of size 4 at addr c00000024eb48a70 by task hxecom/14495 <...> Call Trace: [c000000118f66cf0] [c0000000018cba6c] dump_stack_lvl+0x84/0xe8 (unreliable) [c000000118f66d20] [c0000000006f0080] print_report+0x1a8/0x7f0 [c000000118f66df0] [c0000000006f08f0] kasan_report+0x128/0x1f8 [c000000118f66f00] [c0000000006f2868] __asan_load4+0xac/0xe0 [c000000118f66f20] [c0080000046eac84] ibmvnic_xmit+0x75c/0x1808 [ibmvnic] [c000000118f67340] [c0000000014be168] dev_hard_start_xmit+0x150/0x358 <...> Freed by task 0: kasan_save_stack+0x34/0x68 kasan_save_track+0x2c/0x50 kasan_save_free_info+0x64/0x108 __kasan_mempool_poison_object+0x148/0x2d4 napi_skb_cache_put+0x5c/0x194 net_tx_action+0x154/0x5b8 handle_softirqs+0x20c/0x60c do_softirq_own_stack+0x6c/0x88 <...> The buggy address belongs to the object at c00000024eb48a00 which belongs to the cache skbuff_head_cache of size 224 ==================================================================
7.8
High
CVE-2025-21854 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: sockmap, vsock: For connectible sockets allow only connected sockmap expects all vsocks to have a transport assigned, which is expressed in vsock_proto::psock_update_sk_prot(). However, there is an edge case where an unconnected (connectible) socket may lose its previously assigned transport. This is handled with a NULL check in the vsock/BPF recv path. Another design detail is that listening vsocks are not supposed to have any transport assigned at all. Which implies they are not supported by the sockmap. But this is complicated by the fact that a socket, before switching to TCP_LISTEN, may have had some transport assigned during a failed connect() attempt. Hence, we may end up with a listening vsock in a sockmap, which blows up quickly: KASAN: null-ptr-deref in range [0x0000000000000120-0x0000000000000127] CPU: 7 UID: 0 PID: 56 Comm: kworker/7:0 Not tainted 6.14.0-rc1+ Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:vsock_read_skb+0x4b/0x90 Call Trace: sk_psock_verdict_data_ready+0xa4/0x2e0 virtio_transport_recv_pkt+0x1ca8/0x2acc vsock_loopback_work+0x27d/0x3f0 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x35a/0x700 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 For connectible sockets, instead of relying solely on the state of vsk->transport, tell sockmap to only allow those representing established connections. This aligns with the behaviour for AF_INET and AF_UNIX.
5.5
Medium
CVE-2025-21853 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: avoid holding freeze_mutex during mmap operation We use map->freeze_mutex to prevent races between map_freeze() and memory mapping BPF map contents with writable permissions. The way we naively do this means we'll hold freeze_mutex for entire duration of all the mm and VMA manipulations, which is completely unnecessary. This can potentially also lead to deadlocks, as reported by syzbot in [0]. So, instead, hold freeze_mutex only during writeability checks, bump (proactively) "write active" count for the map, unlock the mutex and proceed with mmap logic. And only if something went wrong during mmap logic, then undo that "write active" counter increment. [0] https://lore.kernel.org/bpf/[email protected]/
5.5
Medium
CVE-2025-21848 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfp: bpf: Add check for nfp_app_ctrl_msg_alloc() Add check for the return value of nfp_app_ctrl_msg_alloc() in nfp_bpf_cmsg_alloc() to prevent null pointer dereference.
5.5
Medium
CVE-2025-21847 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: stream-ipc: Check for cstream nullity in sof_ipc_msg_data() The nullity of sps->cstream should be checked similarly as it is done in sof_set_stream_data_offset() function. Assuming that it is not NULL if sps->stream is NULL is incorrect and can lead to NULL pointer dereference.
5.5
Medium
CVE-2025-21846 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: acct: perform last write from workqueue In [1] it was reported that the acct(2) system call can be used to trigger NULL deref in cases where it is set to write to a file that triggers an internal lookup. This can e.g., happen when pointing acc(2) to /sys/power/resume. At the point the where the write to this file happens the calling task has already exited and called exit_fs(). A lookup will thus trigger a NULL-deref when accessing current->fs. Reorganize the code so that the the final write happens from the workqueue but with the caller's credentials. This preserves the (strange) permission model and has almost no regression risk. This api should stop to exist though.
5.5
Medium
CVE-2025-21844 2025-03-12 09h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: Add check for next_buffer in receive_encrypted_standard() Add check for the return value of cifs_buf_get() and cifs_small_buf_get() in receive_encrypted_standard() to prevent null pointer dereference.
5.5
Medium
CVE-2024-58089 2025-03-12 09h41 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double accounting race when btrfs_run_delalloc_range() failed [BUG] When running btrfs with block size (4K) smaller than page size (64K, aarch64), there is a very high chance to crash the kernel at generic/750, with the following messages: (before the call traces, there are 3 extra debug messages added) BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-3): checking UUID tree hrtimer: interrupt took 5451385 ns BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs] CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs] lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] Call trace: can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P) can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L) btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs] extent_writepage+0x10c/0x3b8 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x160 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x74/0xa0 start_delalloc_inodes+0x17c/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x17c/0x288 [btrfs] shrink_delalloc+0x11c/0x280 [btrfs] flush_space+0x288/0x328 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x228/0x680 worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0 CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write) pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : process_one_work+0x110/0x680 lr : worker_thread+0x1bc/0x360 Call trace: process_one_work+0x110/0x680 (P) worker_thread+0x1bc/0x360 (L) worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 2-3 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x275bb9540000 from 0xffff800080000000 PHYS_OFFSET: 0xffff8fbba0000000 CPU features: 0x100,00000070,00801250,8201720b [CAUSE] The above warning is triggered immediately after the delalloc range failure, this happens in the following sequence: - Range [1568K, 1636K) is dirty 1536K 1568K 1600K 1636K 1664K | |/////////|////////| | Where 1536K, 1600K and 1664K are page boundaries (64K page size) - Enter extent_writepage() for page 1536K - Enter run_delalloc_nocow() with locke ---truncated---
5.5
Medium
CVE-2024-58088 2025-03-12 09h41 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix deadlock when freeing cgroup storage The following commit bc235cdb423a ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]") first introduced deadlock prevention for fentry/fexit programs attaching on bpf_task_storage helpers. That commit also employed the logic in map free path in its v6 version. Later bpf_cgrp_storage was first introduced in c4bcfb38a95e ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs") which faces the same issue as bpf_task_storage, instead of its busy counter, NULL was passed to bpf_local_storage_map_free() which opened a window to cause deadlock: (acquiring local_storage->lock) _raw_spin_lock_irqsave+0x3d/0x50 bpf_local_storage_update+0xd1/0x460 bpf_cgrp_storage_get+0x109/0x130 bpf_prog_a4d4a370ba857314_cgrp_ptr+0x139/0x170 ? __bpf_prog_enter_recur+0x16/0x80 bpf_trampoline_6442485186+0x43/0xa4 cgroup_storage_ptr+0x9/0x20 (holding local_storage->lock) bpf_selem_unlink_storage_nolock.constprop.0+0x135/0x160 bpf_selem_unlink_storage+0x6f/0x110 bpf_local_storage_map_free+0xa2/0x110 bpf_map_free_deferred+0x5b/0x90 process_one_work+0x17c/0x390 worker_thread+0x251/0x360 kthread+0xd2/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 Progs: - A: SEC("fentry/cgroup_storage_ptr") - cgid (BPF_MAP_TYPE_HASH) Record the id of the cgroup the current task belonging to in this hash map, using the address of the cgroup as the map key. - cgrpa (BPF_MAP_TYPE_CGRP_STORAGE) If current task is a kworker, lookup the above hash map using function parameter @owner as the key to get its corresponding cgroup id which is then used to get a trusted pointer to the cgroup through bpf_cgroup_from_id(). This trusted pointer can then be passed to bpf_cgrp_storage_get() to finally trigger the deadlock issue. - B: SEC("tp_btf/sys_enter") - cgrpb (BPF_MAP_TYPE_CGRP_STORAGE) The only purpose of this prog is to fill Prog A's hash map by calling bpf_cgrp_storage_get() for as many userspace tasks as possible. Steps to reproduce: - Run A; - while (true) { Run B; Destroy B; } Fix this issue by passing its busy counter to the free procedure so it can be properly incremented before storage/smap locking.
5.5
Medium
CVE-2024-58087 2025-03-12 07h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix racy issue from session lookup and expire Increment the session reference count within the lock for lookup to avoid racy issue with session expire.
8.1
High
CVE-2025-21833 2025-03-06 16h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE There is a WARN_ON_ONCE to catch an unlikely situation when domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless happens we must avoid using a NULL pointer.
5.5
Medium
CVE-2024-58080 2025-03-06 16h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: dispcc-sm6350: Add missing parent_map for a clock If a clk_rcg2 has a parent, it should also have parent_map defined, otherwise we'll get a NULL pointer dereference when calling clk_set_rate like the following: [ 3.388105] Call trace: [ 3.390664] qcom_find_src_index+0x3c/0x70 (P) [ 3.395301] qcom_find_src_index+0x1c/0x70 (L) [ 3.399934] _freq_tbl_determine_rate+0x48/0x100 [ 3.404753] clk_rcg2_determine_rate+0x1c/0x28 [ 3.409387] clk_core_determine_round_nolock+0x58/0xe4 [ 3.421414] clk_core_round_rate_nolock+0x48/0xfc [ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc [ 3.444483] clk_core_set_rate_nolock+0x8c/0x300 [ 3.455886] clk_set_rate+0x38/0x14c Add the parent_map property for the clock where it's missing and also un-inline the parent_data as well to keep the matching parent_map and parent_data together.
5.5
Medium
CVE-2024-58076 2025-03-06 16h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-sm6350: Add missing parent_map for two clocks If a clk_rcg2 has a parent, it should also have parent_map defined, otherwise we'll get a NULL pointer dereference when calling clk_set_rate like the following: [ 3.388105] Call trace: [ 3.390664] qcom_find_src_index+0x3c/0x70 (P) [ 3.395301] qcom_find_src_index+0x1c/0x70 (L) [ 3.399934] _freq_tbl_determine_rate+0x48/0x100 [ 3.404753] clk_rcg2_determine_rate+0x1c/0x28 [ 3.409387] clk_core_determine_round_nolock+0x58/0xe4 [ 3.421414] clk_core_round_rate_nolock+0x48/0xfc [ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc [ 3.444483] clk_core_set_rate_nolock+0x8c/0x300 [ 3.455886] clk_set_rate+0x38/0x14c Add the parent_map property for two clocks where it's missing and also un-inline the parent_data as well to keep the matching parent_map and parent_data together.
5.5
Medium
CVE-2024-58071 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: team: prevent adding a device which is already a team device lower Prevent adding a device which is already a team device lower, e.g. adding veth0 if vlan1 was already added and veth0 is a lower of vlan1. This is not useful in practice and can lead to recursive locking: $ ip link add veth0 type veth peer name veth1 $ ip link set veth0 up $ ip link set veth1 up $ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1 $ ip link add team0 type team $ ip link set veth0.1 down $ ip link set veth0.1 master team0 team0: Port device veth0.1 added $ ip link set veth0 down $ ip link set veth0 master team0 ============================================ WARNING: possible recursive locking detected 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted -------------------------------------------- ip/7684 is trying to acquire lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) but task is already holding lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977) other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(team->team_lock_key); lock(team->team_lock_key); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by ip/7684: stack backtrace: CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:122) print_deadlock_bug.cold (kernel/locking/lockdep.c:3040) __lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226) ? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548) lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2)) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? lock_acquire (kernel/locking/lockdep.c:5822) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) __mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? fib_sync_up (net/ipv4/fib_semantics.c:2167) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) __dev_notify_flags (net/core/dev.c:8993) ? __dev_change_flags (net/core/dev.c:8975) dev_change_flags (net/core/dev.c:9027) vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470) ? br_device_event (net/bridge/br.c:143) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) dev_open (net/core/dev.c:1519 net/core/dev.c:1505) team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977) ? __pfx_team_add_slave (drivers/net/team/team_core.c:1972) do_set_master (net/core/rtnetlink.c:2917) do_setlink.isra.0 (net/core/rtnetlink.c:3117)
5.5
Medium
CVE-2024-58070 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: bpf_local_storage: Always use bpf_mem_alloc in PREEMPT_RT In PREEMPT_RT, kmalloc(GFP_ATOMIC) is still not safe in non preemptible context. bpf_mem_alloc must be used in PREEMPT_RT. This patch is to enforce bpf_mem_alloc in the bpf_local_storage when CONFIG_PREEMPT_RT is enabled. [ 35.118559] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 35.118566] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1832, name: test_progs [ 35.118569] preempt_count: 1, expected: 0 [ 35.118571] RCU nest depth: 1, expected: 1 [ 35.118577] INFO: lockdep is turned off. ... [ 35.118647] __might_resched+0x433/0x5b0 [ 35.118677] rt_spin_lock+0xc3/0x290 [ 35.118700] ___slab_alloc+0x72/0xc40 [ 35.118723] __kmalloc_noprof+0x13f/0x4e0 [ 35.118732] bpf_map_kzalloc+0xe5/0x220 [ 35.118740] bpf_selem_alloc+0x1d2/0x7b0 [ 35.118755] bpf_local_storage_update+0x2fa/0x8b0 [ 35.118784] bpf_sk_storage_get_tracing+0x15a/0x1d0 [ 35.118791] bpf_prog_9a118d86fca78ebb_trace_inet_sock_set_state+0x44/0x66 [ 35.118795] bpf_trace_run3+0x222/0x400 [ 35.118820] __bpf_trace_inet_sock_set_state+0x11/0x20 [ 35.118824] trace_inet_sock_set_state+0x112/0x130 [ 35.118830] inet_sk_state_store+0x41/0x90 [ 35.118836] tcp_set_state+0x3b3/0x640 There is no need to adjust the gfp_flags passing to the bpf_mem_cache_alloc_flags() which only honors the GFP_KERNEL. The verifier has ensured GFP_KERNEL is passed only in sleepable context. It has been an old issue since the first introduction of the bpf_local_storage ~5 years ago, so this patch targets the bpf-next. bpf_mem_alloc is needed to solve it, so the Fixes tag is set to the commit when bpf_mem_alloc was first used in the bpf_local_storage.
5.5
Medium
CVE-2024-58069 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: rtc: pcf85063: fix potential OOB write in PCF85063 NVMEM read The nvmem interface supports variable buffer sizes, while the regmap interface operates with fixed-size storage. If an nvmem client uses a buffer size less than 4 bytes, regmap_read will write out of bounds as it expects the buffer to point at an unsigned int. Fix this by using an intermediary unsigned int to hold the value.
7.8
High
CVE-2024-58068 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: OPP: fix dev_pm_opp_find_bw_*() when bandwidth table not initialized If a driver calls dev_pm_opp_find_bw_ceil/floor() the retrieve bandwidth from the OPP table but the bandwidth table was not created because the interconnect properties were missing in the OPP consumer node, the kernel will crash with: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 ... pc : _read_bw+0x8/0x10 lr : _opp_table_find_key+0x9c/0x174 ... Call trace: _read_bw+0x8/0x10 (P) _opp_table_find_key+0x9c/0x174 (L) _find_key+0x98/0x168 dev_pm_opp_find_bw_ceil+0x50/0x88 ... In order to fix the crash, create an assert function to check if the bandwidth table was created before trying to get a bandwidth with _read_bw().
5.5
Medium
CVE-2024-58063 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: fix memory leaks and invalid access at probe error path Deinitialize at reverse order when probe fails. When init_sw_vars fails, rtl_deinit_core should not be called, specially now that it destroys the rtl_wq workqueue. And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be leaked. Remove pci_set_drvdata call as it will already be cleaned up by the core driver code and could lead to memory leaks too. cf. commit 8d450935ae7f ("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory").
5.5
Medium
CVE-2024-58058 2025-03-06 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ubifs: skip dumping tnc tree when zroot is null Clearing slab cache will free all znode in memory and make c->zroot.znode = NULL, then dumping tnc tree will access c->zroot.znode which cause null pointer dereference.
5.5
Medium
CVE-2024-58055 2025-03-06 15h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_tcm: Don't free command immediately Don't prematurely free the command. Wait for the status completion of the sense status. It can be freed then. Otherwise we will double-free the command.
7.8
High
CVE-2024-58052 2025-03-06 15h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential NULL pointer dereference in atomctrl_get_smc_sclk_range_table The function atomctrl_get_smc_sclk_range_table() does not check the return value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to retrieve SMU_Info table, it returns NULL which is later dereferenced. Found by Linux Verification Center (linuxtesting.org) with SVACE. In practice this should never happen as this code only gets called on polaris chips and the vbios data table will always be present on those chips.
5.5
Medium
CVE-2025-21820 2025-02-27 20h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: tty: xilinx_uartps: split sysrq handling lockdep detects the following circular locking dependency: CPU 0 CPU 1 ========================== ============================ cdns_uart_isr() printk() uart_port_lock(port) console_lock() cdns_uart_console_write() if (!port->sysrq) uart_port_lock(port) uart_handle_break() port->sysrq = ... uart_handle_sysrq_char() printk() console_lock() The fixed commit attempts to avoid this situation by only taking the port lock in cdns_uart_console_write if port->sysrq unset. However, if (as shown above) cdns_uart_console_write runs before port->sysrq is set, then it will try to take the port lock anyway. This may result in a deadlock. Fix this by splitting sysrq handling into two parts. We use the prepare helper under the port lock and defer handling until we release the lock.
5.5
Medium
CVE-2025-21814 2025-02-27 20h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: ptp: Ensure info->enable callback is always set The ioctl and sysfs handlers unconditionally call the ->enable callback. Not all drivers implement that callback, leading to NULL dereferences. Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c. Instead use a dummy callback if no better was specified by the driver.
5.5
Medium
CVE-2025-21812 2025-02-27 20h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: ax25: rcu protect dev->ax25_ptr syzbot found a lockdep issue [1]. We should remove ax25 RTNL dependency in ax25_setsockopt() This should also fix a variety of possible UAF in ax25. [1] WARNING: possible circular locking dependency detected 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted ------------------------------------------------------ syz.5.1818/12806 is trying to acquire lock: ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 but task is already holding lock: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_AX25){+.+.}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 lock_sock_nested+0x48/0x100 net/core/sock.c:3642 lock_sock include/net/sock.h:1618 [inline] ax25_kill_by_device net/ax25/af_ax25.c:101 [inline] ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146 notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85 __dev_notify_flags+0x207/0x400 dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026 dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563 dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820 sock_do_ioctl+0x240/0x460 net/socket.c:1234 sock_ioctl+0x626/0x8e0 net/socket.c:1339 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (rtnl_mutex){+.+.}-{4:4}: check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __mutex_lock_common kernel/locking/mutex.c:585 [inline] __mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735 ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 do_sock_setsockopt+0x3af/0x720 net/socket.c:2324 __sys_setsockopt net/socket.c:2349 [inline] __do_sys_setsockopt net/socket.c:2355 [inline] __se_sys_setsockopt net/socket.c:2352 [inline] __x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_AX25); lock(rtnl_mutex); lock(sk_lock-AF_AX25); lock(rtnl_mutex); *** DEADLOCK *** 1 lock held by syz.5.1818/12806: #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 stack backtrace: CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074 check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206 check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/lockin ---truncated---
7.8
High
CVE-2025-21811 2025-02-27 20h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: protect access to buffers with no active references nilfs_lookup_dirty_data_buffers(), which iterates through the buffers attached to dirty data folios/pages, accesses the attached buffers without locking the folios/pages. For data cache, nilfs_clear_folio_dirty() may be called asynchronously when the file system degenerates to read only, so nilfs_lookup_dirty_data_buffers() still has the potential to cause use after free issues when buffers lose the protection of their dirty state midway due to this asynchronous clearing and are unintentionally freed by try_to_free_buffers(). Eliminate this race issue by adjusting the lock section in this function.
7.8
High
CVE-2024-58034 2025-02-27 20h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code() As of_find_node_by_name() release the reference of the argument device node, tegra_emc_find_node_by_ram_code() releases some device nodes while still in use, resulting in possible UAFs. According to the bindings and the in-tree DTS files, the "emc-tables" node is always device's child node with the property "nvidia,use-ram-code", and the "lpddr2" node is a child of the "emc-tables" node. Thus utilize the for_each_child_of_node() macro and of_get_child_by_name() instead of of_find_node_by_name() to simplify the code. This bug was found by an experimental verification tool that I am developing. [krzysztof: applied v1, adjust the commit msg to incorporate v2 parts]
7.8
High
CVE-2025-21796 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: clear acl_access/acl_default after releasing them If getting acl_default fails, acl_access and acl_default will be released simultaneously. However, acl_access will still retain a pointer pointing to the released posix_acl, which will trigger a WARNING in nfs3svc_release_getacl like this: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 26 PID: 3199 at lib/refcount.c:28 refcount_warn_saturate+0xb5/0x170 Modules linked in: CPU: 26 UID: 0 PID: 3199 Comm: nfsd Not tainted 6.12.0-rc6-00079-g04ae226af01f-dirty #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb5/0x170 Code: cc cc 0f b6 1d b3 20 a5 03 80 fb 01 0f 87 65 48 d8 00 83 e3 01 75 e4 48 c7 c7 c0 3b 9b 85 c6 05 97 20 a5 03 01 e8 fb 3e 30 ff <0f> 0b eb cd 0f b6 1d 8a3 RSP: 0018:ffffc90008637cd8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff83904fde RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88871ed36380 RBP: ffff888158beeb40 R08: 0000000000000001 R09: fffff520010c6f56 R10: ffffc90008637ab7 R11: 0000000000000001 R12: 0000000000000001 R13: ffff888140e77400 R14: ffff888140e77408 R15: ffffffff858b42c0 FS: 0000000000000000(0000) GS:ffff88871ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000562384d32158 CR3: 000000055cc6a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? refcount_warn_saturate+0xb5/0x170 ? __warn+0xa5/0x140 ? refcount_warn_saturate+0xb5/0x170 ? report_bug+0x1b1/0x1e0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x17/0x40 ? asm_exc_invalid_op+0x1a/0x20 ? tick_nohz_tick_stopped+0x1e/0x40 ? refcount_warn_saturate+0xb5/0x170 ? refcount_warn_saturate+0xb5/0x170 nfs3svc_release_getacl+0xc9/0xe0 svc_process_common+0x5db/0xb60 ? __pfx_svc_process_common+0x10/0x10 ? __rcu_read_unlock+0x69/0xa0 ? __pfx_nfsd_dispatch+0x10/0x10 ? svc_xprt_received+0xa1/0x120 ? xdr_init_decode+0x11d/0x190 svc_process+0x2a7/0x330 svc_handle_xprt+0x69d/0x940 svc_recv+0x180/0x2d0 nfsd+0x168/0x200 ? __pfx_nfsd+0x10/0x10 kthread+0x1a2/0x1e0 ? kthread+0xf4/0x1e0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 Kernel panic - not syncing: kernel: panic_on_warn set ... Clear acl_access/acl_default after posix_acl_release is called to prevent UAF from being triggered.
7.8
High
CVE-2025-21791 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: vrf: use RCU protection in l3mdev_l3_out() l3mdev_l3_out() can be called without RCU being held: raw_sendmsg() ip_push_pending_frames() ip_send_skb() ip_local_out() __ip_local_out() l3mdev_ip_out() Add rcu_read_lock() / rcu_read_unlock() pair to avoid a potential UAF.
7.8
High
CVE-2025-21787 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: team: better TEAM_OPTION_TYPE_STRING validation syzbot reported following splat [1] Make sure user-provided data contains one nul byte. [1] BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:633 [inline] BUG: KMSAN: uninit-value in string+0x3ec/0x5f0 lib/vsprintf.c:714 string_nocheck lib/vsprintf.c:633 [inline] string+0x3ec/0x5f0 lib/vsprintf.c:714 vsnprintf+0xa5d/0x1960 lib/vsprintf.c:2843 __request_module+0x252/0x9f0 kernel/module/kmod.c:149 team_mode_get drivers/net/team/team_core.c:480 [inline] team_change_mode drivers/net/team/team_core.c:607 [inline] team_mode_option_set+0x437/0x970 drivers/net/team/team_core.c:1401 team_option_set drivers/net/team/team_core.c:375 [inline] team_nl_options_set_doit+0x1339/0x1f90 drivers/net/team/team_core.c:2662 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x1214/0x12c0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2543 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0xf52/0x1260 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x10da/0x11e0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:718 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:733 ____sys_sendmsg+0x877/0xb60 net/socket.c:2573 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2627 __sys_sendmsg net/socket.c:2659 [inline] __do_sys_sendmsg net/socket.c:2664 [inline] __se_sys_sendmsg net/socket.c:2662 [inline] __x64_sys_sendmsg+0x212/0x3c0 net/socket.c:2662 x64_sys_call+0x2ed6/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2025-21786 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: workqueue: Put the pwq after detaching the rescuer from the pool The commit 68f83057b913("workqueue: Reap workers via kthread_stop() and remove detach_completion") adds code to reap the normal workers but mistakenly does not handle the rescuer and also removes the code waiting for the rescuer in put_unbound_pool(), which caused a use-after-free bug reported by Cheung Wall. To avoid the use-after-free bug, the pool’s reference must be held until the detachment is complete. Therefore, move the code that puts the pwq after detaching the rescuer from the pool.
7.8
High
CVE-2025-21785 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array The loop that detects/populates cache information already has a bounds check on the array size but does not account for cache levels with separate data/instructions cache. Fix this by incrementing the index for any populated leaf (instead of any populated level).
7.8
High
CVE-2025-21782 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: orangefs: fix a oob in orangefs_debug_write I got a syzbot report: slab-out-of-bounds Read in orangefs_debug_write... several people suggested fixes, I tested Al Viro's suggestion and made this patch.
7.1
High
CVE-2025-21779 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Reject Hyper-V's SEND_IPI hypercalls if local APIC isn't in-kernel Advertise support for Hyper-V's SEND_IPI and SEND_IPI_EX hypercalls if and only if the local API is emulated/virtualized by KVM, and explicitly reject said hypercalls if the local APIC is emulated in userspace, i.e. don't rely on userspace to opt-in to KVM_CAP_HYPERV_ENFORCE_CPUID. Rejecting SEND_IPI and SEND_IPI_EX fixes a NULL-pointer dereference if Hyper-V enlightenments are exposed to the guest without an in-kernel local APIC: dump_stack+0xbe/0xfd __kasan_report.cold+0x34/0x84 kasan_report+0x3a/0x50 __apic_accept_irq+0x3a/0x5c0 kvm_hv_send_ipi.isra.0+0x34e/0x820 kvm_hv_hypercall+0x8d9/0x9d0 kvm_emulate_hypercall+0x506/0x7e0 __vmx_handle_exit+0x283/0xb60 vmx_handle_exit+0x1d/0xd0 vcpu_enter_guest+0x16b0/0x24c0 vcpu_run+0xc0/0x550 kvm_arch_vcpu_ioctl_run+0x170/0x6d0 kvm_vcpu_ioctl+0x413/0xb20 __se_sys_ioctl+0x111/0x160 do_syscal1_64+0x30/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Note, checking the sending vCPU is sufficient, as the per-VM irqchip_mode can't be modified after vCPUs are created, i.e. if one vCPU has an in-kernel local APIC, then all vCPUs have an in-kernel local APIC.
5.5
Medium
CVE-2025-21776 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: hub: Ignore non-compliant devices with too many configs or interfaces Robert Morris created a test program which can cause usb_hub_to_struct_hub() to dereference a NULL or inappropriate pointer: Oops: general protection fault, probably for non-canonical address 0xcccccccccccccccc: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 7 UID: 0 PID: 117 Comm: kworker/7:1 Not tainted 6.13.0-rc3-00017-gf44d154d6e3d #14 Hardware name: FreeBSD BHYVE/BHYVE, BIOS 14.0 10/17/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_hub_adjust_deviceremovable+0x78/0x110 ... Call Trace: ? die_addr+0x31/0x80 ? exc_general_protection+0x1b4/0x3c0 ? asm_exc_general_protection+0x26/0x30 ? usb_hub_adjust_deviceremovable+0x78/0x110 hub_probe+0x7c7/0xab0 usb_probe_interface+0x14b/0x350 really_probe+0xd0/0x2d0 ? __pfx___device_attach_driver+0x10/0x10 __driver_probe_device+0x6e/0x110 driver_probe_device+0x1a/0x90 __device_attach_driver+0x7e/0xc0 bus_for_each_drv+0x7f/0xd0 __device_attach+0xaa/0x1a0 bus_probe_device+0x8b/0xa0 device_add+0x62e/0x810 usb_set_configuration+0x65d/0x990 usb_generic_driver_probe+0x4b/0x70 usb_probe_device+0x36/0xd0 The cause of this error is that the device has two interfaces, and the hub driver binds to interface 1 instead of interface 0, which is where usb_hub_to_struct_hub() looks. We can prevent the problem from occurring by refusing to accept hub devices that violate the USB spec by having more than one configuration or interface.
5.5
Medium
CVE-2025-21775 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: can: ctucanfd: handle skb allocation failure If skb allocation fails, the pointer to struct can_frame is NULL. This is actually handled everywhere inside ctucan_err_interrupt() except for the only place. Add the missed NULL check. Found by Linux Verification Center (linuxtesting.org) with SVACE static analysis tool.
5.5
Medium
CVE-2025-21773 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: can: etas_es58x: fix potential NULL pointer dereference on udev->serial The driver assumed that es58x_dev->udev->serial could never be NULL. While this is true on commercially available devices, an attacker could spoof the device identity providing a NULL USB serial number. That would trigger a NULL pointer dereference. Add a check on es58x_dev->udev->serial before accessing it.
5.5
Medium
CVE-2025-21764 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ndisc: use RCU protection in ndisc_alloc_skb() ndisc_alloc_skb() can be called without RTNL or RCU being held. Add RCU protection to avoid possible UAF.
7.8
High
CVE-2025-21763 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: neighbour: use RCU protection in __neigh_notify() __neigh_notify() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
7.8
High
CVE-2025-21762 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: arp: use RCU protection in arp_xmit() arp_xmit() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
7.8
High
CVE-2025-21761 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: openvswitch: use RCU protection in ovs_vport_cmd_fill_info() ovs_vport_cmd_fill_info() can be called without RTNL or RCU. Use RCU protection and dev_net_rcu() to avoid potential UAF.
7.8
High
CVE-2025-21760 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ndisc: extend RCU protection in ndisc_send_skb() ndisc_send_skb() can be called without RTNL or RCU held. Acquire rcu_read_lock() earlier, so that we can use dev_net_rcu() and avoid a potential UAF.
7.8
High
CVE-2025-21759 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.
7.8
High
CVE-2025-21756 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock: Keep the binding until socket destruction Preserve sockets bindings; this includes both resulting from an explicit bind() and those implicitly bound through autobind during connect(). Prevents socket unbinding during a transport reassignment, which fixes a use-after-free: 1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2) 2. transport->release() calls vsock_remove_bound() without checking if sk was bound and moved to bound list (refcnt=1) 3. vsock_bind() assumes sk is in unbound list and before __vsock_insert_bound(vsock_bound_sockets()) calls __vsock_remove_bound() which does: list_del_init(&vsk->bound_table); // nop sock_put(&vsk->sk); // refcnt=0 BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730 Read of size 4 at addr ffff88816b46a74c by task a.out/2057 dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 __vsock_bind+0x62e/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 __vsock_create.constprop.0+0x2e/0xb60 vsock_create+0xe4/0x420 __sock_create+0x241/0x650 __sys_socket+0xf2/0x1a0 __x64_sys_socket+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 __vsock_bind+0x5e1/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: addition on 0; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150 RIP: 0010:refcount_warn_saturate+0xce/0x150 __vsock_bind+0x66d/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: underflow; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150 RIP: 0010:refcount_warn_saturate+0xee/0x150 vsock_remove_bound+0x187/0x1e0 __vsock_release+0x383/0x4a0 vsock_release+0x90/0x120 __sock_release+0xa3/0x250 sock_close+0x14/0x20 __fput+0x359/0xa80 task_work_run+0x107/0x1d0 do_exit+0x847/0x2560 do_group_exit+0xb8/0x250 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0xfec/0x14f0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
7.8
High
CVE-2024-58020 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: HID: multitouch: Add NULL check in mt_input_configured devm_kasprintf() can return a NULL pointer on failure,but this returned value in mt_input_configured() is not checked. Add NULL check in mt_input_configured(), to handle kernel NULL pointer dereference error.
5.5
Medium
CVE-2024-57834 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix a null-ptr-deref in vidtv_mux_stop_thread syzbot report a null-ptr-deref in vidtv_mux_stop_thread. [1] If dvb->mux is not initialized successfully by vidtv_mux_init() in the vidtv_start_streaming(), it will trigger null pointer dereference about mux in vidtv_mux_stop_thread(). Adjust the timing of streaming initialization and check it before stopping it. [1] KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f] CPU: 0 UID: 0 PID: 5842 Comm: syz-executor248 Not tainted 6.13.0-rc4-syzkaller-00012-g9b2ffa6148b1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:vidtv_mux_stop_thread+0x26/0x80 drivers/media/test-drivers/vidtv/vidtv_mux.c:471 Code: 90 90 90 90 66 0f 1f 00 55 53 48 89 fb e8 82 2e c8 f9 48 8d bb 28 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 02 7e 3b 0f b6 ab 28 01 00 00 31 ff 89 ee e8 RSP: 0018:ffffc90003f2faa8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff87cfb125 RDX: 0000000000000025 RSI: ffffffff87d120ce RDI: 0000000000000128 RBP: ffff888029b8d220 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000003 R12: ffff888029b8d188 R13: ffffffff8f590aa0 R14: ffffc9000581c5c8 R15: ffff888029a17710 FS: 00007f7eef5156c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7eef5e635c CR3: 0000000076ca6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vidtv_stop_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:209 [inline] vidtv_stop_feed+0x151/0x250 drivers/media/test-drivers/vidtv/vidtv_bridge.c:252 dmx_section_feed_stop_filtering+0x90/0x160 drivers/media/dvb-core/dvb_demux.c:1000 dvb_dmxdev_feed_stop.isra.0+0x1ee/0x270 drivers/media/dvb-core/dmxdev.c:486 dvb_dmxdev_filter_stop+0x22a/0x3a0 drivers/media/dvb-core/dmxdev.c:559 dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline] dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246 __fput+0x3f8/0xb60 fs/file_table.c:450 task_work_run+0x14e/0x250 kernel/task_work.c:239 get_signal+0x1d3/0x2610 kernel/signal.c:2790 arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop kernel/entry/common.c:111 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218 do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-54458 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: bsg: Set bsg_queue to NULL after removal Currently, this does not cause any issues, but I believe it is necessary to set bsg_queue to NULL after removing it to prevent potential use-after-free (UAF) access.
7.8
High
CVE-2024-52559 2025-02-27 02h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/gem: prevent integer overflow in msm_ioctl_gem_submit() The "submit->cmd[i].size" and "submit->cmd[i].offset" variables are u32 values that come from the user via the submit_lookup_cmds() function. This addition could lead to an integer wrapping bug so use size_add() to prevent that. Patchwork: https://patchwork.freedesktop.org/patch/624696/
5.5
Medium
CVE-2025-21753 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when attempting to join an aborted transaction When we are trying to join the current transaction and if it's aborted, we read its 'aborted' field after unlocking fs_info->trans_lock and without holding any extra reference count on it. This means that a concurrent task that is aborting the transaction may free the transaction before we read its 'aborted' field, leading to a use-after-free. Fix this by reading the 'aborted' field while holding fs_info->trans_lock since any freeing task must first acquire that lock and set fs_info->running_transaction to NULL before freeing the transaction. This was reported by syzbot and Dmitry with the following stack traces from KASAN: ================================================================== BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128 CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: events_unbound btrfs_async_reclaim_data_space Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803 btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317 worker_thread+0x870/0xd30 kernel/workqueue.c:3398 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 5315: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329 kmalloc_noprof include/linux/slab.h:901 [inline] join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572 lookup_open fs/namei.c:3649 [inline] open_last_lookups fs/namei.c:3748 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3984 do_filp_open+0x27f/0x4e0 fs/namei.c:4014 do_sys_openat2+0x13e/0x1d0 fs/open.c:1402 do_sys_open fs/open.c:1417 [inline] __do_sys_creat fs/open.c:1495 [inline] __se_sys_creat fs/open.c:1489 [inline] __x64_sys_creat+0x123/0x170 fs/open.c:1489 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 5336: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2353 [inline] slab_free mm/slub.c:4613 [inline] kfree+0x196/0x430 mm/slub.c:4761 cleanup_transaction fs/btrfs/transaction.c:2063 [inline] btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598 insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757 btrfs_balance+0x992/ ---truncated---
7.8
High
CVE-2025-21751 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: HWS, change error flow on matcher disconnect Currently, when firmware failure occurs during matcher disconnect flow, the error flow of the function reconnects the matcher back and returns an error, which continues running the calling function and eventually frees the matcher that is being disconnected. This leads to a case where we have a freed matcher on the matchers list, which in turn leads to use-after-free and eventual crash. This patch fixes that by not trying to reconnect the matcher back when some FW command fails during disconnect. Note that we're dealing here with FW error. We can't overcome this problem. This might lead to bad steering state (e.g. wrong connection between matchers), and will also lead to resource leakage, as it is the case with any other error handling during resource destruction. However, the goal here is to allow the driver to continue and not crash the machine with use-after-free error.
7.8
High
CVE-2025-21749 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: rose: lock the socket in rose_bind() syzbot reported a soft lockup in rose_loopback_timer(), with a repro calling bind() from multiple threads. rose_bind() must lock the socket to avoid this issue.
5.5
Medium
CVE-2025-21748 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix integer overflows on 32 bit systems On 32bit systems the addition operations in ipc_msg_alloc() can potentially overflow leading to memory corruption. Add bounds checking using KSMBD_IPC_MAX_PAYLOAD to avoid overflow.
5.5
Medium
CVE-2025-21745 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: Fix class @block_class's subsystem refcount leakage blkcg_fill_root_iostats() iterates over @block_class's devices by class_dev_iter_(init|next)(), but does not end iterating with class_dev_iter_exit(), so causes the class's subsystem refcount leakage. Fix by ending the iterating with class_dev_iter_exit().
5.5
Medium
CVE-2025-21744 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize() On removal of the device or unloading of the kernel module a potential NULL pointer dereference occurs. The following sequence deletes the interface: brcmf_detach() brcmf_remove_interface() brcmf_del_if() Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches. After brcmf_remove_interface() call the brcmf_proto_detach() function is called providing the following sequence: brcmf_detach() brcmf_proto_detach() brcmf_proto_msgbuf_detach() brcmf_flowring_detach() brcmf_msgbuf_delete_flowring() brcmf_msgbuf_remove_flowring() brcmf_flowring_delete() brcmf_get_ifp() brcmf_txfinalize() Since brcmf_get_ip() can and actually will return NULL in this case the call to brcmf_txfinalize() will result in a NULL pointer dereference inside brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors. This will only happen if a flowring still has an skb. Although the NULL pointer dereference has only been seen when trying to update the tx statistic, all other uses of the ifp pointer have been guarded as well with an early return if ifp is NULL.
5.5
Medium
CVE-2025-21743 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: usbnet: ipheth: fix possible overflow in DPE length check Originally, it was possible for the DPE length check to overflow if wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB read. Move the wDatagramIndex term to the other side of the inequality. An existing condition ensures that wDatagramIndex < urb->actual_length.
7.1
High
CVE-2025-21742 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: usbnet: ipheth: use static NDP16 location in URB Original code allowed for the start of NDP16 to be anywhere within the URB based on the `wNdpIndex` value in NTH16. Only the start position of NDP16 was checked, so it was possible for even the fixed-length part of NDP16 to extend past the end of URB, leading to an out-of-bounds read. On iOS devices, the NDP16 header always directly follows NTH16. Rely on and check for this specific format. This, along with NCM-specific minimal URB length check that already exists, will ensure that the fixed-length part of NDP16 plus a set amount of DPEs fit within the URB. Note that this commit alone does not fully address the OoB read. The limit on the amount of DPEs needs to be enforced separately.
7.1
High
CVE-2025-21741 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: usbnet: ipheth: fix DPE OoB read Fix an out-of-bounds DPE read, limit the number of processed DPEs to the amount that fits into the fixed-size NDP16 header.
7.1
High
CVE-2025-21739 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix use-after free in init error and remove paths devm_blk_crypto_profile_init() registers a cleanup handler to run when the associated (platform-) device is being released. For UFS, the crypto private data and pointers are stored as part of the ufs_hba's data structure 'struct ufs_hba::crypto_profile'. This structure is allocated as part of the underlying ufshcd and therefore Scsi_host allocation. During driver release or during error handling in ufshcd_pltfrm_init(), this structure is released as part of ufshcd_dealloc_host() before the (platform-) device associated with the crypto call above is released. Once this device is released, the crypto cleanup code will run, using the just-released 'struct ufs_hba::crypto_profile'. This causes a use-after-free situation: Call trace: kfree+0x60/0x2d8 (P) kvfree+0x44/0x60 blk_crypto_profile_destroy_callback+0x28/0x70 devm_action_release+0x1c/0x30 release_nodes+0x6c/0x108 devres_release_all+0x98/0x100 device_unbind_cleanup+0x20/0x70 really_probe+0x218/0x2d0 In other words, the initialisation code flow is: platform-device probe ufshcd_pltfrm_init() ufshcd_alloc_host() scsi_host_alloc() allocation of struct ufs_hba creation of scsi-host devices devm_blk_crypto_profile_init() devm registration of cleanup handler using platform-device and during error handling of ufshcd_pltfrm_init() or during driver removal: ufshcd_dealloc_host() scsi_host_put() put_device(scsi-host) release of struct ufs_hba put_device(platform-device) crypto cleanup handler To fix this use-after free, change ufshcd_alloc_host() to register a devres action to automatically cleanup the underlying SCSI device on ufshcd destruction, without requiring explicit calls to ufshcd_dealloc_host(). This way: * the crypto profile and all other ufs_hba-owned resources are destroyed before SCSI (as they've been registered after) * a memleak is plugged in tc-dwc-g210-pci.c remove() as a side-effect * EXPORT_SYMBOL_GPL(ufshcd_dealloc_host) can be removed fully as it's not needed anymore * no future drivers using ufshcd_alloc_host() could ever forget adding the cleanup
7.8
High
CVE-2025-21736 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix possible int overflows in nilfs_fiemap() Since nilfs_bmap_lookup_contig() in nilfs_fiemap() calculates its result by being prepared to go through potentially maxblocks == INT_MAX blocks, the value in n may experience an overflow caused by left shift of blkbits. While it is extremely unlikely to occur, play it safe and cast right hand expression to wider type to mitigate the issue. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE.
5.5
Medium
CVE-2025-21735 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFC: nci: Add bounds checking in nci_hci_create_pipe() The "pipe" variable is a u8 which comes from the network. If it's more than 127, then it results in memory corruption in the caller, nci_hci_connect_gate().
7.8
High
CVE-2024-58017 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: printk: Fix signed integer overflow when defining LOG_BUF_LEN_MAX Shifting 1 << 31 on a 32-bit int causes signed integer overflow, which leads to undefined behavior. To prevent this, cast 1 to u32 before performing the shift, ensuring well-defined behavior. This change explicitly avoids any potential overflow by ensuring that the shift occurs on an unsigned 32-bit integer.
5.5
Medium
CVE-2024-58013 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix slab-use-after-free Read in mgmt_remove_adv_monitor_sync This fixes the following crash: ================================================================== BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 Read of size 8 at addr ffff88814128f898 by task kworker/u9:4/5961 CPU: 1 UID: 0 PID: 5961 Comm: kworker/u9:4 Not tainted 6.12.0-syzkaller-10684-gf1cd565ce577 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: hci0 hci_cmd_sync_work Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 16026: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kzalloc_noprof include/linux/slab.h:1037 [inline] mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296 remove_adv_monitor+0x102/0x1b0 net/bluetooth/mgmt.c:5568 hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712 hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 sock_write_iter+0x2d7/0x3f0 net/socket.c:1147 new_sync_write fs/read_write.c:586 [inline] vfs_write+0xaeb/0xd30 fs/read_write.c:679 ksys_write+0x18f/0x2b0 fs/read_write.c:731 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 16022: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kfree+0x196/0x420 mm/slub.c:4746 mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259 __mgmt_power_off+0x183/0x430 net/bluetooth/mgmt.c:9550 hci_dev_close_sync+0x6c4/0x11c0 net/bluetooth/hci_sync.c:5208 hci_dev_do_close net/bluetooth/hci_core.c:483 [inline] hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508 sock_do_ioctl+0x158/0x460 net/socket.c:1209 sock_ioctl+0x626/0x8e0 net/socket.c:1328 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
7.8
High
CVE-2024-58012 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params Each cpu DAI should associate with a widget. However, the topology might not create the right number of DAI widgets for aggregated amps. And it will cause NULL pointer deference. Check that the DAI widget associated with the CPU DAI is valid to prevent NULL pointer deference due to missing DAI widgets in topologies with aggregated amps.
5.5
Medium
CVE-2024-58011 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: platform/x86: int3472: Check for adev == NULL Not all devices have an ACPI companion fwnode, so adev might be NULL. This can e.g. (theoretically) happen when a user manually binds one of the int3472 drivers to another i2c/platform device through sysfs. Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
5.5
Medium
CVE-2024-58010 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: binfmt_flat: Fix integer overflow bug on 32 bit systems Most of these sizes and counts are capped at 256MB so the math doesn't result in an integer overflow. The "relocs" count needs to be checked as well. Otherwise on 32bit systems the calculation of "full_data" could be wrong. full_data = data_len + relocs * sizeof(unsigned long);
5.5
Medium
CVE-2024-58007 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: soc: qcom: socinfo: Avoid out of bounds read of serial number On MSM8916 devices, the serial number exposed in sysfs is constant and does not change across individual devices. It's always: db410c:/sys/devices/soc0$ cat serial_number 2644893864 The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not have support for the serial_num field in the socinfo struct. There is an existing check to avoid exposing the serial number in that case, but it's not correct: When checking the item_size returned by SMEM, we need to make sure the *end* of the serial_num is within bounds, instead of comparing with the *start* offset. The serial_number currently exposed on MSM8916 devices is just an out of bounds read of whatever comes after the socinfo struct in SMEM. Fix this by changing offsetof() to offsetofend(), so that the size of the field is also taken into account.
7.1
High
CVE-2024-58005 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: tpm: Change to kvalloc() in eventlog/acpi.c The following failure was reported on HPE ProLiant D320: [ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0) [ 10.848132][ T1] ------------[ cut here ]------------ [ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330 [ 10.862827][ T1] Modules linked in: [ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375 [ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024 [ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330 [ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1 [ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246 [ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000 [ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0 The above transcript shows that ACPI pointed a 16 MiB buffer for the log events because RSI maps to the 'order' parameter of __alloc_pages_noprof(). Address the bug by moving from devm_kmalloc() to devm_add_action() and kvmalloc() and devm_add_action().
5.5
Medium
CVE-2024-58002 2025-02-27 02h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Remove dangling pointers When an async control is written, we copy a pointer to the file handle that started the operation. That pointer will be used when the device is done. Which could be anytime in the future. If the user closes that file descriptor, its structure will be freed, and there will be one dangling pointer per pending async control, that the driver will try to use. Clean all the dangling pointers during release(). To avoid adding a performance penalty in the most common case (no async operation), a counter has been introduced with some logic to make sure that it is properly handled.
7.8
High
CVE-2025-21731 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: nbd: don't allow reconnect after disconnect Following process can cause nbd_config UAF: 1) grab nbd_config temporarily; 2) nbd_genl_disconnect() flush all recv_work() and release the initial reference: nbd_genl_disconnect nbd_disconnect_and_put nbd_disconnect flush_workqueue(nbd->recv_workq) if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...)) nbd_config_put -> due to step 1), reference is still not zero 3) nbd_genl_reconfigure() queue recv_work() again; nbd_genl_reconfigure config = nbd_get_config_unlocked(nbd) if (!config) -> succeed if (!test_bit(NBD_RT_BOUND, ...)) -> succeed nbd_reconnect_socket queue_work(nbd->recv_workq, &args->work) 4) step 1) release the reference; 5) Finially, recv_work() will trigger UAF: recv_work nbd_config_put(nbd) -> nbd_config is freed atomic_dec(&config->recv_threads) -> UAF Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so that nbd_genl_reconfigure() will fail.
7.8
High
CVE-2025-21729 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix race between cancel_hw_scan and hw_scan completion The rtwdev->scanning flag isn't protected by mutex originally, so cancel_hw_scan can pass the condition, but suddenly hw_scan completion unset the flag and calls ieee80211_scan_completed() that will free local->hw_scan_req. Then, cancel_hw_scan raises null-ptr-deref and use-after-free. Fix it by moving the check condition to where protected by mutex. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 2 PID: 6922 Comm: kworker/2:2 Tainted: G OE Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB6WW (2.76 ) 09/10/2019 Workqueue: events cfg80211_conn_work [cfg80211] RIP: 0010:rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] Code: 00 45 89 6c 24 1c 0f 85 23 01 00 00 48 8b 85 20 ff ff ff 48 8d RSP: 0018:ffff88811fd9f068 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff88811fd9f258 RCX: 0000000000000001 RDX: 0000000000000011 RSI: 0000000000000001 RDI: 0000000000000089 RBP: ffff88811fd9f170 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88811fd9f108 R11: 0000000000000000 R12: ffff88810e47f960 R13: 0000000000000000 R14: 000000000000ffff R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8881d6f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007531dfca55b0 CR3: 00000001be296004 CR4: 00000000001706e0 Call Trace: ? show_regs+0x61/0x73 ? __die_body+0x20/0x73 ? die_addr+0x4f/0x7b ? exc_general_protection+0x191/0x1db ? asm_exc_general_protection+0x27/0x30 ? rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] ? rtw89_fw_h2c_scan_offload_be+0x458/0x13c3 [rtw89_core] ? __pfx_rtw89_fw_h2c_scan_offload_be+0x10/0x10 [rtw89_core] ? do_raw_spin_lock+0x75/0xdb ? __pfx_do_raw_spin_lock+0x10/0x10 rtw89_hw_scan_offload+0xb5e/0xbf7 [rtw89_core] ? _raw_spin_unlock+0xe/0x24 ? __mutex_lock.constprop.0+0x40c/0x471 ? __pfx_rtw89_hw_scan_offload+0x10/0x10 [rtw89_core] ? __mutex_lock_slowpath+0x13/0x1f ? mutex_lock+0xa2/0xdc ? __pfx_mutex_lock+0x10/0x10 rtw89_hw_scan_abort+0x58/0xb7 [rtw89_core] rtw89_ops_cancel_hw_scan+0x120/0x13b [rtw89_core] ieee80211_scan_cancel+0x468/0x4d0 [mac80211] ieee80211_prep_connection+0x858/0x899 [mac80211] ieee80211_mgd_auth+0xbea/0xdde [mac80211] ? __pfx_ieee80211_mgd_auth+0x10/0x10 [mac80211] ? cfg80211_find_elem+0x15/0x29 [cfg80211] ? is_bss+0x1b7/0x1d7 [cfg80211] ieee80211_auth+0x18/0x27 [mac80211] cfg80211_mlme_auth+0x3bb/0x3e7 [cfg80211] cfg80211_conn_do_work+0x410/0xb81 [cfg80211] ? __pfx_cfg80211_conn_do_work+0x10/0x10 [cfg80211] ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? __kasan_check_write+0x14/0x22 ? mutex_lock+0x8e/0xdc ? __pfx_mutex_lock+0x10/0x10 ? __pfx___radix_tree_lookup+0x10/0x10 cfg80211_conn_work+0x245/0x34d [cfg80211] ? __pfx_cfg80211_conn_work+0x10/0x10 [cfg80211] ? update_cfs_rq_load_avg+0x3bc/0x3d7 ? sched_clock_noinstr+0x9/0x1a ? sched_clock+0x10/0x24 ? sched_clock_cpu+0x7e/0x42e ? newidle_balance+0x796/0x937 ? __pfx_sched_clock_cpu+0x10/0x10 ? __pfx_newidle_balance+0x10/0x10 ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? _raw_spin_unlock+0xe/0x24 ? raw_spin_rq_unlock+0x47/0x54 ? raw_spin_rq_unlock_irq+0x9/0x1f ? finish_task_switch.isra.0+0x347/0x586 ? __schedule+0x27bf/0x2892 ? mutex_unlock+0x80/0xd0 ? do_raw_spin_lock+0x75/0xdb ? __pfx___schedule+0x10/0x10 process_scheduled_works+0x58c/0x821 worker_thread+0x4c7/0x586 ? __kasan_check_read+0x11/0x1f kthread+0x285/0x294 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x6f ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30
7.8
High
CVE-2025-21727 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: padata: fix UAF in padata_reorder A bug was found when run ltp test: BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0 Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206 CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+ Workqueue: pdecrypt_parallel padata_parallel_worker Call Trace: dump_stack_lvl+0x32/0x50 print_address_description.constprop.0+0x6b/0x3d0 print_report+0xdd/0x2c0 kasan_report+0xa5/0xd0 padata_find_next+0x29/0x1a0 padata_reorder+0x131/0x220 padata_parallel_worker+0x3d/0xc0 process_one_work+0x2ec/0x5a0 If 'mdelay(10)' is added before calling 'padata_find_next' in the 'padata_reorder' function, this issue could be reproduced easily with ltp test (pcrypt_aead01). This can be explained as bellow: pcrypt_aead_encrypt ... padata_do_parallel refcount_inc(&pd->refcnt); // add refcnt ... padata_do_serial padata_reorder // pd while (1) { padata_find_next(pd, true); // using pd queue_work_on ... padata_serial_worker crypto_del_alg padata_put_pd_cnt // sub refcnt padata_free_shell padata_put_pd(ps->pd); // pd is freed // loop again, but pd is freed // call padata_find_next, UAF } In the padata_reorder function, when it loops in 'while', if the alg is deleted, the refcnt may be decreased to 0 before entering 'padata_find_next', which leads to UAF. As mentioned in [1], do_serial is supposed to be called with BHs disabled and always happen under RCU protection, to address this issue, add synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls to finish. [1] https://lore.kernel.org/all/[email protected]/ [2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/
7.8
High
CVE-2025-21726 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: padata: avoid UAF for reorder_work Although the previous patch can avoid ps and ps UAF for _do_serial, it can not avoid potential UAF issue for reorder_work. This issue can happen just as below: crypto_request crypto_request crypto_del_alg padata_do_serial ... padata_reorder // processes all remaining // requests then breaks while (1) { if (!padata) break; ... } padata_do_serial // new request added list_add // sees the new request queue_work(reorder_work) padata_reorder queue_work_on(squeue->work) ... padata_serial_worker // completes new request, // no more outstanding // requests crypto_del_alg // free pd invoke_padata_reorder // UAF of pd To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work' into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish.
7.8
High
CVE-2025-21723 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Fix possible crash when setting up bsg fails If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value. Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)" will not be satisfied, preventing execution from entering bsg_remove_queue(), which could lead to the following crash: BUG: kernel NULL pointer dereference, address: 000000000000041c Call Trace: mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr] mpi3mr_remove+0x6f/0x340 [mpi3mr] pci_device_remove+0x3f/0xb0 device_release_driver_internal+0x19d/0x220 unbind_store+0xa4/0xb0 kernfs_fop_write_iter+0x11f/0x200 vfs_write+0x1fc/0x3e0 ksys_write+0x67/0xe0 do_syscall_64+0x38/0x80 entry_SYSCALL_64_after_hwframe+0x78/0xe2
5.5
Medium
CVE-2025-21722 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: do not force clear folio if buffer is referenced Patch series "nilfs2: protect busy buffer heads from being force-cleared". This series fixes the buffer head state inconsistency issues reported by syzbot that occurs when the filesystem is corrupted and falls back to read-only, and the associated buffer head use-after-free issue. This patch (of 2): Syzbot has reported that after nilfs2 detects filesystem corruption and falls back to read-only, inconsistencies in the buffer state may occur. One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty() to set a data or metadata buffer as dirty, but it detects that the buffer is not in the uptodate state: WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520 fs/buffer.c:1177 ... Call Trace: nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598 nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73 nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344 nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218 vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257 do_mkdirat+0x264/0x3a0 fs/namei.c:4280 __do_sys_mkdirat fs/namei.c:4295 [inline] __se_sys_mkdirat fs/namei.c:4293 [inline] __x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The other is when nilfs_btree_propagate(), which propagates the dirty state to the ancestor nodes of a b-tree that point to a dirty buffer, detects that the origin buffer is not dirty, even though it should be: WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089 nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089 ... Call Trace: nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345 nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587 nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006 nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline] nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115 nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline] nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Both of these issues are caused by the callbacks that handle the page/folio write requests, forcibly clear various states, including the working state of the buffers they hold, at unexpected times when they detect read-only fallback. Fix these issues by checking if the buffer is referenced before clearing the page/folio state, and skipping the clear if it is.
7.8
High
CVE-2025-21718 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: rose: fix timer races against user threads Rose timers only acquire the socket spinlock, without checking if the socket is owned by one user thread. Add a check and rearm the timers if needed. BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 Read of size 2 at addr ffff88802f09b82a by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 call_timer_fn+0x187/0x650 kernel/time/timer.c:1793 expire_timers kernel/time/timer.c:1844 [inline] __run_timers kernel/time/timer.c:2418 [inline] __run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430 run_timer_base kernel/time/timer.c:2439 [inline] run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049
7
High
CVE-2025-21716 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix uninit-value in vxlan_vnifilter_dump() KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1]. If the length of the netlink message payload is less than sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes beyond the message. This can lead to uninit-value access. Fix this by returning an error in such situations. [1] BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786 netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317 __netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432 netlink_dump_start include/linux/netlink.h:340 [inline] rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline] rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882 netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542 rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4110 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205 kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587 __alloc_skb+0x347/0x7d0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1323 [inline] netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196 netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
5.5
Medium
CVE-2025-21714 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix implicit ODP use after free Prevent double queueing of implicit ODP mr destroy work by using __xa_cmpxchg() to make sure this is the only time we are destroying this specific mr. Without this change, we could try to invalidate this mr twice, which in turn could result in queuing a MR work destroy twice, and eventually the second work could execute after the MR was freed due to the first work, causing a user after free and trace below. refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 12178 at lib/refcount.c:28 refcount_warn_saturate+0x12b/0x130 Modules linked in: bonding ib_ipoib vfio_pci ip_gre geneve nf_tables ip6_gre gre ip6_tunnel tunnel6 ipip tunnel4 ib_umad rdma_ucm mlx5_vfio_pci vfio_pci_core vfio_iommu_type1 mlx5_ib vfio ib_uverbs mlx5_core iptable_raw openvswitch nsh rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay zram zsmalloc fuse [last unloaded: ib_uverbs] CPU: 2 PID: 12178 Comm: kworker/u20:5 Not tainted 6.5.0-rc1_net_next_mlx5_58c644e #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: events_unbound free_implicit_child_mr_work [mlx5_ib] RIP: 0010:refcount_warn_saturate+0x12b/0x130 Code: 48 c7 c7 38 95 2a 82 c6 05 bc c6 fe 00 01 e8 0c 66 aa ff 0f 0b 5b c3 48 c7 c7 e0 94 2a 82 c6 05 a7 c6 fe 00 01 e8 f5 65 aa ff <0f> 0b 5b c3 90 8b 07 3d 00 00 00 c0 74 12 83 f8 01 74 13 8d 50 ff RSP: 0018:ffff8881008e3e40 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000027 RDX: ffff88852c91b5c8 RSI: 0000000000000001 RDI: ffff88852c91b5c0 RBP: ffff8881dacd4e00 R08: 00000000ffffffff R09: 0000000000000019 R10: 000000000000072e R11: 0000000063666572 R12: ffff88812bfd9e00 R13: ffff8881c792d200 R14: ffff88810011c005 R15: ffff8881002099c0 FS: 0000000000000000(0000) GS:ffff88852c900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5694b5e000 CR3: 00000001153f6003 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? refcount_warn_saturate+0x12b/0x130 free_implicit_child_mr_work+0x180/0x1b0 [mlx5_ib] process_one_work+0x1cc/0x3c0 worker_thread+0x218/0x3c0 kthread+0xc6/0xf0 ret_from_fork+0x1f/0x30
7.8
High
CVE-2025-21711 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/rose: prevent integer overflows in rose_setsockopt() In case of possible unpredictably large arguments passed to rose_setsockopt() and multiplied by extra values on top of that, integer overflows may occur. Do the safest minimum and fix these issues by checking the contents of 'opt' and returning -EINVAL if they are too large. Also, switch to unsigned int and remove useless check for negative 'opt' in ROSE_IDLE case.
5.5
Medium
CVE-2025-21707 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: consolidate suboption status MPTCP maintains the received sub-options status is the bitmask carrying the received suboptions and in several bitfields carrying per suboption additional info. Zeroing the bitmask before parsing is not enough to ensure a consistent status, and the MPTCP code has to additionally clear some bitfiled depending on the actually parsed suboption. The above schema is fragile, and syzbot managed to trigger a path where a relevant bitfield is not cleared/initialized: BUG: KMSAN: uninit-value in __mptcp_expand_seq net/mptcp/options.c:1030 [inline] BUG: KMSAN: uninit-value in mptcp_expand_seq net/mptcp/protocol.h:864 [inline] BUG: KMSAN: uninit-value in ack_update_msk net/mptcp/options.c:1060 [inline] BUG: KMSAN: uninit-value in mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 __mptcp_expand_seq net/mptcp/options.c:1030 [inline] mptcp_expand_seq net/mptcp/protocol.h:864 [inline] ack_update_msk net/mptcp/options.c:1060 [inline] mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 tcp_data_queue+0xb4/0x7be0 net/ipv4/tcp_input.c:5233 tcp_rcv_established+0x1061/0x2510 net/ipv4/tcp_input.c:6264 tcp_v4_do_rcv+0x7f3/0x11a0 net/ipv4/tcp_ipv4.c:1916 tcp_v4_rcv+0x51df/0x5750 net/ipv4/tcp_ipv4.c:2351 ip_protocol_deliver_rcu+0x2a3/0x13d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:460 [inline] ip_rcv_finish+0x4a2/0x520 net/ipv4/ip_input.c:447 NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0xcd/0x380 net/ipv4/ip_input.c:567 __netif_receive_skb_one_core net/core/dev.c:5704 [inline] __netif_receive_skb+0x319/0xa00 net/core/dev.c:5817 process_backlog+0x4ad/0xa50 net/core/dev.c:6149 __napi_poll+0xe7/0x980 net/core/dev.c:6902 napi_poll net/core/dev.c:6971 [inline] net_rx_action+0xa5a/0x19b0 net/core/dev.c:7093 handle_softirqs+0x1a0/0x7c0 kernel/softirq.c:561 __do_softirq+0x14/0x1a kernel/softirq.c:595 do_softirq+0x9a/0x100 kernel/softirq.c:462 __local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:389 local_bh_enable include/linux/bottom_half.h:33 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline] __dev_queue_xmit+0x2758/0x57d0 net/core/dev.c:4493 dev_queue_xmit include/linux/netdevice.h:3168 [inline] neigh_hh_output include/net/neighbour.h:523 [inline] neigh_output include/net/neighbour.h:537 [inline] ip_finish_output2+0x187c/0x1b70 net/ipv4/ip_output.c:236 __ip_finish_output+0x287/0x810 ip_finish_output+0x4b/0x600 net/ipv4/ip_output.c:324 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip_output+0x15f/0x3f0 net/ipv4/ip_output.c:434 dst_output include/net/dst.h:450 [inline] ip_local_out net/ipv4/ip_output.c:130 [inline] __ip_queue_xmit+0x1f2a/0x20d0 net/ipv4/ip_output.c:536 ip_queue_xmit+0x60/0x80 net/ipv4/ip_output.c:550 __tcp_transmit_skb+0x3cea/0x4900 net/ipv4/tcp_output.c:1468 tcp_transmit_skb net/ipv4/tcp_output.c:1486 [inline] tcp_write_xmit+0x3b90/0x9070 net/ipv4/tcp_output.c:2829 __tcp_push_pending_frames+0xc4/0x380 net/ipv4/tcp_output.c:3012 tcp_send_fin+0x9f6/0xf50 net/ipv4/tcp_output.c:3618 __tcp_close+0x140c/0x1550 net/ipv4/tcp.c:3130 __mptcp_close_ssk+0x74e/0x16f0 net/mptcp/protocol.c:2496 mptcp_close_ssk+0x26b/0x2c0 net/mptcp/protocol.c:2550 mptcp_pm_nl_rm_addr_or_subflow+0x635/0xd10 net/mptcp/pm_netlink.c:889 mptcp_pm_nl_rm_subflow_received net/mptcp/pm_netlink.c:924 [inline] mptcp_pm_flush_addrs_and_subflows net/mptcp/pm_netlink.c:1688 [inline] mptcp_nl_flush_addrs_list net/mptcp/pm_netlink.c:1709 [inline] mptcp_pm_nl_flush_addrs_doit+0xe10/0x1630 net/mptcp/pm_netlink.c:1750 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] ---truncated---
5.5
Medium
CVE-2024-57984 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: i3c: dw: Fix use-after-free in dw_i3c_master driver due to race condition In dw_i3c_common_probe, &master->hj_work is bound with dw_i3c_hj_work. And dw_i3c_master_irq_handler can call dw_i3c_master_irq_handle_ibis function to start the work. If we remove the module which will call dw_i3c_common_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | dw_i3c_hj_work dw_i3c_common_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in dw_i3c_common_remove.
7.8
High
CVE-2024-57982 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.
7.1
High
CVE-2024-57981 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Fix NULL pointer dereference on certain command aborts If a command is queued to the final usable TRB of a ring segment, the enqueue pointer is advanced to the subsequent link TRB and no further. If the command is later aborted, when the abort completion is handled the dequeue pointer is advanced to the first TRB of the next segment. If no further commands are queued, xhci_handle_stopped_cmd_ring() sees the ring pointers unequal and assumes that there is a pending command, so it calls xhci_mod_cmd_timer() which crashes if cur_cmd was NULL. Don't attempt timer setup if cur_cmd is NULL. The subsequent doorbell ring likely is unnecessary too, but it's harmless. Leave it alone. This is probably Bug 219532, but no confirmation has been received. The issue has been independently reproduced and confirmed fixed using a USB MCU programmed to NAK the Status stage of SET_ADDRESS forever. Everything continued working normally after several prevented crashes.
5.5
Medium
CVE-2024-57980 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix double free in error path If the uvc_status_init() function fails to allocate the int_urb, it will free the dev->status pointer but doesn't reset the pointer to NULL. This results in the kfree() call in uvc_status_cleanup() trying to double-free the memory. Fix it by resetting the dev->status pointer to NULL after freeing it. Reviewed by: Ricardo Ribalda
7.8
High
CVE-2024-57979 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: pps: Fix a use-after-free On a board running ntpd and gpsd, I'm seeing a consistent use-after-free in sys_exit() from gpsd when rebooting: pps pps1: removed ------------[ cut here ]------------ kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called. WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150 CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1 Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kobject_put+0x120/0x150 lr : kobject_put+0x120/0x150 sp : ffffffc0803d3ae0 x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001 x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440 x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600 x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20 x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: kobject_put+0x120/0x150 cdev_put+0x20/0x3c __fput+0x2c4/0x2d8 ____fput+0x1c/0x38 task_work_run+0x70/0xfc do_exit+0x2a0/0x924 do_group_exit+0x34/0x90 get_signal+0x7fc/0x8c0 do_signal+0x128/0x13b4 do_notify_resume+0xdc/0x160 el0_svc+0xd4/0xf8 el0t_64_sync_handler+0x140/0x14c el0t_64_sync+0x190/0x194 ---[ end trace 0000000000000000 ]--- ...followed by more symptoms of corruption, with similar stacks: refcount_t: underflow; use-after-free. kernel BUG at lib/list_debug.c:62! Kernel panic - not syncing: Oops - BUG: Fatal exception This happens because pps_device_destruct() frees the pps_device with the embedded cdev immediately after calling cdev_del(), but, as the comment above cdev_del() notes, fops for previously opened cdevs are still callable even after cdev_del() returns. I think this bug has always been there: I can't explain why it suddenly started happening every time I reboot this particular board. In commit d953e0e837e6 ("pps: Fix a use-after free bug when unregistering a source."), George Spelvin suggested removing the embedded cdev. That seems like the simplest way to fix this, so I've implemented his suggestion, using __register_chrdev() with pps_idr becoming the source of truth for which minor corresponds to which device. But now that pps_idr defines userspace visibility instead of cdev_add(), we need to be sure the pps->dev refcount can't reach zero while userspace can still find it again. So, the idr_remove() call moves to pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev. pps_core: source serial1 got cdev (251:1) <...> pps pps1: removed pps_core: unregistering pps1 pps_core: deallocating pps1
7.8
High
CVE-2024-57977 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: memcg: fix soft lockup in the OOM process A soft lockup issue was found in the product with about 56,000 tasks were in the OOM cgroup, it was traversing them when the soft lockup was triggered. watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066] CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G Hardware name: Huawei Cloud OpenStack Nova, BIOS RIP: 0010:console_unlock+0x343/0x540 RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247 RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040 R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0 R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vprintk_emit+0x193/0x280 printk+0x52/0x6e dump_task+0x114/0x130 mem_cgroup_scan_tasks+0x76/0x100 dump_header+0x1fe/0x210 oom_kill_process+0xd1/0x100 out_of_memory+0x125/0x570 mem_cgroup_out_of_memory+0xb5/0xd0 try_charge+0x720/0x770 mem_cgroup_try_charge+0x86/0x180 mem_cgroup_try_charge_delay+0x1c/0x40 do_anonymous_page+0xb5/0x390 handle_mm_fault+0xc4/0x1f0 This is because thousands of processes are in the OOM cgroup, it takes a long time to traverse all of them. As a result, this lead to soft lockup in the OOM process. To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks' function per 1000 iterations. For global OOM, call 'touch_softlockup_watchdog' per 1000 iterations to avoid this issue.
5.5
Medium
CVE-2024-57973 2025-02-27 02h07 +00:00 In the Linux kernel, the following vulnerability has been resolved: rdma/cxgb4: Prevent potential integer overflow on 32bit The "gl->tot_len" variable is controlled by the user. It comes from process_responses(). On 32bit systems, the "gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header)" addition could have an integer wrapping bug. Use size_add() to prevent this.
5.5
Medium
CVE-2023-52926 2025-02-24 09h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: IORING_OP_READ did not correctly consume the provided buffer list when read i/o returned < 0 (except for -EAGAIN and -EIOCBQUEUED return). This can lead to a potential use-after-free when the completion via io_rw_done runs at separate context.
7.8
High
CVE-2025-21700 2025-02-13 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: sched: Disallow replacing of child qdisc from one parent to another Lion Ackermann was able to create a UAF which can be abused for privilege escalation with the following script Step 1. create root qdisc tc qdisc add dev lo root handle 1:0 drr step2. a class for packet aggregation do demonstrate uaf tc class add dev lo classid 1:1 drr step3. a class for nesting tc class add dev lo classid 1:2 drr step4. a class to graft qdisc to tc class add dev lo classid 1:3 drr step5. tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024 step6. tc qdisc add dev lo parent 1:2 handle 3:0 drr step7. tc class add dev lo classid 3:1 drr step 8. tc qdisc add dev lo parent 3:1 handle 4:0 pfifo step 9. Display the class/qdisc layout tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 limit 1000p qdisc drr 3: dev lo parent 1:2 step10. trigger the bug <=== prevented by this patch tc qdisc replace dev lo parent 1:3 handle 4:0 step 11. Redisplay again the qdiscs/classes tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 1:3 root leaf 4: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p qdisc drr 3: dev lo parent 1:2 Observe that a) parent for 4:0 does not change despite the replace request. There can only be one parent. b) refcount has gone up by two for 4:0 and c) both class 1:3 and 3:1 are pointing to it. Step 12. send one packet to plug echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001)) step13. send one packet to the grafted fifo echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003)) step14. lets trigger the uaf tc class delete dev lo classid 1:3 tc class delete dev lo classid 1:1 The semantics of "replace" is for a del/add _on the same node_ and not a delete from one node(3:1) and add to another node (1:3) as in step10. While we could "fix" with a more complex approach there could be consequences to expectations so the patch takes the preventive approach of "disallow such config". Joint work with Lion Ackermann
7.8
High
CVE-2025-21699 2025-02-12 13h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: gfs2: Truncate address space when flipping GFS2_DIF_JDATA flag Truncate an inode's address space when flipping the GFS2_DIF_JDATA flag: depending on that flag, the pages in the address space will either use buffer heads or iomap_folio_state structs, and we cannot mix the two.
5.5
Medium
CVE-2025-21697 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Ensure job pointer is set to NULL after job completion After a job completes, the corresponding pointer in the device must be set to NULL. Failing to do so triggers a warning when unloading the driver, as it appears the job is still active. To prevent this, assign the job pointer to NULL after completing the job, indicating the job has finished.
5.5
Medium
CVE-2025-21696 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: clear uffd-wp PTE/PMD state on mremap() When mremap()ing a memory region previously registered with userfaultfd as write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in flag clearing leads to a mismatch between the vma flags (which have uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to trigger a warning in page_table_check_pte_flags() due to setting the pte to writable while uffd-wp is still set. Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any such mremap() so that the values are consistent with the existing clearing of VM_UFFD_WP. Be careful to clear the logical flag regardless of its physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE, huge PMD and hugetlb paths.
5.5
Medium
CVE-2025-21694 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/proc: fix softlockup in __read_vmcore (part 2) Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the number of softlockups in __read_vmcore at kdump time have gone down, but they still happen sometimes. In a memory constrained environment like the kdump image, a softlockup is not just a harmless message, but it can interfere with things like RCU freeing memory, causing the crashdump to get stuck. The second loop in __read_vmcore has a lot more opportunities for natural sleep points, like scheduling out while waiting for a data write to happen, but apparently that is not always enough. Add a cond_resched() to the second loop in __read_vmcore to (hopefully) get rid of the softlockups.
5.5
Medium
CVE-2024-57951 2025-02-12 13h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: hrtimers: Handle CPU state correctly on hotplug Consider a scenario where a CPU transitions from CPUHP_ONLINE to halfway through a CPU hotunplug down to CPUHP_HRTIMERS_PREPARE, and then back to CPUHP_ONLINE: Since hrtimers_prepare_cpu() does not run, cpu_base.hres_active remains set to 1 throughout. However, during a CPU unplug operation, the tick and the clockevents are shut down at CPUHP_AP_TICK_DYING. On return to the online state, for instance CFS incorrectly assumes that the hrtick is already active, and the chance of the clockevent device to transition to oneshot mode is also lost forever for the CPU, unless it goes back to a lower state than CPUHP_HRTIMERS_PREPARE once. This round-trip reveals another issue; cpu_base.online is not set to 1 after the transition, which appears as a WARN_ON_ONCE in enqueue_hrtimer(). Aside of that, the bulk of the per CPU state is not reset either, which means there are dangling pointers in the worst case. Address this by adding a corresponding startup() callback, which resets the stale per CPU state and sets the online flag. [ tglx: Make the new callback unconditionally available, remove the online modification in the prepare() callback and clear the remaining state in the starting callback instead of the prepare callback ]
7.8
High
CVE-2025-21693 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: zswap: properly synchronize freeing resources during CPU hotunplug In zswap_compress() and zswap_decompress(), the per-CPU acomp_ctx of the current CPU at the beginning of the operation is retrieved and used throughout. However, since neither preemption nor migration are disabled, it is possible that the operation continues on a different CPU. If the original CPU is hotunplugged while the acomp_ctx is still in use, we run into a UAF bug as some of the resources attached to the acomp_ctx are freed during hotunplug in zswap_cpu_comp_dead() (i.e. acomp_ctx.buffer, acomp_ctx.req, or acomp_ctx.acomp). The problem was introduced in commit 1ec3b5fe6eec ("mm/zswap: move to use crypto_acomp API for hardware acceleration") when the switch to the crypto_acomp API was made. Prior to that, the per-CPU crypto_comp was retrieved using get_cpu_ptr() which disables preemption and makes sure the CPU cannot go away from under us. Preemption cannot be disabled with the crypto_acomp API as a sleepable context is needed. Use the acomp_ctx.mutex to synchronize CPU hotplug callbacks allocating and freeing resources with compression/decompression paths. Make sure that acomp_ctx.req is NULL when the resources are freed. In the compression/decompression paths, check if acomp_ctx.req is NULL after acquiring the mutex (meaning the CPU was offlined) and retry on the new CPU. The initialization of acomp_ctx.mutex is moved from the CPU hotplug callback to the pool initialization where it belongs (where the mutex is allocated). In addition to adding clarity, this makes sure that CPU hotplug cannot reinitialize a mutex that is already locked by compression/decompression. Previously a fix was attempted by holding cpus_read_lock() [1]. This would have caused a potential deadlock as it is possible for code already holding the lock to fall into reclaim and enter zswap (causing a deadlock). A fix was also attempted using SRCU for synchronization, but Johannes pointed out that synchronize_srcu() cannot be used in CPU hotplug notifiers [2]. Alternative fixes that were considered/attempted and could have worked: - Refcounting the per-CPU acomp_ctx. This involves complexity in handling the race between the refcount dropping to zero in zswap_[de]compress() and the refcount being re-initialized when the CPU is onlined. - Disabling migration before getting the per-CPU acomp_ctx [3], but that's discouraged and is a much bigger hammer than needed, and could result in subtle performance issues. [1]https://lkml.kernel.org/[email protected]/ [2]https://lkml.kernel.org/[email protected]/ [3]https://lkml.kernel.org/[email protected]/ [[email protected]: remove comment] Link: https://lkml.kernel.org/r/CAJD7tkaxS1wjn+swugt8QCvQ-rVF5RZnjxwPGX17k8x9zSManA@mail.gmail.com
7.8
High
CVE-2025-21692 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: sched: fix ets qdisc OOB Indexing Haowei Yan found that ets_class_from_arg() can index an Out-Of-Bound class in ets_class_from_arg() when passed clid of 0. The overflow may cause local privilege escalation. [ 18.852298] ------------[ cut here ]------------ [ 18.853271] UBSAN: array-index-out-of-bounds in net/sched/sch_ets.c:93:20 [ 18.853743] index 18446744073709551615 is out of range for type 'ets_class [16]' [ 18.854254] CPU: 0 UID: 0 PID: 1275 Comm: poc Not tainted 6.12.6-dirty #17 [ 18.854821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 18.856532] Call Trace: [ 18.857441] [ 18.858227] dump_stack_lvl+0xc2/0xf0 [ 18.859607] dump_stack+0x10/0x20 [ 18.860908] __ubsan_handle_out_of_bounds+0xa7/0xf0 [ 18.864022] ets_class_change+0x3d6/0x3f0 [ 18.864322] tc_ctl_tclass+0x251/0x910 [ 18.864587] ? lock_acquire+0x5e/0x140 [ 18.865113] ? __mutex_lock+0x9c/0xe70 [ 18.866009] ? __mutex_lock+0xa34/0xe70 [ 18.866401] rtnetlink_rcv_msg+0x170/0x6f0 [ 18.866806] ? __lock_acquire+0x578/0xc10 [ 18.867184] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 18.867503] netlink_rcv_skb+0x59/0x110 [ 18.867776] rtnetlink_rcv+0x15/0x30 [ 18.868159] netlink_unicast+0x1c3/0x2b0 [ 18.868440] netlink_sendmsg+0x239/0x4b0 [ 18.868721] ____sys_sendmsg+0x3e2/0x410 [ 18.869012] ___sys_sendmsg+0x88/0xe0 [ 18.869276] ? rseq_ip_fixup+0x198/0x260 [ 18.869563] ? rseq_update_cpu_node_id+0x10a/0x190 [ 18.869900] ? trace_hardirqs_off+0x5a/0xd0 [ 18.870196] ? syscall_exit_to_user_mode+0xcc/0x220 [ 18.870547] ? do_syscall_64+0x93/0x150 [ 18.870821] ? __memcg_slab_free_hook+0x69/0x290 [ 18.871157] __sys_sendmsg+0x69/0xd0 [ 18.871416] __x64_sys_sendmsg+0x1d/0x30 [ 18.871699] x64_sys_call+0x9e2/0x2670 [ 18.871979] do_syscall_64+0x87/0x150 [ 18.873280] ? do_syscall_64+0x93/0x150 [ 18.874742] ? lock_release+0x7b/0x160 [ 18.876157] ? do_user_addr_fault+0x5ce/0x8f0 [ 18.877833] ? irqentry_exit_to_user_mode+0xc2/0x210 [ 18.879608] ? irqentry_exit+0x77/0xb0 [ 18.879808] ? clear_bhb_loop+0x15/0x70 [ 18.880023] ? clear_bhb_loop+0x15/0x70 [ 18.880223] ? clear_bhb_loop+0x15/0x70 [ 18.880426] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 18.880683] RIP: 0033:0x44a957 [ 18.880851] Code: ff ff e8 fc 00 00 00 66 2e 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 8974 24 10 [ 18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e [ 18.882149] RAX: ffffffffffffffda RBX: 00007ffcdd010db8 RCX: 000000000044a957 [ 18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003 [ 18.885037] RBP: 00007ffcdd010bc0 R08: 000000000703c770 R09: 000000000703c7c0 [ 18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001 [ 18.888026] R13: 00007ffcdd010da8 R14: 00000000004ca7d0 R15: 0000000000000001 [ 18.888395] [ 18.888610] ---[ end trace ]---
7.8
High
CVE-2025-21690 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Ratelimit warning logs to prevent VM denial of service If there's a persistent error in the hypervisor, the SCSI warning for failed I/O can flood the kernel log and max out CPU utilization, preventing troubleshooting from the VM side. Ratelimit the warning so it doesn't DoS the VM.
5.5
Medium
CVE-2025-21689 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: serial: quatech2: fix null-ptr-deref in qt2_process_read_urb() This patch addresses a null-ptr-deref in qt2_process_read_urb() due to an incorrect bounds check in the following: if (newport > serial->num_ports) { dev_err(&port->dev, "%s - port change to invalid port: %i\n", __func__, newport); break; } The condition doesn't account for the valid range of the serial->port buffer, which is from 0 to serial->num_ports - 1. When newport is equal to serial->num_ports, the assignment of "port" in the following code is out-of-bounds and NULL: serial_priv->current_port = newport; port = serial->port[serial_priv->current_port]; The fix checks if newport is greater than or equal to serial->num_ports indicating it is out-of-bounds.
5.5
Medium
CVE-2025-21687 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/platform: check the bounds of read/write syscalls count and offset are passed from user space and not checked, only offset is capped to 40 bits, which can be used to read/write out of bounds of the device.
7.8
High
CVE-2024-57950 2025-02-10 15h58 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize denominator defaults to 1 [WHAT & HOW] Variables, used as denominators and maybe not assigned to other values, should be initialized to non-zero to avoid DIVIDE_BY_ZERO, as reported by Coverity. (cherry picked from commit e2c4c6c10542ccfe4a0830bb6c9fd5b177b7bbb7)
5.5
Medium
CVE-2025-21684 2025-02-09 11h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpio: xilinx: Convert gpio_lock to raw spinlock irq_chip functions may be called in raw spinlock context. Therefore, we must also use a raw spinlock for our own internal locking. This fixes the following lockdep splat: [ 5.349336] ============================= [ 5.353349] [ BUG: Invalid wait context ] [ 5.357361] 6.13.0-rc5+ #69 Tainted: G W [ 5.363031] ----------------------------- [ 5.367045] kworker/u17:1/44 is trying to lock: [ 5.371587] ffffff88018b02c0 (&chip->gpio_lock){....}-{3:3}, at: xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.380079] other info that might help us debug this: [ 5.385138] context-{5:5} [ 5.387762] 5 locks held by kworker/u17:1/44: [ 5.392123] #0: ffffff8800014958 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3204) [ 5.402260] #1: ffffffc082fcbdd8 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3205) [ 5.411528] #2: ffffff880172c900 (&dev->mutex){....}-{4:4}, at: __device_attach (drivers/base/dd.c:1006) [ 5.419929] #3: ffffff88039c8268 (request_class#2){+.+.}-{4:4}, at: __setup_irq (kernel/irq/internals.h:156 kernel/irq/manage.c:1596) [ 5.428331] #4: ffffff88039c80c8 (lock_class#2){....}-{2:2}, at: __setup_irq (kernel/irq/manage.c:1614) [ 5.436472] stack backtrace: [ 5.439359] CPU: 2 UID: 0 PID: 44 Comm: kworker/u17:1 Tainted: G W 6.13.0-rc5+ #69 [ 5.448690] Tainted: [W]=WARN [ 5.451656] Hardware name: xlnx,zynqmp (DT) [ 5.455845] Workqueue: events_unbound deferred_probe_work_func [ 5.461699] Call trace: [ 5.464147] show_stack+0x18/0x24 C [ 5.467821] dump_stack_lvl (lib/dump_stack.c:123) [ 5.471501] dump_stack (lib/dump_stack.c:130) [ 5.474824] __lock_acquire (kernel/locking/lockdep.c:4828 kernel/locking/lockdep.c:4898 kernel/locking/lockdep.c:5176) [ 5.478758] lock_acquire (arch/arm64/include/asm/percpu.h:40 kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851 kernel/locking/lockdep.c:5814) [ 5.482429] _raw_spin_lock_irqsave (include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162) [ 5.486797] xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.490737] irq_enable (kernel/irq/internals.h:236 kernel/irq/chip.c:170 kernel/irq/chip.c:439 kernel/irq/chip.c:432 kernel/irq/chip.c:345) [ 5.494060] __irq_startup (kernel/irq/internals.h:241 kernel/irq/chip.c:180 kernel/irq/chip.c:250) [ 5.497645] irq_startup (kernel/irq/chip.c:270) [ 5.501143] __setup_irq (kernel/irq/manage.c:1807) [ 5.504728] request_threaded_irq (kernel/irq/manage.c:2208)
5.5
Medium
CVE-2024-57949 2025-02-09 11h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Don't enable interrupts in its_irq_set_vcpu_affinity() The following call-chain leads to enabling interrupts in a nested interrupt disabled section: irq_set_vcpu_affinity() irq_get_desc_lock() raw_spin_lock_irqsave() <--- Disable interrupts its_irq_set_vcpu_affinity() guard(raw_spinlock_irq) <--- Enables interrupts when leaving the guard() irq_put_desc_unlock() <--- Warns because interrupts are enabled This was broken in commit b97e8a2f7130, which replaced the original raw_spin_[un]lock() pair with guard(raw_spinlock_irq). Fix the issue by using guard(raw_spinlock). [ tglx: Massaged change log ]
5.5
Medium
CVE-2025-21683 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix bpf_sk_select_reuseport() memory leak As pointed out in the original comment, lookup in sockmap can return a TCP ESTABLISHED socket. Such TCP socket may have had SO_ATTACH_REUSEPORT_EBPF set before it was ESTABLISHED. In other words, a non-NULL sk_reuseport_cb does not imply a non-refcounted socket. Drop sk's reference in both error paths. unreferenced object 0xffff888101911800 (size 2048): comm "test_progs", pid 44109, jiffies 4297131437 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 80 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 9336483b): __kmalloc_noprof+0x3bf/0x560 __reuseport_alloc+0x1d/0x40 reuseport_alloc+0xca/0x150 reuseport_attach_prog+0x87/0x140 sk_reuseport_attach_bpf+0xc8/0x100 sk_setsockopt+0x1181/0x1990 do_sock_setsockopt+0x12b/0x160 __sys_setsockopt+0x7b/0xc0 __x64_sys_setsockopt+0x1b/0x30 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e
5.5
Medium
CVE-2025-21682 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: always recalculate features after XDP clearing, fix null-deref Recalculate features when XDP is detached. Before: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: off [requested on] After: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: on The fact that HW-GRO doesn't get re-enabled automatically is just a minor annoyance. The real issue is that the features will randomly come back during another reconfiguration which just happens to invoke netdev_update_features(). The driver doesn't handle reconfiguring two things at a time very robustly. Starting with commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") we only reconfigure the RSS hash table if the "effective" number of Rx rings has changed. If HW-GRO is enabled "effective" number of rings is 2x what user sees. So if we are in the bad state, with HW-GRO re-enablement "pending" after XDP off, and we lower the rings by / 2 - the HW-GRO rings doing 2x and the ethtool -L doing / 2 may cancel each other out, and the: if (old_rx_rings != bp->hw_resc.resv_rx_rings && condition in __bnxt_reserve_rings() will be false. The RSS map won't get updated, and we'll crash with: BUG: kernel NULL pointer dereference, address: 0000000000000168 RIP: 0010:__bnxt_hwrm_vnic_set_rss+0x13a/0x1a0 bnxt_hwrm_vnic_rss_cfg_p5+0x47/0x180 __bnxt_setup_vnic_p5+0x58/0x110 bnxt_init_nic+0xb72/0xf50 __bnxt_open_nic+0x40d/0xab0 bnxt_open_nic+0x2b/0x60 ethtool_set_channels+0x18c/0x1d0 As we try to access a freed ring. The issue is present since XDP support was added, really, but prior to commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") it wasn't causing major issues.
5.5
Medium
CVE-2025-21681 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: openvswitch: fix lockup on tx to unregistering netdev with carrier Commit in a fixes tag attempted to fix the issue in the following sequence of calls: do_output -> ovs_vport_send -> dev_queue_xmit -> __dev_queue_xmit -> netdev_core_pick_tx -> skb_tx_hash When device is unregistering, the 'dev->real_num_tx_queues' goes to zero and the 'while (unlikely(hash >= qcount))' loop inside the 'skb_tx_hash' becomes infinite, locking up the core forever. But unfortunately, checking just the carrier status is not enough to fix the issue, because some devices may still be in unregistering state while reporting carrier status OK. One example of such device is a net/dummy. It sets carrier ON on start, but it doesn't implement .ndo_stop to set the carrier off. And it makes sense, because dummy doesn't really have a carrier. Therefore, while this device is unregistering, it's still easy to hit the infinite loop in the skb_tx_hash() from the OVS datapath. There might be other drivers that do the same, but dummy by itself is important for the OVS ecosystem, because it is frequently used as a packet sink for tcpdump while debugging OVS deployments. And when the issue is hit, the only way to recover is to reboot. Fix that by also checking if the device is running. The running state is handled by the net core during unregistering, so it covers unregistering case better, and we don't really need to send packets to devices that are not running anyway. While only checking the running state might be enough, the carrier check is preserved. The running and the carrier states seem disjoined throughout the code and different drivers. And other core functions like __dev_direct_xmit() check both before attempting to transmit a packet. So, it seems safer to check both flags in OVS as well.
5.5
Medium
CVE-2025-21680 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: pktgen: Avoid out-of-bounds access in get_imix_entries Passing a sufficient amount of imix entries leads to invalid access to the pkt_dev->imix_entries array because of the incorrect boundary check. UBSAN: array-index-out-of-bounds in net/core/pktgen.c:874:24 index 20 is out of range for type 'imix_pkt [20]' CPU: 2 PID: 1210 Comm: bash Not tainted 6.10.0-rc1 #121 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: dump_stack_lvl lib/dump_stack.c:117 __ubsan_handle_out_of_bounds lib/ubsan.c:429 get_imix_entries net/core/pktgen.c:874 pktgen_if_write net/core/pktgen.c:1063 pde_write fs/proc/inode.c:334 proc_reg_write fs/proc/inode.c:346 vfs_write fs/read_write.c:593 ksys_write fs/read_write.c:644 do_syscall_64 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe arch/x86/entry/entry_64.S:130 Found by Linux Verification Center (linuxtesting.org) with SVACE. [ fp: allow to fill the array completely; minor changelog cleanup ]
7.8
High
CVE-2025-21676 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fec: handle page_pool_dev_alloc_pages error The fec_enet_update_cbd function calls page_pool_dev_alloc_pages but did not handle the case when it returned NULL. There was a WARN_ON(!new_page) but it would still proceed to use the NULL pointer and then crash. This case does seem somewhat rare but when the system is under memory pressure it can happen. One case where I can duplicate this with some frequency is when writing over a smbd share to a SATA HDD attached to an imx6q. Setting /proc/sys/vm/min_free_kbytes to higher values also seems to solve the problem for my test case. But it still seems wrong that the fec driver ignores the memory allocation error and can crash. This commit handles the allocation error by dropping the current packet.
5.5
Medium
CVE-2025-21675 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clear port select structure when fail to create Clear the port select structure on error so no stale values left after definers are destroyed. That's because the mlx5_lag_destroy_definers() always try to destroy all lag definers in the tt_map, so in the flow below lag definers get double-destroyed and cause kernel crash: mlx5_lag_port_sel_create() mlx5_lag_create_definers() mlx5_lag_create_definer() <- Failed on tt 1 mlx5_lag_destroy_definers() <- definers[tt=0] gets destroyed mlx5_lag_port_sel_create() mlx5_lag_create_definers() mlx5_lag_create_definer() <- Failed on tt 0 mlx5_lag_destroy_definers() <- definers[tt=0] gets double-destroyed Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 Mem abort info: ESR = 0x0000000096000005 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x05: level 1 translation fault Data abort info: ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 64k pages, 48-bit VAs, pgdp=0000000112ce2e00 [0000000000000008] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP Modules linked in: iptable_raw bonding ip_gre ip6_gre gre ip6_tunnel tunnel6 geneve ip6_udp_tunnel udp_tunnel ipip tunnel4 ip_tunnel rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) mlx5_fwctl(OE) fwctl(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlxfw(OE) memtrack(OE) mlx_compat(OE) openvswitch nsh nf_conncount psample xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xfrm_user xfrm_algo xt_addrtype iptable_filter iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter bridge stp llc netconsole overlay efi_pstore sch_fq_codel zram ip_tables crct10dif_ce qemu_fw_cfg fuse ipv6 crc_ccitt [last unloaded: mlx_compat(OE)] CPU: 3 UID: 0 PID: 217 Comm: kworker/u53:2 Tainted: G OE 6.11.0+ #2 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Workqueue: mlx5_lag mlx5_do_bond_work [mlx5_core] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mlx5_del_flow_rules+0x24/0x2c0 [mlx5_core] lr : mlx5_lag_destroy_definer+0x54/0x100 [mlx5_core] sp : ffff800085fafb00 x29: ffff800085fafb00 x28: ffff0000da0c8000 x27: 0000000000000000 x26: ffff0000da0c8000 x25: ffff0000da0c8000 x24: ffff0000da0c8000 x23: ffff0000c31f81a0 x22: 0400000000000000 x21: ffff0000da0c8000 x20: 0000000000000000 x19: 0000000000000001 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffff8b0c9350 x14: 0000000000000000 x13: ffff800081390d18 x12: ffff800081dc3cc0 x11: 0000000000000001 x10: 0000000000000b10 x9 : ffff80007ab7304c x8 : ffff0000d00711f0 x7 : 0000000000000004 x6 : 0000000000000190 x5 : ffff00027edb3010 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff0000d39b8000 x1 : ffff0000d39b8000 x0 : 0400000000000000 Call trace: mlx5_del_flow_rules+0x24/0x2c0 [mlx5_core] mlx5_lag_destroy_definer+0x54/0x100 [mlx5_core] mlx5_lag_destroy_definers+0xa0/0x108 [mlx5_core] mlx5_lag_port_sel_create+0x2d4/0x6f8 [mlx5_core] mlx5_activate_lag+0x60c/0x6f8 [mlx5_core] mlx5_do_bond_work+0x284/0x5c8 [mlx5_core] process_one_work+0x170/0x3e0 worker_thread+0x2d8/0x3e0 kthread+0x11c/0x128 ret_from_fork+0x10/0x20 Code: a9025bf5 aa0003f6 a90363f7 f90023f9 (f9400400) ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2025-21674 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix inversion dependency warning while enabling IPsec tunnel Attempt to enable IPsec packet offload in tunnel mode in debug kernel generates the following kernel panic, which is happening due to two issues: 1. In SA add section, the should be _bh() variant when marking SA mode. 2. There is not needed flush_workqueue in SA delete routine. It is not needed as at this stage as it is removed from SADB and the running work will be canceled later in SA free. ===================================================== WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected 6.12.0+ #4 Not tainted ----------------------------------------------------- charon/1337 [HC0[0]:SC0[4]:HE1:SE0] is trying to acquire: ffff88810f365020 (&xa->xa_lock#24){+.+.}-{3:3}, at: mlx5e_xfrm_del_state+0xca/0x1e0 [mlx5_core] and this task is already holding: ffff88813e0f0d48 (&x->lock){+.-.}-{3:3}, at: xfrm_state_delete+0x16/0x30 which would create a new lock dependency: (&x->lock){+.-.}-{3:3} -> (&xa->xa_lock#24){+.+.}-{3:3} but this new dependency connects a SOFTIRQ-irq-safe lock: (&x->lock){+.-.}-{3:3} ... which became SOFTIRQ-irq-safe at: lock_acquire+0x1be/0x520 _raw_spin_lock_bh+0x34/0x40 xfrm_timer_handler+0x91/0xd70 __hrtimer_run_queues+0x1dd/0xa60 hrtimer_run_softirq+0x146/0x2e0 handle_softirqs+0x266/0x860 irq_exit_rcu+0x115/0x1a0 sysvec_apic_timer_interrupt+0x6e/0x90 asm_sysvec_apic_timer_interrupt+0x16/0x20 default_idle+0x13/0x20 default_idle_call+0x67/0xa0 do_idle+0x2da/0x320 cpu_startup_entry+0x50/0x60 start_secondary+0x213/0x2a0 common_startup_64+0x129/0x138 to a SOFTIRQ-irq-unsafe lock: (&xa->xa_lock#24){+.+.}-{3:3} ... which became SOFTIRQ-irq-unsafe at: ... lock_acquire+0x1be/0x520 _raw_spin_lock+0x2c/0x40 xa_set_mark+0x70/0x110 mlx5e_xfrm_add_state+0xe48/0x2290 [mlx5_core] xfrm_dev_state_add+0x3bb/0xd70 xfrm_add_sa+0x2451/0x4a90 xfrm_user_rcv_msg+0x493/0x880 netlink_rcv_skb+0x12e/0x380 xfrm_netlink_rcv+0x6d/0x90 netlink_unicast+0x42f/0x740 netlink_sendmsg+0x745/0xbe0 __sock_sendmsg+0xc5/0x190 __sys_sendto+0x1fe/0x2c0 __x64_sys_sendto+0xdc/0x1b0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&xa->xa_lock#24); local_irq_disable(); lock(&x->lock); lock(&xa->xa_lock#24); lock(&x->lock); *** DEADLOCK *** 2 locks held by charon/1337: #0: ffffffff87f8f858 (&net->xfrm.xfrm_cfg_mutex){+.+.}-{4:4}, at: xfrm_netlink_rcv+0x5e/0x90 #1: ffff88813e0f0d48 (&x->lock){+.-.}-{3:3}, at: xfrm_state_delete+0x16/0x30 the dependencies between SOFTIRQ-irq-safe lock and the holding lock: -> (&x->lock){+.-.}-{3:3} ops: 29 { HARDIRQ-ON-W at: lock_acquire+0x1be/0x520 _raw_spin_lock_bh+0x34/0x40 xfrm_alloc_spi+0xc0/0xe60 xfrm_alloc_userspi+0x5f6/0xbc0 xfrm_user_rcv_msg+0x493/0x880 netlink_rcv_skb+0x12e/0x380 xfrm_netlink_rcv+0x6d/0x90 netlink_unicast+0x42f/0x740 netlink_sendmsg+0x745/0xbe0 __sock_sendmsg+0xc5/0x190 __sys_sendto+0x1fe/0x2c0 __x64_sys_sendto+0xdc/0x1b0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 IN-SOFTIRQ-W at: lock_acquire+0x1be/0x520 _raw_spin_lock_bh+0x34/0x40 xfrm_timer_handler+0x91/0xd70 __hrtimer_run_queues+0x1dd/0xa60 ---truncated---
5.5
Medium
CVE-2025-21673 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix double free of TCP_Server_Info::hostname When shutting down the server in cifs_put_tcp_session(), cifsd thread might be reconnecting to multiple DFS targets before it realizes it should exit the loop, so @server->hostname can't be freed as long as cifsd thread isn't done. Otherwise the following can happen: RIP: 0010:__slab_free+0x223/0x3c0 Code: 5e 41 5f c3 cc cc cc cc 4c 89 de 4c 89 cf 44 89 44 24 08 4c 89 1c 24 e8 fb cf 8e 00 44 8b 44 24 08 4c 8b 1c 24 e9 5f fe ff ff <0f> 0b 41 f7 45 08 00 0d 21 00 0f 85 2d ff ff ff e9 1f ff ff ff 80 RSP: 0018:ffffb26180dbfd08 EFLAGS: 00010246 RAX: ffff8ea34728e510 RBX: ffff8ea34728e500 RCX: 0000000000800068 RDX: 0000000000800068 RSI: 0000000000000000 RDI: ffff8ea340042400 RBP: ffffe112041ca380 R08: 0000000000000001 R09: 0000000000000000 R10: 6170732e31303000 R11: 70726f632e786563 R12: ffff8ea34728e500 R13: ffff8ea340042400 R14: ffff8ea34728e500 R15: 0000000000800068 FS: 0000000000000000(0000) GS:ffff8ea66fd80000(0000) 000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc25376080 CR3: 000000012a2ba001 CR4: PKRU: 55555554 Call Trace: ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __reconnect_target_unlocked+0x3e/0x160 [cifs] ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0xce/0x120 ? __slab_free+0x223/0x3c0 ? do_error_trap+0x65/0x80 ? __slab_free+0x223/0x3c0 ? exc_invalid_op+0x4e/0x70 ? __slab_free+0x223/0x3c0 ? asm_exc_invalid_op+0x16/0x20 ? __slab_free+0x223/0x3c0 ? extract_hostname+0x5c/0xa0 [cifs] ? extract_hostname+0x5c/0xa0 [cifs] ? __kmalloc+0x4b/0x140 __reconnect_target_unlocked+0x3e/0x160 [cifs] reconnect_dfs_server+0x145/0x430 [cifs] cifs_handle_standard+0x1ad/0x1d0 [cifs] cifs_demultiplex_thread+0x592/0x730 [cifs] ? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs] kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50
5.5
Medium
CVE-2025-21672 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: afs: Fix merge preference rule failure condition syzbot reported a lock held when returning to userspace[1]. This is because if argc is less than 0 and the function returns directly, the held inode lock is not released. Fix this by store the error in ret and jump to done to clean up instead of returning directly. [dh: Modified Lizhi Xu's original patch to make it honour the error code from afs_split_string()] [1] WARNING: lock held when returning to user space! 6.13.0-rc3-syzkaller-00209-g499551201b5f #0 Not tainted ------------------------------------------------ syz-executor133/5823 is leaving the kernel with locks still held! 1 lock held by syz-executor133/5823: #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: inode_lock include/linux/fs.h:818 [inline] #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: afs_proc_addr_prefs_write+0x2bb/0x14e0 fs/afs/addr_prefs.c:388
5.5
Medium
CVE-2025-21670 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock/bpf: return early if transport is not assigned Some of the core functions can only be called if the transport has been assigned. As Michal reported, a socket might have the transport at NULL, for example after a failed connect(), causing the following trace: BUG: kernel NULL pointer dereference, address: 00000000000000a0 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 12faf8067 P4D 12faf8067 PUD 113670067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 15 UID: 0 PID: 1198 Comm: a.out Not tainted 6.13.0-rc2+ RIP: 0010:vsock_connectible_has_data+0x1f/0x40 Call Trace: vsock_bpf_recvmsg+0xca/0x5e0 sock_recvmsg+0xb9/0xc0 __sys_recvfrom+0xb3/0x130 __x64_sys_recvfrom+0x20/0x30 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e So we need to check the `vsk->transport` in vsock_bpf_recvmsg(), especially for connected sockets (stream/seqpacket) as we already do in __vsock_connectible_recvmsg().
5.5
Medium
CVE-2025-21669 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: discard packets if the transport changes If the socket has been de-assigned or assigned to another transport, we must discard any packets received because they are not expected and would cause issues when we access vsk->transport. A possible scenario is described by Hyunwoo Kim in the attached link, where after a first connect() interrupted by a signal, and a second connect() failed, we can find `vsk->transport` at NULL, leading to a NULL pointer dereference.
5.5
Medium
CVE-2025-21667 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: iomap: avoid avoid truncating 64-bit offset to 32 bits on 32-bit kernels, iomap_write_delalloc_scan() was inadvertently using a 32-bit position due to folio_next_index() returning an unsigned long. This could lead to an infinite loop when writing to an xfs filesystem.
5.5
Medium
CVE-2025-21666 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock: prevent null-ptr-deref in vsock_*[has_data|has_space] Recent reports have shown how we sometimes call vsock_*_has_data() when a vsock socket has been de-assigned from a transport (see attached links), but we shouldn't. Previous commits should have solved the real problems, but we may have more in the future, so to avoid null-ptr-deref, we can return 0 (no space, no data available) but with a warning. This way the code should continue to run in a nearly consistent state and have a warning that allows us to debug future problems.
5.5
Medium
CVE-2025-21665 2025-01-31 11h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: filemap: avoid truncating 64-bit offset to 32 bits On 32-bit kernels, folio_seek_hole_data() was inadvertently truncating a 64-bit value to 32 bits, leading to a possible infinite loop when writing to an xfs filesystem.
5.5
Medium
CVE-2024-57946 2025-01-21 12h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio-blk: don't keep queue frozen during system suspend Commit 4ce6e2db00de ("virtio-blk: Ensure no requests in virtqueues before deleting vqs.") replaces queue quiesce with queue freeze in virtio-blk's PM callbacks. And the motivation is to drain inflight IOs before suspending. block layer's queue freeze looks very handy, but it is also easy to cause deadlock, such as, any attempt to call into bio_queue_enter() may run into deadlock if the queue is frozen in current context. There are all kinds of ->suspend() called in suspend context, so keeping queue frozen in the whole suspend context isn't one good idea. And Marek reported lockdep warning[1] caused by virtio-blk's freeze queue in virtblk_freeze(). [1] https://lore.kernel.org/linux-block/[email protected]/ Given the motivation is to drain in-flight IOs, it can be done by calling freeze & unfreeze, meantime restore to previous behavior by keeping queue quiesced during suspend.
5.5
Medium
CVE-2025-21658 2025-01-21 12h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: avoid NULL pointer dereference if no valid extent tree [BUG] Syzbot reported a crash with the following call trace: BTRFS info (device loop0): scrub: started on devid 1 BUG: kernel NULL pointer dereference, address: 0000000000000208 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 106e70067 P4D 106e70067 PUD 107143067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 UID: 0 PID: 689 Comm: repro Kdump: loaded Tainted: G O 6.13.0-rc4-custom+ #206 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022 RIP: 0010:find_first_extent_item+0x26/0x1f0 [btrfs] Call Trace: scrub_find_fill_first_stripe+0x13d/0x3b0 [btrfs] scrub_simple_mirror+0x175/0x260 [btrfs] scrub_stripe+0x5d4/0x6c0 [btrfs] scrub_chunk+0xbb/0x170 [btrfs] scrub_enumerate_chunks+0x2f4/0x5f0 [btrfs] btrfs_scrub_dev+0x240/0x600 [btrfs] btrfs_ioctl+0x1dc8/0x2fa0 [btrfs] ? do_sys_openat2+0xa5/0xf0 __x64_sys_ioctl+0x97/0xc0 do_syscall_64+0x4f/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e [CAUSE] The reproducer is using a corrupted image where extent tree root is corrupted, thus forcing to use "rescue=all,ro" mount option to mount the image. Then it triggered a scrub, but since scrub relies on extent tree to find where the data/metadata extents are, scrub_find_fill_first_stripe() relies on an non-empty extent root. But unfortunately scrub_find_fill_first_stripe() doesn't really expect an NULL pointer for extent root, it use extent_root to grab fs_info and triggered a NULL pointer dereference. [FIX] Add an extra check for a valid extent root at the beginning of scrub_find_fill_first_stripe(). The new error path is introduced by 42437a6386ff ("btrfs: introduce mount option rescue=ignorebadroots"), but that's pretty old, and later commit b979547513ff ("btrfs: scrub: introduce helper to find and fill sector info for a scrub_stripe") changed how we do scrub. So for kernels older than 6.6, the fix will need manual backport.
5.5
Medium
CVE-2024-57940 2025-01-21 12h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: exfat: fix the infinite loop in exfat_readdir() If the file system is corrupted so that a cluster is linked to itself in the cluster chain, and there is an unused directory entry in the cluster, 'dentry' will not be incremented, causing condition 'dentry < max_dentries' unable to prevent an infinite loop. This infinite loop causes s_lock not to be released, and other tasks will hang, such as exfat_sync_fs(). This commit stops traversing the cluster chain when there is unused directory entry in the cluster to avoid this infinite loop.
5.5
Medium
CVE-2024-57938 2025-01-21 12h09 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sctp: Prevent autoclose integer overflow in sctp_association_init() While by default max_autoclose equals to INT_MAX / HZ, one may set net.sctp.max_autoclose to UINT_MAX. There is code in sctp_association_init() that can consequently trigger overflow.
5.5
Medium
CVE-2024-57933 2025-01-21 12h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: gve: guard XSK operations on the existence of queues This patch predicates the enabling and disabling of XSK pools on the existence of queues. As it stands, if the interface is down, disabling or enabling XSK pools would result in a crash, as the RX queue pointer would be NULL. XSK pool registration will occur as part of the next interface up. Similarly, xsk_wakeup needs be guarded against queues disappearing while the function is executing, so a check against the GVE_PRIV_FLAGS_NAPI_ENABLED flag is added to synchronize with the disabling of the bit and the synchronize_net() in gve_turndown.
5.5
Medium
CVE-2024-57926 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Set private->all_drm_private[i]->drm to NULL if mtk_drm_bind returns err The pointer need to be set to NULL, otherwise KASAN complains about use-after-free. Because in mtk_drm_bind, all private's drm are set as follows. private->all_drm_private[i]->drm = drm; And drm will be released by drm_dev_put in case mtk_drm_kms_init returns failure. However, the shutdown path still accesses the previous allocated memory in drm_atomic_helper_shutdown. [ 84.874820] watchdog: watchdog0: watchdog did not stop! [ 86.512054] ================================================================== [ 86.513162] BUG: KASAN: use-after-free in drm_atomic_helper_shutdown+0x33c/0x378 [ 86.514258] Read of size 8 at addr ffff0000d46fc068 by task shutdown/1 [ 86.515213] [ 86.515455] CPU: 1 UID: 0 PID: 1 Comm: shutdown Not tainted 6.13.0-rc1-mtk+gfa1a78e5d24b-dirty #55 [ 86.516752] Hardware name: Unknown Product/Unknown Product, BIOS 2022.10 10/01/2022 [ 86.517960] Call trace: [ 86.518333] show_stack+0x20/0x38 (C) [ 86.518891] dump_stack_lvl+0x90/0xd0 [ 86.519443] print_report+0xf8/0x5b0 [ 86.519985] kasan_report+0xb4/0x100 [ 86.520526] __asan_report_load8_noabort+0x20/0x30 [ 86.521240] drm_atomic_helper_shutdown+0x33c/0x378 [ 86.521966] mtk_drm_shutdown+0x54/0x80 [ 86.522546] platform_shutdown+0x64/0x90 [ 86.523137] device_shutdown+0x260/0x5b8 [ 86.523728] kernel_restart+0x78/0xf0 [ 86.524282] __do_sys_reboot+0x258/0x2f0 [ 86.524871] __arm64_sys_reboot+0x90/0xd8 [ 86.525473] invoke_syscall+0x74/0x268 [ 86.526041] el0_svc_common.constprop.0+0xb0/0x240 [ 86.526751] do_el0_svc+0x4c/0x70 [ 86.527251] el0_svc+0x4c/0xc0 [ 86.527719] el0t_64_sync_handler+0x144/0x168 [ 86.528367] el0t_64_sync+0x198/0x1a0 [ 86.528920] [ 86.529157] The buggy address belongs to the physical page: [ 86.529972] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0xffff0000d46fd4d0 pfn:0x1146fc [ 86.531319] flags: 0xbfffc0000000000(node=0|zone=2|lastcpupid=0xffff) [ 86.532267] raw: 0bfffc0000000000 0000000000000000 dead000000000122 0000000000000000 [ 86.533390] raw: ffff0000d46fd4d0 0000000000000000 00000000ffffffff 0000000000000000 [ 86.534511] page dumped because: kasan: bad access detected [ 86.535323] [ 86.535559] Memory state around the buggy address: [ 86.536265] ffff0000d46fbf00: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 86.537314] ffff0000d46fbf80: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 86.538363] >ffff0000d46fc000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 86.544733] ^ [ 86.551057] ffff0000d46fc080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 86.557510] ffff0000d46fc100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 86.563928] ================================================================== [ 86.571093] Disabling lock debugging due to kernel taint [ 86.577642] Unable to handle kernel paging request at virtual address e0e9c0920000000b [ 86.581834] KASAN: maybe wild-memory-access in range [0x0752049000000058-0x075204900000005f] ...
7.8
High
CVE-2024-57925 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix a missing return value check bug In the smb2_send_interim_resp(), if ksmbd_alloc_work_struct() fails to allocate a node, it returns a NULL pointer to the in_work pointer. This can lead to an illegal memory write of in_work->response_buf when allocate_interim_rsp_buf() attempts to perform a kzalloc() on it. To address this issue, incorporating a check for the return value of ksmbd_alloc_work_struct() ensures that the function returns immediately upon allocation failure, thereby preventing the aforementioned illegal memory access.
7.1
High
CVE-2024-57922 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add check for granularity in dml ceil/floor helpers [Why] Wrapper functions for dcn_bw_ceil2() and dcn_bw_floor2() should check for granularity is non zero to avoid assert and divide-by-zero error in dcn_bw_ functions. [How] Add check for granularity 0. (cherry picked from commit f6e09701c3eb2ccb8cb0518e0b67f1c69742a4ec)
5.5
Medium
CVE-2024-57916 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: misc: microchip: pci1xxxx: Resolve kernel panic during GPIO IRQ handling Resolve kernel panic caused by improper handling of IRQs while accessing GPIO values. This is done by replacing generic_handle_irq with handle_nested_irq.
5.5
Medium
CVE-2024-57913 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Remove WARN_ON in functionfs_bind This commit addresses an issue related to below kernel panic where panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON in functionsfs_bind, which easily leads to the following scenarios. 1.adb_write in adbd 2. UDC write via configfs ================= ===================== ->usb_ffs_open_thread() ->UDC write ->open_functionfs() ->configfs_write_iter() ->adb_open() ->gadget_dev_desc_UDC_store() ->adb_write() ->usb_gadget_register_driver_owner ->driver_register() ->StartMonitor() ->bus_add_driver() ->adb_read() ->gadget_bind_driver() ->configfs_composite_bind() ->usb_add_function() ->open_functionfs() ->ffs_func_bind() ->adb_open() ->functionfs_bind() state !=FFS_ACTIVE> The adb_open, adb_read, and adb_write operations are invoked from the daemon, but trying to bind the function is a process that is invoked by UDC write through configfs, which opens up the possibility of a race condition between the two paths. In this race scenario, the kernel panic occurs due to the WARN_ON from functionfs_bind when panic_on_warn is enabled. This commit fixes the kernel panic by removing the unnecessary WARN_ON. Kernel panic - not syncing: kernel: panic_on_warn set ... [ 14.542395] Call trace: [ 14.542464] ffs_func_bind+0x1c8/0x14a8 [ 14.542468] usb_add_function+0xcc/0x1f0 [ 14.542473] configfs_composite_bind+0x468/0x588 [ 14.542478] gadget_bind_driver+0x108/0x27c [ 14.542483] really_probe+0x190/0x374 [ 14.542488] __driver_probe_device+0xa0/0x12c [ 14.542492] driver_probe_device+0x3c/0x220 [ 14.542498] __driver_attach+0x11c/0x1fc [ 14.542502] bus_for_each_dev+0x104/0x160 [ 14.542506] driver_attach+0x24/0x34 [ 14.542510] bus_add_driver+0x154/0x270 [ 14.542514] driver_register+0x68/0x104 [ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4 [ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144 [ 14.542526] configfs_write_iter+0xf0/0x138
4.7
Medium
CVE-2024-57912 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: pressure: zpa2326: fix information leak in triggered buffer The 'sample' local struct is used to push data to user space from a triggered buffer, but it has a hole between the temperature and the timestamp (u32 pressure, u16 temperature, GAP, u64 timestamp). This hole is never initialized. Initialize the struct to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57911 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: dummy: iio_simply_dummy_buffer: fix information leak in triggered buffer The 'data' array is allocated via kmalloc() and it is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Use kzalloc for the memory allocation to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57910 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: light: vcnl4035: fix information leak in triggered buffer The 'buffer' local array is used to push data to userspace from a triggered buffer, but it does not set an initial value for the single data element, which is an u16 aligned to 8 bytes. That leaves at least 4 bytes uninitialized even after writing an integer value with regmap_read(). Initialize the array to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57908 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: imu: kmx61: fix information leak in triggered buffer The 'buffer' local array is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the array to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57907 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: rockchip_saradc: fix information leak in triggered buffer The 'data' local struct is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the struct to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2024-57906 2025-01-19 11h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: ti-ads8688: fix information leak in triggered buffer The 'buffer' local array is used to push data to user space from a triggered buffer, but it does not set values for inactive channels, as it only uses iio_for_each_active_channel() to assign new values. Initialize the array to zero before using it to avoid pushing uninitialized information to userspace.
7.1
High
CVE-2025-21652 2025-01-19 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipvlan: Fix use-after-free in ipvlan_get_iflink(). syzbot presented an use-after-free report [0] regarding ipvlan and linkwatch. ipvlan does not hold a refcnt of the lower device unlike vlan and macvlan. If the linkwatch work is triggered for the ipvlan dev, the lower dev might have already been freed, resulting in UAF of ipvlan->phy_dev in ipvlan_get_iflink(). We can delay the lower dev unregistration like vlan and macvlan by holding the lower dev's refcnt in dev->netdev_ops->ndo_init() and releasing it in dev->priv_destructor(). Jakub pointed out calling .ndo_XXX after unregister_netdevice() has returned is error prone and suggested [1] addressing this UAF in the core by taking commit 750e51603395 ("net: avoid potential UAF in default_operstate()") further. Let's assume unregistering devices DOWN and use RCU protection in default_operstate() not to race with the device unregistration. [0]: BUG: KASAN: slab-use-after-free in ipvlan_get_iflink+0x84/0x88 drivers/net/ipvlan/ipvlan_main.c:353 Read of size 4 at addr ffff0000d768c0e0 by task kworker/u8:35/6944 CPU: 0 UID: 0 PID: 6944 Comm: kworker/u8:35 Not tainted 6.13.0-rc2-g9bc5c9515b48 #12 4c3cb9e8b4565456f6a355f312ff91f4f29b3c47 Hardware name: linux,dummy-virt (DT) Workqueue: events_unbound linkwatch_event Call trace: show_stack+0x38/0x50 arch/arm64/kernel/stacktrace.c:484 (C) __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0xbc/0x108 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x16c/0x6f0 mm/kasan/report.c:489 kasan_report+0xc0/0x120 mm/kasan/report.c:602 __asan_report_load4_noabort+0x20/0x30 mm/kasan/report_generic.c:380 ipvlan_get_iflink+0x84/0x88 drivers/net/ipvlan/ipvlan_main.c:353 dev_get_iflink+0x7c/0xd8 net/core/dev.c:674 default_operstate net/core/link_watch.c:45 [inline] rfc2863_policy+0x144/0x360 net/core/link_watch.c:72 linkwatch_do_dev+0x60/0x228 net/core/link_watch.c:175 __linkwatch_run_queue+0x2f4/0x5b8 net/core/link_watch.c:239 linkwatch_event+0x64/0xa8 net/core/link_watch.c:282 process_one_work+0x700/0x1398 kernel/workqueue.c:3229 process_scheduled_works kernel/workqueue.c:3310 [inline] worker_thread+0x8c4/0xe10 kernel/workqueue.c:3391 kthread+0x2b0/0x360 kernel/kthread.c:389 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:862 Allocated by task 9303: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x68 mm/kasan/common.c:68 kasan_save_alloc_info+0x44/0x58 mm/kasan/generic.c:568 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x84/0xa0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4283 [inline] __kmalloc_node_noprof+0x2a0/0x560 mm/slub.c:4289 __kvmalloc_node_noprof+0x9c/0x230 mm/util.c:650 alloc_netdev_mqs+0xb4/0x1118 net/core/dev.c:11209 rtnl_create_link+0x2b8/0xb60 net/core/rtnetlink.c:3595 rtnl_newlink_create+0x19c/0x868 net/core/rtnetlink.c:3771 __rtnl_newlink net/core/rtnetlink.c:3896 [inline] rtnl_newlink+0x122c/0x15c0 net/core/rtnetlink.c:4011 rtnetlink_rcv_msg+0x61c/0x918 net/core/rtnetlink.c:6901 netlink_rcv_skb+0x1dc/0x398 net/netlink/af_netlink.c:2542 rtnetlink_rcv+0x34/0x50 net/core/rtnetlink.c:6928 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x618/0x838 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x5fc/0x8b0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg net/socket.c:726 [inline] __sys_sendto+0x2ec/0x438 net/socket.c:2197 __do_sys_sendto net/socket.c:2204 [inline] __se_sys_sendto net/socket.c:2200 [inline] __arm64_sys_sendto+0xe4/0x110 net/socket.c:2200 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x90/0x278 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x13c/0x250 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x54/0x70 arch/arm64/kernel/syscall.c:151 el ---truncated---
7.8
High
CVE-2025-21650 2025-01-19 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs 1024-1279 are in different BAR space addresses. However, hclge_fetch_pf_reg does not distinguish the tqp space information when reading the tqp space information. When the number of TQPs is greater than 1024, access bar space overwriting occurs. The problem of different segments has been considered during the initialization of tqp.io_base. Therefore, tqp.io_base is directly used when the queue is read in hclge_fetch_pf_reg. The error message: Unable to handle kernel paging request at virtual address ffff800037200000 pc : hclge_fetch_pf_reg+0x138/0x250 [hclge] lr : hclge_get_regs+0x84/0x1d0 [hclge] Call trace: hclge_fetch_pf_reg+0x138/0x250 [hclge] hclge_get_regs+0x84/0x1d0 [hclge] hns3_get_regs+0x2c/0x50 [hns3] ethtool_get_regs+0xf4/0x270 dev_ethtool+0x674/0x8a0 dev_ioctl+0x270/0x36c sock_do_ioctl+0x110/0x2a0 sock_ioctl+0x2ac/0x530 __arm64_sys_ioctl+0xa8/0x100 invoke_syscall+0x4c/0x124 el0_svc_common.constprop.0+0x140/0x15c do_el0_svc+0x30/0xd0 el0_svc+0x1c/0x2c el0_sync_handler+0xb0/0xb4 el0_sync+0x168/0x180
7.8
High
CVE-2025-21649 2025-01-19 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when 1588 is sent on HIP08 devices Currently, HIP08 devices does not register the ptp devices, so the hdev->ptp is NULL. But the tx process would still try to set hardware time stamp info with SKBTX_HW_TSTAMP flag and cause a kernel crash. [ 128.087798] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 ... [ 128.280251] pc : hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.286600] lr : hclge_ptp_set_tx_info+0x20/0x140 [hclge] [ 128.292938] sp : ffff800059b93140 [ 128.297200] x29: ffff800059b93140 x28: 0000000000003280 [ 128.303455] x27: ffff800020d48280 x26: ffff0cb9dc814080 [ 128.309715] x25: ffff0cb9cde93fa0 x24: 0000000000000001 [ 128.315969] x23: 0000000000000000 x22: 0000000000000194 [ 128.322219] x21: ffff0cd94f986000 x20: 0000000000000000 [ 128.328462] x19: ffff0cb9d2a166c0 x18: 0000000000000000 [ 128.334698] x17: 0000000000000000 x16: ffffcf1fc523ed24 [ 128.340934] x15: 0000ffffd530a518 x14: 0000000000000000 [ 128.347162] x13: ffff0cd6bdb31310 x12: 0000000000000368 [ 128.353388] x11: ffff0cb9cfbc7070 x10: ffff2cf55dd11e02 [ 128.359606] x9 : ffffcf1f85a212b4 x8 : ffff0cd7cf27dab0 [ 128.365831] x7 : 0000000000000a20 x6 : ffff0cd7cf27d000 [ 128.372040] x5 : 0000000000000000 x4 : 000000000000ffff [ 128.378243] x3 : 0000000000000400 x2 : ffffcf1f85a21294 [ 128.384437] x1 : ffff0cb9db520080 x0 : ffff0cb9db500080 [ 128.390626] Call trace: [ 128.393964] hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.399893] hns3_nic_net_xmit+0x39c/0x4c4 [hns3] [ 128.405468] xmit_one.constprop.0+0xc4/0x200 [ 128.410600] dev_hard_start_xmit+0x54/0xf0 [ 128.415556] sch_direct_xmit+0xe8/0x634 [ 128.420246] __dev_queue_xmit+0x224/0xc70 [ 128.425101] dev_queue_xmit+0x1c/0x40 [ 128.429608] ovs_vport_send+0xac/0x1a0 [openvswitch] [ 128.435409] do_output+0x60/0x17c [openvswitch] [ 128.440770] do_execute_actions+0x898/0x8c4 [openvswitch] [ 128.446993] ovs_execute_actions+0x64/0xf0 [openvswitch] [ 128.453129] ovs_dp_process_packet+0xa0/0x224 [openvswitch] [ 128.459530] ovs_vport_receive+0x7c/0xfc [openvswitch] [ 128.465497] internal_dev_xmit+0x34/0xb0 [openvswitch] [ 128.471460] xmit_one.constprop.0+0xc4/0x200 [ 128.476561] dev_hard_start_xmit+0x54/0xf0 [ 128.481489] __dev_queue_xmit+0x968/0xc70 [ 128.486330] dev_queue_xmit+0x1c/0x40 [ 128.490856] ip_finish_output2+0x250/0x570 [ 128.495810] __ip_finish_output+0x170/0x1e0 [ 128.500832] ip_finish_output+0x3c/0xf0 [ 128.505504] ip_output+0xbc/0x160 [ 128.509654] ip_send_skb+0x58/0xd4 [ 128.513892] udp_send_skb+0x12c/0x354 [ 128.518387] udp_sendmsg+0x7a8/0x9c0 [ 128.522793] inet_sendmsg+0x4c/0x8c [ 128.527116] __sock_sendmsg+0x48/0x80 [ 128.531609] __sys_sendto+0x124/0x164 [ 128.536099] __arm64_sys_sendto+0x30/0x5c [ 128.540935] invoke_syscall+0x50/0x130 [ 128.545508] el0_svc_common.constprop.0+0x10c/0x124 [ 128.551205] do_el0_svc+0x34/0xdc [ 128.555347] el0_svc+0x20/0x30 [ 128.559227] el0_sync_handler+0xb8/0xc0 [ 128.563883] el0_sync+0x160/0x180
5.5
Medium
CVE-2025-21640 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: cookie_hmac_alg: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.sctp_hmac_alg' is used.
5.5
Medium
CVE-2025-21639 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: rto_min/max: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.rto_min/max' is used.
5.5
Medium
CVE-2025-21638 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: auth_enable: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, but that would increase the size of this fix, while 'sctp.ctl_sock' still needs to be retrieved from 'net' structure.
5.5
Medium
CVE-2025-21637 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: udp_port: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, but that would increase the size of this fix, while 'sctp.ctl_sock' still needs to be retrieved from 'net' structure.
5.5
Medium
CVE-2025-21636 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: sysctl: plpmtud_probe_interval: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The 'net' structure can be obtained from the table->data using container_of(). Note that table->data could also be used directly, as this is the only member needed from the 'net' structure, but that would increase the size of this fix, to use '*data' everywhere 'net->sctp.probe_interval' is used.
5.5
Medium
CVE-2025-21634 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: remove kernfs active break A warning was found: WARNING: CPU: 10 PID: 3486953 at fs/kernfs/file.c:828 CPU: 10 PID: 3486953 Comm: rmdir Kdump: loaded Tainted: G RIP: 0010:kernfs_should_drain_open_files+0x1a1/0x1b0 RSP: 0018:ffff8881107ef9e0 EFLAGS: 00010202 RAX: 0000000080000002 RBX: ffff888154738c00 RCX: dffffc0000000000 RDX: 0000000000000007 RSI: 0000000000000004 RDI: ffff888154738c04 RBP: ffff888154738c04 R08: ffffffffaf27fa15 R09: ffffed102a8e7180 R10: ffff888154738c07 R11: 0000000000000000 R12: ffff888154738c08 R13: ffff888750f8c000 R14: ffff888750f8c0e8 R15: ffff888154738ca0 FS: 00007f84cd0be740(0000) GS:ffff8887ddc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555f9fbe00c8 CR3: 0000000153eec001 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: kernfs_drain+0x15e/0x2f0 __kernfs_remove+0x165/0x300 kernfs_remove_by_name_ns+0x7b/0xc0 cgroup_rm_file+0x154/0x1c0 cgroup_addrm_files+0x1c2/0x1f0 css_clear_dir+0x77/0x110 kill_css+0x4c/0x1b0 cgroup_destroy_locked+0x194/0x380 cgroup_rmdir+0x2a/0x140 It can be explained by: rmdir echo 1 > cpuset.cpus kernfs_fop_write_iter // active=0 cgroup_rm_file kernfs_remove_by_name_ns kernfs_get_active // active=1 __kernfs_remove // active=0x80000002 kernfs_drain cpuset_write_resmask wait_event //waiting (active == 0x80000001) kernfs_break_active_protection // active = 0x80000001 // continue kernfs_unbreak_active_protection // active = 0x80000002 ... kernfs_should_drain_open_files // warning occurs kernfs_put_active This warning is caused by 'kernfs_break_active_protection' when it is writing to cpuset.cpus, and the cgroup is removed concurrently. The commit 3a5a6d0c2b03 ("cpuset: don't nest cgroup_mutex inside get_online_cpus()") made cpuset_hotplug_workfn asynchronous, This change involves calling flush_work(), which can create a multiple processes circular locking dependency that involve cgroup_mutex, potentially leading to a deadlock. To avoid deadlock. the commit 76bb5ab8f6e3 ("cpuset: break kernfs active protection in cpuset_write_resmask()") added 'kernfs_break_active_protection' in the cpuset_write_resmask. This could lead to this warning. After the commit 2125c0034c5d ("cgroup/cpuset: Make cpuset hotplug processing synchronous"), the cpuset_write_resmask no longer needs to wait the hotplug to finish, which means that concurrent hotplug and cpuset operations are no longer possible. Therefore, the deadlock doesn't exist anymore and it does not have to 'break active protection' now. To fix this warning, just remove kernfs_break_active_protection operation in the 'cpuset_write_resmask'.
5.5
Medium
CVE-2025-21631 2025-01-19 10h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix waker_bfqq UAF after bfq_split_bfqq() Our syzkaller report a following UAF for v6.6: BUG: KASAN: slab-use-after-free in bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958 Read of size 8 at addr ffff8881b57147d8 by task fsstress/232726 CPU: 2 PID: 232726 Comm: fsstress Not tainted 6.6.0-g3629d1885222 #39 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106 print_address_description.constprop.0+0x66/0x300 mm/kasan/report.c:364 print_report+0x3e/0x70 mm/kasan/report.c:475 kasan_report+0xb8/0xf0 mm/kasan/report.c:588 hlist_add_head include/linux/list.h:1023 [inline] bfq_init_rq+0x175d/0x17a0 block/bfq-iosched.c:6958 bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271 bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323 blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660 blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143 __submit_bio+0xa0/0x6b0 block/blk-core.c:639 __submit_bio_noacct_mq block/blk-core.c:718 [inline] submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747 submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847 __ext4_read_bh fs/ext4/super.c:205 [inline] ext4_read_bh+0x15e/0x2e0 fs/ext4/super.c:230 __read_extent_tree_block+0x304/0x6f0 fs/ext4/extents.c:567 ext4_find_extent+0x479/0xd20 fs/ext4/extents.c:947 ext4_ext_map_blocks+0x1a3/0x2680 fs/ext4/extents.c:4182 ext4_map_blocks+0x929/0x15a0 fs/ext4/inode.c:660 ext4_iomap_begin_report+0x298/0x480 fs/ext4/inode.c:3569 iomap_iter+0x3dd/0x1010 fs/iomap/iter.c:91 iomap_fiemap+0x1f4/0x360 fs/iomap/fiemap.c:80 ext4_fiemap+0x181/0x210 fs/ext4/extents.c:5051 ioctl_fiemap.isra.0+0x1b4/0x290 fs/ioctl.c:220 do_vfs_ioctl+0x31c/0x11a0 fs/ioctl.c:811 __do_sys_ioctl fs/ioctl.c:869 [inline] __se_sys_ioctl+0xae/0x190 fs/ioctl.c:857 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x70/0x120 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x78/0xe2 Allocated by task 232719: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x87/0x90 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:188 [inline] slab_post_alloc_hook mm/slab.h:768 [inline] slab_alloc_node mm/slub.c:3492 [inline] kmem_cache_alloc_node+0x1b8/0x6f0 mm/slub.c:3537 bfq_get_queue+0x215/0x1f00 block/bfq-iosched.c:5869 bfq_get_bfqq_handle_split+0x167/0x5f0 block/bfq-iosched.c:6776 bfq_init_rq+0x13a4/0x17a0 block/bfq-iosched.c:6938 bfq_insert_request.isra.0+0xe8/0xa20 block/bfq-iosched.c:6271 bfq_insert_requests+0x27f/0x390 block/bfq-iosched.c:6323 blk_mq_insert_request+0x290/0x8f0 block/blk-mq.c:2660 blk_mq_submit_bio+0x1021/0x15e0 block/blk-mq.c:3143 __submit_bio+0xa0/0x6b0 block/blk-core.c:639 __submit_bio_noacct_mq block/blk-core.c:718 [inline] submit_bio_noacct_nocheck+0x5b7/0x810 block/blk-core.c:747 submit_bio_noacct+0xca0/0x1990 block/blk-core.c:847 __ext4_read_bh fs/ext4/super.c:205 [inline] ext4_read_bh_nowait+0x15a/0x240 fs/ext4/super.c:217 ext4_read_bh_lock+0xac/0xd0 fs/ext4/super.c:242 ext4_bread_batch+0x268/0x500 fs/ext4/inode.c:958 __ext4_find_entry+0x448/0x10f0 fs/ext4/namei.c:1671 ext4_lookup_entry fs/ext4/namei.c:1774 [inline] ext4_lookup.part.0+0x359/0x6f0 fs/ext4/namei.c:1842 ext4_lookup+0x72/0x90 fs/ext4/namei.c:1839 __lookup_slow+0x257/0x480 fs/namei.c:1696 lookup_slow fs/namei.c:1713 [inline] walk_component+0x454/0x5c0 fs/namei.c:2004 link_path_walk.part.0+0x773/0xda0 fs/namei.c:2331 link_path_walk fs/namei.c:3826 [inline] path_openat+0x1b9/0x520 fs/namei.c:3826 do_filp_open+0x1b7/0x400 fs/namei.c:3857 do_sys_openat2+0x5dc/0x6e0 fs/open.c:1428 do_sys_open fs/open.c:1443 [inline] __do_sys_openat fs/open.c:1459 [inline] __se_sys_openat fs/open.c:1454 [inline] __x64_sys_openat+0x148/0x200 fs/open.c:1454 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_6 ---truncated---
7.8
High
CVE-2024-57857 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Remove direct link to net_device Do not manage a per device direct link to net_device. Rely on associated ib_devices net_device management, not doubling the effort locally. A badly managed local link to net_device was causing a 'KASAN: slab-use-after-free' exception during siw_query_port() call.
7.8
High
CVE-2024-57841 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fix memory leak in tcp_conn_request() If inet_csk_reqsk_queue_hash_add() return false, tcp_conn_request() will return without free the dst memory, which allocated in af_ops->route_req. Here is the kmemleak stack: unreferenced object 0xffff8881198631c0 (size 240): comm "softirq", pid 0, jiffies 4299266571 (age 1802.392s) hex dump (first 32 bytes): 00 10 9b 03 81 88 ff ff 80 98 da bc ff ff ff ff ................ 81 55 18 bb ff ff ff ff 00 00 00 00 00 00 00 00 .U.............. backtrace: [] kmem_cache_alloc+0x60c/0xa80 [] dst_alloc+0x55/0x250 [] rt_dst_alloc+0x46/0x1d0 [] __mkroute_output+0x29a/0xa50 [] ip_route_output_key_hash+0x10b/0x240 [] ip_route_output_flow+0x1d/0x90 [] inet_csk_route_req+0x2c5/0x500 [] tcp_conn_request+0x691/0x12c0 [] tcp_rcv_state_process+0x3c8/0x11b0 [] tcp_v4_do_rcv+0x156/0x3b0 [] tcp_v4_rcv+0x1cf8/0x1d80 [] ip_protocol_deliver_rcu+0xf6/0x360 [] ip_local_deliver_finish+0xe6/0x1e0 [] ip_local_deliver+0xee/0x360 [] ip_rcv+0xad/0x2f0 [] __netif_receive_skb_one_core+0x123/0x140 Call dst_release() to free the dst memory when inet_csk_reqsk_queue_hash_add() return false in tcp_conn_request().
5.5
Medium
CVE-2024-57802 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: netrom: check buffer length before accessing it Syzkaller reports an uninit value read from ax25cmp when sending raw message through ieee802154 implementation. ===================================================== BUG: KMSAN: uninit-value in ax25cmp+0x3a5/0x460 net/ax25/ax25_addr.c:119 ax25cmp+0x3a5/0x460 net/ax25/ax25_addr.c:119 nr_dev_get+0x20e/0x450 net/netrom/nr_route.c:601 nr_route_frame+0x1a2/0xfc0 net/netrom/nr_route.c:774 nr_xmit+0x5a/0x1c0 net/netrom/nr_dev.c:144 __netdev_start_xmit include/linux/netdevice.h:4940 [inline] netdev_start_xmit include/linux/netdevice.h:4954 [inline] xmit_one net/core/dev.c:3548 [inline] dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564 __dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349 dev_queue_xmit include/linux/netdevice.h:3134 [inline] raw_sendmsg+0x654/0xc10 net/ieee802154/socket.c:299 ieee802154_sock_sendmsg+0x91/0xc0 net/ieee802154/socket.c:96 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768 slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560 __alloc_skb+0x318/0x740 net/core/skbuff.c:651 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334 sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2780 sock_alloc_send_skb include/net/sock.h:1884 [inline] raw_sendmsg+0x36d/0xc10 net/ieee802154/socket.c:282 ieee802154_sock_sendmsg+0x91/0xc0 net/ieee802154/socket.c:96 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] ____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638 __sys_sendmsg net/socket.c:2667 [inline] __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x307/0x490 net/socket.c:2674 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b CPU: 0 PID: 5037 Comm: syz-executor166 Not tainted 6.7.0-rc7-syzkaller-00003-gfbafc3e621c3 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023 ===================================================== This issue occurs because the skb buffer is too small, and it's actual allocation is aligned. This hides an actual issue, which is that nr_route_frame does not validate the buffer size before using it. Fix this issue by checking skb->len before accessing any fields in skb->data. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
5.5
Medium
CVE-2024-57801 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Skip restore TC rules for vport rep without loaded flag During driver unload, unregister_netdev is called after unloading vport rep. So, the mlx5e_rep_priv is already freed while trying to get rpriv->netdev, or walk rpriv->tc_ht, which results in use-after-free. So add the checking to make sure access the data of vport rep which is still loaded.
7.8
High
CVE-2024-57795 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Remove the direct link to net_device The similar patch in siw is in the link: https://git.kernel.org/rdma/rdma/c/16b87037b48889 This problem also occurred in RXE. The following analyze this problem. In the following Call Traces: " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 Read of size 4 at addr ffff8880554640b0 by task kworker/1:4/5295 CPU: 1 UID: 0 PID: 5295 Comm: kworker/1:4 Not tainted 6.12.0-rc3-syzkaller-00399-g9197b73fd7bb #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: infiniband ib_cache_event_task Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 rxe_query_port+0x12d/0x260 drivers/infiniband/sw/rxe/rxe_verbs.c:60 __ib_query_port drivers/infiniband/core/device.c:2111 [inline] ib_query_port+0x168/0x7d0 drivers/infiniband/core/device.c:2143 ib_cache_update+0x1a9/0xb80 drivers/infiniband/core/cache.c:1494 ib_cache_event_task+0xf3/0x1e0 drivers/infiniband/core/cache.c:1568 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f2/0x390 kernel/kthread.c:389 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 " 1). In the link [1], " infiniband syz2: set down " This means that on 839.350575, the event ib_cache_event_task was sent andi queued in ib_wq. 2). In the link [1], " team0 (unregistering): Port device team_slave_0 removed " It indicates that before 843.251853, the net device should be freed. 3). In the link [1], " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 " This means that on 850.559070, this slab-use-after-free problem occurred. In all, on 839.350575, the event ib_cache_event_task was sent and queued in ib_wq, before 843.251853, the net device veth was freed. on 850.559070, this event was executed, and the mentioned freed net device was called. Thus, the above call trace occurred. [1] https://syzkaller.appspot.com/x/log.txt?x=12e7025f980000
7.8
High
CVE-2024-36476 2025-01-15 13h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/rtrs: Ensure 'ib_sge list' is accessible Move the declaration of the 'ib_sge list' variable outside the 'always_invalidate' block to ensure it remains accessible for use throughout the function. Previously, 'ib_sge list' was declared within the 'always_invalidate' block, limiting its accessibility, then caused a 'BUG: kernel NULL pointer dereference'[1]. ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2d0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? memcpy_orig+0xd5/0x140 rxe_mr_copy+0x1c3/0x200 [rdma_rxe] ? rxe_pool_get_index+0x4b/0x80 [rdma_rxe] copy_data+0xa5/0x230 [rdma_rxe] rxe_requester+0xd9b/0xf70 [rdma_rxe] ? finish_task_switch.isra.0+0x99/0x2e0 rxe_sender+0x13/0x40 [rdma_rxe] do_task+0x68/0x1e0 [rdma_rxe] process_one_work+0x177/0x330 worker_thread+0x252/0x390 ? __pfx_worker_thread+0x10/0x10 This change ensures the variable is available for subsequent operations that require it. [1] https://lore.kernel.org/linux-rdma/[email protected]/
5.5
Medium
CVE-2024-57900 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: ila: serialize calls to nf_register_net_hooks() syzbot found a race in ila_add_mapping() [1] commit 031ae72825ce ("ila: call nf_unregister_net_hooks() sooner") attempted to fix a similar issue. Looking at the syzbot repro, we have concurrent ILA_CMD_ADD commands. Add a mutex to make sure at most one thread is calling nf_register_net_hooks(). [1] BUG: KASAN: slab-use-after-free in rht_key_hashfn include/linux/rhashtable.h:159 [inline] BUG: KASAN: slab-use-after-free in __rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604 Read of size 4 at addr ffff888028f40008 by task dhcpcd/5501 CPU: 1 UID: 0 PID: 5501 Comm: dhcpcd Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xc3/0x620 mm/kasan/report.c:489 kasan_report+0xd9/0x110 mm/kasan/report.c:602 rht_key_hashfn include/linux/rhashtable.h:159 [inline] __rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604 rhashtable_lookup include/linux/rhashtable.h:646 [inline] rhashtable_lookup_fast include/linux/rhashtable.h:672 [inline] ila_lookup_wildcards net/ipv6/ila/ila_xlat.c:127 [inline] ila_xlat_addr net/ipv6/ila/ila_xlat.c:652 [inline] ila_nf_input+0x1ee/0x620 net/ipv6/ila/ila_xlat.c:185 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xbb/0x200 net/netfilter/core.c:626 nf_hook.constprop.0+0x42e/0x750 include/linux/netfilter.h:269 NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0xa4/0x680 net/ipv6/ip6_input.c:309 __netif_receive_skb_one_core+0x12e/0x1e0 net/core/dev.c:5672 __netif_receive_skb+0x1d/0x160 net/core/dev.c:5785 process_backlog+0x443/0x15f0 net/core/dev.c:6117 __napi_poll.constprop.0+0xb7/0x550 net/core/dev.c:6883 napi_poll net/core/dev.c:6952 [inline] net_rx_action+0xa94/0x1010 net/core/dev.c:7074 handle_softirqs+0x213/0x8f0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0x109/0x170 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0xa4/0xc0 arch/x86/kernel/apic/apic.c:1049
7.8
High
CVE-2024-57896 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount During the unmount path, at close_ctree(), we first stop the cleaner kthread, using kthread_stop() which frees the associated task_struct, and then stop and destroy all the work queues. However after we stopped the cleaner we may still have a worker from the delalloc_workers queue running inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(), which in turn tries to wake up the cleaner kthread - which was already destroyed before, resulting in a use-after-free on the task_struct. Syzbot reported this with the following stack traces: BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: btrfs-delalloc btrfs_work_helper Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162 class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline] try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205 submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615 run_ordered_work fs/btrfs/async-thread.c:288 [inline] btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 2: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:319 [inline] __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345 kasan_slab_alloc include/linux/kasan.h:250 [inline] slab_post_alloc_hook mm/slub.c:4104 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1113 copy_process+0x5d1/0x3d50 kernel/fork.c:2225 kernel_clone+0x223/0x870 kernel/fork.c:2807 kernel_thread+0x1bc/0x240 kernel/fork.c:2869 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:767 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 24: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kmem_cache_free+0x195/0x410 mm/slub.c:4700 put_task_struct include/linux/sched/task.h:144 [inline] delayed_put_task_struct+0x125/0x300 kernel/exit.c:227 rcu_do_batch kernel/rcu/tree.c:2567 [inline] rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554 run_ksoftirqd+0xca/0x130 kernel/softirq.c:943 ---truncated---
7.8
High
CVE-2024-57895 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: set ATTR_CTIME flags when setting mtime David reported that the new warning from setattr_copy_mgtime is coming like the following. [ 113.215316] ------------[ cut here ]------------ [ 113.215974] WARNING: CPU: 1 PID: 31 at fs/attr.c:300 setattr_copy+0x1ee/0x200 [ 113.219192] CPU: 1 UID: 0 PID: 31 Comm: kworker/1:1 Not tainted 6.13.0-rc1+ #234 [ 113.220127] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 [ 113.221530] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] [ 113.222220] RIP: 0010:setattr_copy+0x1ee/0x200 [ 113.222833] Code: 24 28 49 8b 44 24 30 48 89 53 58 89 43 6c 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 48 89 df e8 77 d6 ff ff e9 cd fe ff ff <0f> 0b e9 be fe ff ff 66 0 [ 113.225110] RSP: 0018:ffffaf218010fb68 EFLAGS: 00010202 [ 113.225765] RAX: 0000000000000120 RBX: ffffa446815f8568 RCX: 0000000000000003 [ 113.226667] RDX: ffffaf218010fd38 RSI: ffffa446815f8568 RDI: ffffffff94eb03a0 [ 113.227531] RBP: ffffaf218010fb90 R08: 0000001a251e217d R09: 00000000675259fa [ 113.228426] R10: 0000000002ba8a6d R11: ffffa4468196c7a8 R12: ffffaf218010fd38 [ 113.229304] R13: 0000000000000120 R14: ffffffff94eb03a0 R15: 0000000000000000 [ 113.230210] FS: 0000000000000000(0000) GS:ffffa44739d00000(0000) knlGS:0000000000000000 [ 113.231215] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 113.232055] CR2: 00007efe0053d27e CR3: 000000000331a000 CR4: 00000000000006b0 [ 113.232926] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 113.233812] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 113.234797] Call Trace: [ 113.235116] [ 113.235393] ? __warn+0x73/0xd0 [ 113.235802] ? setattr_copy+0x1ee/0x200 [ 113.236299] ? report_bug+0xf3/0x1e0 [ 113.236757] ? handle_bug+0x4d/0x90 [ 113.237202] ? exc_invalid_op+0x13/0x60 [ 113.237689] ? asm_exc_invalid_op+0x16/0x20 [ 113.238185] ? setattr_copy+0x1ee/0x200 [ 113.238692] btrfs_setattr+0x80/0x820 [btrfs] [ 113.239285] ? get_stack_info_noinstr+0x12/0xf0 [ 113.239857] ? __module_address+0x22/0xa0 [ 113.240368] ? handle_ksmbd_work+0x6e/0x460 [ksmbd] [ 113.240993] ? __module_text_address+0x9/0x50 [ 113.241545] ? __module_address+0x22/0xa0 [ 113.242033] ? unwind_next_frame+0x10e/0x920 [ 113.242600] ? __pfx_stack_trace_consume_entry+0x10/0x10 [ 113.243268] notify_change+0x2c2/0x4e0 [ 113.243746] ? stack_depot_save_flags+0x27/0x730 [ 113.244339] ? set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.244993] set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.245613] ? process_scheduled_works+0xbe/0x310 [ 113.246181] ? worker_thread+0x100/0x240 [ 113.246696] ? kthread+0xc8/0x100 [ 113.247126] ? ret_from_fork+0x2b/0x40 [ 113.247606] ? ret_from_fork_asm+0x1a/0x30 [ 113.248132] smb2_set_info+0x63f/0xa70 [ksmbd] ksmbd is trying to set the atime and mtime via notify_change without also setting the ctime. so This patch add ATTR_CTIME flags when setting mtime to avoid a warning.
5.5
Medium
CVE-2024-57892 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix slab-use-after-free due to dangling pointer dqi_priv When mounting ocfs2 and then remounting it as read-only, a slab-use-after-free occurs after the user uses a syscall to quota_getnextquota. Specifically, sb_dqinfo(sb, type)->dqi_priv is the dangling pointer. During the remounting process, the pointer dqi_priv is freed but is never set as null leaving it to be accessed. Additionally, the read-only option for remounting sets the DQUOT_SUSPENDED flag instead of setting the DQUOT_USAGE_ENABLED flags. Moreover, later in the process of getting the next quota, the function ocfs2_get_next_id is called and only checks the quota usage flags and not the quota suspended flags. To fix this, I set dqi_priv to null when it is freed after remounting with read-only and put a check for DQUOT_SUSPENDED in ocfs2_get_next_id. [[email protected]: coding-style cleanups]
7.8
High
CVE-2024-57890 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/uverbs: Prevent integer overflow issue In the expression "cmd.wqe_size * cmd.wr_count", both variables are u32 values that come from the user so the multiplication can lead to integer wrapping. Then we pass the result to uverbs_request_next_ptr() which also could potentially wrap. The "cmd.sge_count * sizeof(struct ib_uverbs_sge)" multiplication can also overflow on 32bit systems although it's fine on 64bit systems. This patch does two things. First, I've re-arranged the condition in uverbs_request_next_ptr() so that the use controlled variable "len" is on one side of the comparison by itself without any math. Then I've modified all the callers to use size_mul() for the multiplications.
5.5
Medium
CVE-2024-57887 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm: adv7511: Fix use-after-free in adv7533_attach_dsi() The host_node pointer was assigned and freed in adv7533_parse_dt(), and later, adv7533_attach_dsi() uses the same. Fix this use-after-free issue by dropping of_node_put() in adv7533_parse_dt() and calling of_node_put() in error path of probe() and also in the remove().
7.8
High
CVE-2024-57882 2025-01-15 13h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: fix TCP options overflow. Syzbot reported the following splat: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 1 UID: 0 PID: 5836 Comm: sshd Not tainted 6.13.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 RIP: 0010:_compound_head include/linux/page-flags.h:242 [inline] RIP: 0010:put_page+0x23/0x260 include/linux/mm.h:1552 Code: 90 90 90 90 90 90 90 55 41 57 41 56 53 49 89 fe 48 bd 00 00 00 00 00 fc ff df e8 f8 5e 12 f8 49 8d 5e 08 48 89 d8 48 c1 e8 03 <80> 3c 28 00 74 08 48 89 df e8 8f c7 78 f8 48 8b 1b 48 89 de 48 83 RSP: 0000:ffffc90003916c90 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000008 RCX: ffff888030458000 RDX: 0000000000000100 RSI: 0000000000000000 RDI: 0000000000000000 RBP: dffffc0000000000 R08: ffffffff898ca81d R09: 1ffff110054414ac R10: dffffc0000000000 R11: ffffed10054414ad R12: 0000000000000007 R13: ffff88802a20a542 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f34f496e800(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9d6ec9ec28 CR3: 000000004d260000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: skb_page_unref include/linux/skbuff_ref.h:43 [inline] __skb_frag_unref include/linux/skbuff_ref.h:56 [inline] skb_release_data+0x483/0x8a0 net/core/skbuff.c:1119 skb_release_all net/core/skbuff.c:1190 [inline] __kfree_skb+0x55/0x70 net/core/skbuff.c:1204 tcp_clean_rtx_queue net/ipv4/tcp_input.c:3436 [inline] tcp_ack+0x2442/0x6bc0 net/ipv4/tcp_input.c:4032 tcp_rcv_state_process+0x8eb/0x44e0 net/ipv4/tcp_input.c:6805 tcp_v4_do_rcv+0x77d/0xc70 net/ipv4/tcp_ipv4.c:1939 tcp_v4_rcv+0x2dc0/0x37f0 net/ipv4/tcp_ipv4.c:2351 ip_protocol_deliver_rcu+0x22e/0x440 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x341/0x5f0 net/ipv4/ip_input.c:233 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 __netif_receive_skb_one_core net/core/dev.c:5672 [inline] __netif_receive_skb+0x2bf/0x650 net/core/dev.c:5785 process_backlog+0x662/0x15b0 net/core/dev.c:6117 __napi_poll+0xcb/0x490 net/core/dev.c:6883 napi_poll net/core/dev.c:6952 [inline] net_rx_action+0x89b/0x1240 net/core/dev.c:7074 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0x57/0xc0 arch/x86/kernel/apic/apic.c:1049 asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 RIP: 0033:0x7f34f4519ad5 Code: 85 d2 74 0d 0f 10 02 48 8d 54 24 20 0f 11 44 24 20 64 8b 04 25 18 00 00 00 85 c0 75 27 41 b8 08 00 00 00 b8 0f 01 00 00 0f 05 <48> 3d 00 f0 ff ff 76 75 48 8b 15 24 73 0d 00 f7 d8 64 89 02 48 83 RSP: 002b:00007ffec5b32ce0 EFLAGS: 00000246 RAX: 0000000000000001 RBX: 00000000000668a0 RCX: 00007f34f4519ad5 RDX: 00007ffec5b32d00 RSI: 0000000000000004 RDI: 0000564f4bc6cae0 RBP: 0000564f4bc6b5a0 R08: 0000000000000008 R09: 0000000000000000 R10: 00007ffec5b32de8 R11: 0000000000000246 R12: 0000564f48ea8aa4 R13: 0000000000000001 R14: 0000564f48ea93e8 R15: 00007ffec5b32d68 Eric noted a probable shinfo->nr_frags corruption, which indeed occurs. The root cause is a buggy MPTCP option len computation in some circumstances: the ADD_ADDR option should be mutually exclusive with DSS since the blamed commit. Still, mptcp_established_options_add_addr() tries to set the relevant info in mptcp_out_options, if ---truncated---
5.5
Medium
CVE-2024-57874 2025-01-11 14h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: arm64: ptrace: fix partial SETREGSET for NT_ARM_TAGGED_ADDR_CTRL Currently tagged_addr_ctrl_set() doesn't initialize the temporary 'ctrl' variable, and a SETREGSET call with a length of zero will leave this uninitialized. Consequently tagged_addr_ctrl_set() will consume an arbitrary value, potentially leaking up to 64 bits of memory from the kernel stack. The read is limited to a specific slot on the stack, and the issue does not provide a write mechanism. As set_tagged_addr_ctrl() only accepts values where bits [63:4] zero and rejects other values, a partial SETREGSET attempt will randomly succeed or fail depending on the value of the uninitialized value, and the exposure is significantly limited. Fix this by initializing the temporary value before copying the regset from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG, NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing value of the tagged address ctrl will be retained. The NT_ARM_TAGGED_ADDR_CTRL regset is only visible in the user_aarch64_view used by a native AArch64 task to manipulate another native AArch64 task. As get_tagged_addr_ctrl() only returns an error value when called for a compat task, tagged_addr_ctrl_get() and tagged_addr_ctrl_set() should never observe an error value from get_tagged_addr_ctrl(). Add a WARN_ON_ONCE() to both to indicate that such an error would be unexpected, and error handlnig is not missing in either case.
6.1
Medium
CVE-2024-57872 2025-01-11 14h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: pltfrm: Dellocate HBA during ufshcd_pltfrm_remove() This will ensure that the scsi host is cleaned up properly using scsi_host_dev_release(). Otherwise, it may lead to memory leaks.
5.5
Medium
CVE-2024-57807 2025-01-11 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix for a potential deadlock This fixes a 'possible circular locking dependency detected' warning CPU0 CPU1 ---- ---- lock(&instance->reset_mutex); lock(&shost->scan_mutex); lock(&instance->reset_mutex); lock(&shost->scan_mutex); Fix this by temporarily releasing the reset_mutex.
5.5
Medium
CVE-2024-57798 2025-01-11 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/dp_mst: Ensure mst_primary pointer is valid in drm_dp_mst_handle_up_req() While receiving an MST up request message from one thread in drm_dp_mst_handle_up_req(), the MST topology could be removed from another thread via drm_dp_mst_topology_mgr_set_mst(false), freeing mst_primary and setting drm_dp_mst_topology_mgr::mst_primary to NULL. This could lead to a NULL deref/use-after-free of mst_primary in drm_dp_mst_handle_up_req(). Avoid the above by holding a reference for mst_primary in drm_dp_mst_handle_up_req() while it's used. v2: Fix kfreeing the request if getting an mst_primary reference fails.
7.8
High
CVE-2024-56369 2025-01-11 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/modes: Avoid divide by zero harder in drm_mode_vrefresh() drm_mode_vrefresh() is trying to avoid divide by zero by checking whether htotal or vtotal are zero. But we may still end up with a div-by-zero of vtotal*htotal*...
5.5
Medium
CVE-2024-55916 2025-01-11 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: util: Avoid accessing a ringbuffer not initialized yet If the KVP (or VSS) daemon starts before the VMBus channel's ringbuffer is fully initialized, we can hit the panic below: hv_utils: Registering HyperV Utility Driver hv_vmbus: registering driver hv_utils ... BUG: kernel NULL pointer dereference, address: 0000000000000000 CPU: 44 UID: 0 PID: 2552 Comm: hv_kvp_daemon Tainted: G E 6.11.0-rc3+ #1 RIP: 0010:hv_pkt_iter_first+0x12/0xd0 Call Trace: ... vmbus_recvpacket hv_kvp_onchannelcallback vmbus_on_event tasklet_action_common tasklet_action handle_softirqs irq_exit_rcu sysvec_hyperv_stimer0 asm_sysvec_hyperv_stimer0 ... kvp_register_done hvt_op_read vfs_read ksys_read __x64_sys_read This can happen because the KVP/VSS channel callback can be invoked even before the channel is fully opened: 1) as soon as hv_kvp_init() -> hvutil_transport_init() creates /dev/vmbus/hv_kvp, the kvp daemon can open the device file immediately and register itself to the driver by writing a message KVP_OP_REGISTER1 to the file (which is handled by kvp_on_msg() ->kvp_handle_handshake()) and reading the file for the driver's response, which is handled by hvt_op_read(), which calls hvt->on_read(), i.e. kvp_register_done(). 2) the problem with kvp_register_done() is that it can cause the channel callback to be called even before the channel is fully opened, and when the channel callback is starting to run, util_probe()-> vmbus_open() may have not initialized the ringbuffer yet, so the callback can hit the panic of NULL pointer dereference. To reproduce the panic consistently, we can add a "ssleep(10)" for KVP in __vmbus_open(), just before the first hv_ringbuffer_init(), and then we unload and reload the driver hv_utils, and run the daemon manually within the 10 seconds. Fix the panic by reordering the steps in util_probe() so the char dev entry used by the KVP or VSS daemon is not created until after vmbus_open() has completed. This reordering prevents the race condition from happening.
5.5
Medium
CVE-2024-54683 2025-01-11 12h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: IDLETIMER: Fix for possible ABBA deadlock Deletion of the last rule referencing a given idletimer may happen at the same time as a read of its file in sysfs: | ====================================================== | WARNING: possible circular locking dependency detected | 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted | ------------------------------------------------------ | iptables/3303 is trying to acquire lock: | ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20 | | but task is already holding lock: | ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v] | | which lock already depends on the new lock. A simple reproducer is: | #!/bin/bash | | while true; do | iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | done & | while true; do | cat /sys/class/xt_idletimer/timers/testme >/dev/null | done Avoid this by freeing list_mutex right after deleting the element from the list, then continuing with the teardown.
5.5
Medium
CVE-2024-50051 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: spi: mpc52xx: Add cancel_work_sync before module remove If we remove the module which will call mpc52xx_spi_remove it will free 'ms' through spi_unregister_controller. while the work ms->work will be used. The sequence of operations that may lead to a UAF bug. Fix it by ensuring that the work is canceled before proceeding with the cleanup in mpc52xx_spi_remove.
7.8
High
CVE-2024-48881 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: bcache: revert replacing IS_ERR_OR_NULL with IS_ERR again Commit 028ddcac477b ("bcache: Remove unnecessary NULL point check in node allocations") leads a NULL pointer deference in cache_set_flush(). 1721 if (!IS_ERR_OR_NULL(c->root)) 1722 list_add(&c->root->list, &c->btree_cache); >From the above code in cache_set_flush(), if previous registration code fails before allocating c->root, it is possible c->root is NULL as what it is initialized. __bch_btree_node_alloc() never returns NULL but c->root is possible to be NULL at above line 1721. This patch replaces IS_ERR() by IS_ERR_OR_NULL() to fix this.
5.5
Medium
CVE-2024-48875 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't take dev_replace rwsem on task already holding it Running fstests btrfs/011 with MKFS_OPTIONS="-O rst" to force the usage of the RAID stripe-tree, we get the following splat from lockdep: BTRFS info (device sdd): dev_replace from /dev/sdd (devid 1) to /dev/sdb started ============================================ WARNING: possible recursive locking detected 6.11.0-rc3-btrfs-for-next #599 Not tainted -------------------------------------------- btrfs/2326 is trying to acquire lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 but task is already holding lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&fs_info->dev_replace.rwsem); lock(&fs_info->dev_replace.rwsem); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by btrfs/2326: #0: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 stack backtrace: CPU: 1 UID: 0 PID: 2326 Comm: btrfs Not tainted 6.11.0-rc3-btrfs-for-next #599 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack_lvl+0x5b/0x80 __lock_acquire+0x2798/0x69d0 ? __pfx___lock_acquire+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 lock_acquire+0x19d/0x4a0 ? btrfs_map_block+0x39f/0x2250 ? __pfx_lock_acquire+0x10/0x10 ? find_held_lock+0x2d/0x110 ? lock_is_held_type+0x8f/0x100 down_read+0x8e/0x440 ? btrfs_map_block+0x39f/0x2250 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x39f/0x2250 ? btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? btrfs_bio_counter_inc_blocked+0xd9/0x2e0 ? __kasan_slab_alloc+0x6e/0x70 ? __pfx_btrfs_map_block+0x10/0x10 ? __pfx_btrfs_bio_counter_inc_blocked+0x10/0x10 ? kmem_cache_alloc_noprof+0x1f2/0x300 ? mempool_alloc_noprof+0xed/0x2b0 btrfs_submit_chunk+0x28d/0x17e0 ? __pfx_btrfs_submit_chunk+0x10/0x10 ? bvec_alloc+0xd7/0x1b0 ? bio_add_folio+0x171/0x270 ? __pfx_bio_add_folio+0x10/0x10 ? __kasan_check_read+0x20/0x20 btrfs_submit_bio+0x37/0x80 read_extent_buffer_pages+0x3df/0x6c0 btrfs_read_extent_buffer+0x13e/0x5f0 read_tree_block+0x81/0xe0 read_block_for_search+0x4bd/0x7a0 ? __pfx_read_block_for_search+0x10/0x10 btrfs_search_slot+0x78d/0x2720 ? __pfx_btrfs_search_slot+0x10/0x10 ? lock_is_held_type+0x8f/0x100 ? kasan_save_track+0x14/0x30 ? __kasan_slab_alloc+0x6e/0x70 ? kmem_cache_alloc_noprof+0x1f2/0x300 btrfs_get_raid_extent_offset+0x181/0x820 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_btrfs_get_raid_extent_offset+0x10/0x10 ? down_read+0x194/0x440 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x5b5/0x2250 ? __pfx_btrfs_map_block+0x10/0x10 scrub_submit_initial_read+0x8fe/0x11b0 ? __pfx_scrub_submit_initial_read+0x10/0x10 submit_initial_group_read+0x161/0x3a0 ? lock_release+0x20e/0x710 ? __pfx_submit_initial_group_read+0x10/0x10 ? __pfx_lock_release+0x10/0x10 scrub_simple_mirror.isra.0+0x3eb/0x580 scrub_stripe+0xe4d/0x1440 ? lock_release+0x20e/0x710 ? __pfx_scrub_stripe+0x10/0x10 ? __pfx_lock_release+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 scrub_chunk+0x257/0x4a0 scrub_enumerate_chunks+0x64c/0xf70 ? __mutex_unlock_slowpath+0x147/0x5f0 ? __pfx_scrub_enumerate_chunks+0x10/0x10 ? bit_wait_timeout+0xb0/0x170 ? __up_read+0x189/0x700 ? scrub_workers_get+0x231/0x300 ? up_write+0x490/0x4f0 btrfs_scrub_dev+0x52e/0xcd0 ? create_pending_snapshots+0x230/0x250 ? __pfx_btrfs_scrub_dev+0x10/0x10 btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? lock_acquire+0x19d/0x4a0 ? __pfx_btrfs_dev_replace_by_ioctl+0x10/0x10 ? ---truncated---
5.5
Medium
CVE-2024-48873 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: check return value of ieee80211_probereq_get() for RNR The return value of ieee80211_probereq_get() might be NULL, so check it before using to avoid NULL pointer access. Addresses-Coverity-ID: 1529805 ("Dereference null return value")
5.5
Medium
CVE-2024-47809 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: dlm: fix possible lkb_resource null dereference This patch fixes a possible null pointer dereference when this function is called from request_lock() as lkb->lkb_resource is not assigned yet, only after validate_lock_args() by calling attach_lkb(). Another issue is that a resource name could be a non printable bytearray and we cannot assume to be ASCII coded. The log functionality is probably never being hit when DLM is used in normal way and no debug logging is enabled. The null pointer dereference can only occur on a new created lkb that does not have the resource assigned yet, it probably never hits the null pointer dereference but we should be sure that other changes might not change this behaviour and we actually can hit the mentioned null pointer dereference. In this patch we just drop the printout of the resource name, the lkb id is enough to make a possible connection to a resource name if this exists.
5.5
Medium
CVE-2024-47143 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: dma-debug: fix a possible deadlock on radix_lock radix_lock() shouldn't be held while holding dma_hash_entry[idx].lock otherwise, there's a possible deadlock scenario when dma debug API is called holding rq_lock(): CPU0 CPU1 CPU2 dma_free_attrs() check_unmap() add_dma_entry() __schedule() //out (A) rq_lock() get_hash_bucket() (A) dma_entry_hash check_sync() (A) radix_lock() (W) dma_entry_hash dma_entry_free() (W) radix_lock() // CPU2's one (W) rq_lock() CPU1 situation can happen when it extending radix tree and it tries to wake up kswapd via wake_all_kswapd(). CPU2 situation can happen while perf_event_task_sched_out() (i.e. dma sync operation is called while deleting perf_event using etm and etr tmc which are Arm Coresight hwtracing driver backends). To remove this possible situation, call dma_entry_free() after put_hash_bucket() in check_unmap().
5.5
Medium
CVE-2024-47141 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: pinmux: Use sequential access to access desc->pinmux data When two client of the same gpio call pinctrl_select_state() for the same functionality, we are seeing NULL pointer issue while accessing desc->mux_owner. Let's say two processes A, B executing in pin_request() for the same pin and process A updates the desc->mux_usecount but not yet updated the desc->mux_owner while process B see the desc->mux_usecount which got updated by A path and further executes strcmp and while accessing desc->mux_owner it crashes with NULL pointer. Serialize the access to mux related setting with a mutex lock. cpu0 (process A) cpu1(process B) pinctrl_select_state() { pinctrl_select_state() { pin_request() { pin_request() { ... .... } else { desc->mux_usecount++; desc->mux_usecount && strcmp(desc->mux_owner, owner)) { if (desc->mux_usecount > 1) return 0; desc->mux_owner = owner; } }
5.5
Medium
CVE-2024-45828 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: i3c: mipi-i3c-hci: Mask ring interrupts before ring stop request Bus cleanup path in DMA mode may trigger a RING_OP_STAT interrupt when the ring is being stopped. Depending on timing between ring stop request completion, interrupt handler removal and code execution this may lead to a NULL pointer dereference in hci_dma_irq_handler() if it gets to run after the io_data pointer is set to NULL in hci_dma_cleanup(). Prevent this my masking the ring interrupts before ring stop request.
5.5
Medium
CVE-2024-43098 2025-01-11 12h25 +00:00 In the Linux kernel, the following vulnerability has been resolved: i3c: Use i3cdev->desc->info instead of calling i3c_device_get_info() to avoid deadlock A deadlock may happen since the i3c_master_register() acquires &i3cbus->lock twice. See the log below. Use i3cdev->desc->info instead of calling i3c_device_info() to avoid acquiring the lock twice. v2: - Modified the title and commit message ============================================ WARNING: possible recursive locking detected 6.11.0-mainline -------------------------------------------- init/1 is trying to acquire lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_bus_normaluse_lock but task is already holding lock: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&i3cbus->lock); lock(&i3cbus->lock); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by init/1: #0: fcffff809b6798f8 (&dev->mutex){....}-{3:3}, at: __driver_attach #1: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register stack backtrace: CPU: 6 UID: 0 PID: 1 Comm: init Call trace: dump_backtrace+0xfc/0x17c show_stack+0x18/0x28 dump_stack_lvl+0x40/0xc0 dump_stack+0x18/0x24 print_deadlock_bug+0x388/0x390 __lock_acquire+0x18bc/0x32ec lock_acquire+0x134/0x2b0 down_read+0x50/0x19c i3c_bus_normaluse_lock+0x14/0x24 i3c_device_get_info+0x24/0x58 i3c_device_uevent+0x34/0xa4 dev_uevent+0x310/0x384 kobject_uevent_env+0x244/0x414 kobject_uevent+0x14/0x20 device_add+0x278/0x460 device_register+0x20/0x34 i3c_master_register_new_i3c_devs+0x78/0x154 i3c_master_register+0x6a0/0x6d4 mtk_i3c_master_probe+0x3b8/0x4d8 platform_probe+0xa0/0xe0 really_probe+0x114/0x454 __driver_probe_device+0xa0/0x15c driver_probe_device+0x3c/0x1ac __driver_attach+0xc4/0x1f0 bus_for_each_dev+0x104/0x160 driver_attach+0x24/0x34 bus_add_driver+0x14c/0x294 driver_register+0x68/0x104 __platform_driver_register+0x20/0x30 init_module+0x20/0xfe4 do_one_initcall+0x184/0x464 do_init_module+0x58/0x1ec load_module+0xefc/0x10c8 __arm64_sys_finit_module+0x238/0x33c invoke_syscall+0x58/0x10c el0_svc_common+0xa8/0xdc do_el0_svc+0x1c/0x28 el0_svc+0x50/0xac el0t_64_sync_handler+0x70/0xbc el0t_64_sync+0x1a8/0x1ac
5.5
Medium
CVE-2024-56787 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: soc: imx8m: Probe the SoC driver as platform driver With driver_async_probe=* on kernel command line, the following trace is produced because on i.MX8M Plus hardware because the soc-imx8m.c driver calls of_clk_get_by_name() which returns -EPROBE_DEFER because the clock driver is not yet probed. This was not detected during regular testing without driver_async_probe. Convert the SoC code to platform driver and instantiate a platform device in its current device_initcall() to probe the platform driver. Rework .soc_revision callback to always return valid error code and return SoC revision via parameter. This way, if anything in the .soc_revision callback return -EPROBE_DEFER, it gets propagated to .probe and the .probe will get retried later. " ------------[ cut here ]------------ WARNING: CPU: 1 PID: 1 at drivers/soc/imx/soc-imx8m.c:115 imx8mm_soc_revision+0xdc/0x180 CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-next-20240924-00002-g2062bb554dea #603 Hardware name: DH electronics i.MX8M Plus DHCOM Premium Developer Kit (3) (DT) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : imx8mm_soc_revision+0xdc/0x180 lr : imx8mm_soc_revision+0xd0/0x180 sp : ffff8000821fbcc0 x29: ffff8000821fbce0 x28: 0000000000000000 x27: ffff800081810120 x26: ffff8000818a9970 x25: 0000000000000006 x24: 0000000000824311 x23: ffff8000817f42c8 x22: ffff0000df8be210 x21: fffffffffffffdfb x20: ffff800082780000 x19: 0000000000000001 x18: ffffffffffffffff x17: ffff800081fff418 x16: ffff8000823e1000 x15: ffff0000c03b65e8 x14: ffff0000c00051b0 x13: ffff800082790000 x12: 0000000000000801 x11: ffff80008278ffff x10: ffff80008209d3a6 x9 : ffff80008062e95c x8 : ffff8000821fb9a0 x7 : 0000000000000000 x6 : 00000000000080e3 x5 : ffff0000df8c03d8 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : fffffffffffffdfb x0 : fffffffffffffdfb Call trace: imx8mm_soc_revision+0xdc/0x180 imx8_soc_init+0xb0/0x1e0 do_one_initcall+0x94/0x1a8 kernel_init_freeable+0x240/0x2a8 kernel_init+0x28/0x140 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- SoC: i.MX8MP revision 1.1 "
5.5
Medium
CVE-2024-56786 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: put bpf_link's program when link is safe to be deallocated In general, BPF link's underlying BPF program should be considered to be reachable through attach hook -> link -> prog chain, and, pessimistically, we have to assume that as long as link's memory is not safe to free, attach hook's code might hold a pointer to BPF program and use it. As such, it's not (generally) correct to put link's program early before waiting for RCU GPs to go through. More eager bpf_prog_put() that we currently do is mostly correct due to BPF program's release code doing similar RCU GP waiting, but as will be shown in the following patches, BPF program can be non-sleepable (and, thus, reliant on only "classic" RCU GP), while BPF link's attach hook can have sleepable semantics and needs to be protected by RCU Tasks Trace, and for such cases BPF link has to go through RCU Tasks Trace + "classic" RCU GPs before being deallocated. And so, if we put BPF program early, we might free BPF program before we free BPF link, leading to use-after-free situation. So, this patch defers bpf_prog_put() until we are ready to perform bpf_link's deallocation. At worst, this delays BPF program freeing by one extra RCU GP, but that seems completely acceptable. Alternatively, we'd need more elaborate ways to determine BPF hook, BPF link, and BPF program lifetimes, and how they relate to each other, which seems like an unnecessary complication. Note, for most BPF links we still will perform eager bpf_prog_put() and link dealloc, so for those BPF links there are no observable changes whatsoever. Only BPF links that use deferred dealloc might notice slightly delayed freeing of BPF programs. Also, to reduce code and logic duplication, extract program put + link dealloc logic into bpf_link_dealloc() helper.
7.8
High
CVE-2024-56785 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: MIPS: Loongson64: DTS: Really fix PCIe port nodes for ls7a Fix the dtc warnings: arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider arch/mips/boot/dts/loongson/loongson64g_4core_ls7a.dtb: Warning (interrupt_map): Failed prerequisite 'interrupt_provider' And a runtime warning introduced in commit 045b14ca5c36 ("of: WARN on deprecated #address-cells/#size-cells handling"): WARNING: CPU: 0 PID: 1 at drivers/of/base.c:106 of_bus_n_addr_cells+0x9c/0xe0 Missing '#address-cells' in /bus@10000000/pci@1a000000/pci_bridge@9,0 The fix is similar to commit d89a415ff8d5 ("MIPS: Loongson64: DTS: Fix PCIe port nodes for ls7a"), which has fixed the issue for ls2k (despite its subject mentions ls7a).
5.5
Medium
CVE-2024-56784 2025-01-08 17h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adding array index check to prevent memory corruption [Why & How] Array indices out of bound caused memory corruption. Adding checks to ensure that array index stays in bound.
7.8
High
CVE-2024-56783 2025-01-08 17h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_socket: remove WARN_ON_ONCE on maximum cgroup level cgroup maximum depth is INT_MAX by default, there is a cgroup toggle to restrict this maximum depth to a more reasonable value not to harm performance. Remove unnecessary WARN_ON_ONCE which is reachable from userspace.
5.5
Medium
CVE-2024-56782 2025-01-08 17h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: ACPI: x86: Add adev NULL check to acpi_quirk_skip_serdev_enumeration() acpi_dev_hid_match() does not check for adev == NULL, dereferencing it unconditional. Add a check for adev being NULL before calling acpi_dev_hid_match(). At the moment acpi_quirk_skip_serdev_enumeration() is never called with a controller_parent without an ACPI companion, but better safe than sorry.
5.5
Medium
CVE-2024-56781 2025-01-08 17h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/prom_init: Fixup missing powermac #size-cells On some powermacs `escc` nodes are missing `#size-cells` properties, which is deprecated and now triggers a warning at boot since commit 045b14ca5c36 ("of: WARN on deprecated #address-cells/#size-cells handling"). For example: Missing '#size-cells' in /pci@f2000000/mac-io@c/escc@13000 WARNING: CPU: 0 PID: 0 at drivers/of/base.c:133 of_bus_n_size_cells+0x98/0x108 Hardware name: PowerMac3,1 7400 0xc0209 PowerMac ... Call Trace: of_bus_n_size_cells+0x98/0x108 (unreliable) of_bus_default_count_cells+0x40/0x60 __of_get_address+0xc8/0x21c __of_address_to_resource+0x5c/0x228 pmz_init_port+0x5c/0x2ec pmz_probe.isra.0+0x144/0x1e4 pmz_console_init+0x10/0x48 console_init+0xcc/0x138 start_kernel+0x5c4/0x694 As powermacs boot via prom_init it's possible to add the missing properties to the device tree during boot, avoiding the warning. Note that `escc-legacy` nodes are also missing `#size-cells` properties, but they are skipped by the macio driver, so leave them alone. Depends-on: 045b14ca5c36 ("of: WARN on deprecated #address-cells/#size-cells handling")
5.5
Medium
CVE-2024-56780 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: quota: flush quota_release_work upon quota writeback One of the paths quota writeback is called from is: freeze_super() sync_filesystem() ext4_sync_fs() dquot_writeback_dquots() Since we currently don't always flush the quota_release_work queue in this path, we can end up with the following race: 1. dquot are added to releasing_dquots list during regular operations. 2. FS Freeze starts, however, this does not flush the quota_release_work queue. 3. Freeze completes. 4. Kernel eventually tries to flush the workqueue while FS is frozen which hits a WARN_ON since transaction gets started during frozen state: ext4_journal_check_start+0x28/0x110 [ext4] (unreliable) __ext4_journal_start_sb+0x64/0x1c0 [ext4] ext4_release_dquot+0x90/0x1d0 [ext4] quota_release_workfn+0x43c/0x4d0 Which is the following line: WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE); Which ultimately results in generic/390 failing due to dmesg noise. This was detected on powerpc machine 15 cores. To avoid this, make sure to flush the workqueue during dquot_writeback_dquots() so we dont have any pending workitems after freeze.
5.5
Medium
CVE-2024-56779 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfs4_openowner leak when concurrent nfsd4_open occur The action force umount(umount -f) will attempt to kill all rpc_task even umount operation may ultimately fail if some files remain open. Consequently, if an action attempts to open a file, it can potentially send two rpc_task to nfs server. NFS CLIENT thread1 thread2 open("file") ... nfs4_do_open _nfs4_do_open _nfs4_open_and_get_state _nfs4_proc_open nfs4_run_open_task /* rpc_task1 */ rpc_run_task rpc_wait_for_completion_task umount -f nfs_umount_begin rpc_killall_tasks rpc_signal_task rpc_task1 been wakeup and return -512 _nfs4_do_open // while loop ... nfs4_run_open_task /* rpc_task2 */ rpc_run_task rpc_wait_for_completion_task While processing an open request, nfsd will first attempt to find or allocate an nfs4_openowner. If it finds an nfs4_openowner that is not marked as NFS4_OO_CONFIRMED, this nfs4_openowner will released. Since two rpc_task can attempt to open the same file simultaneously from the client to server, and because two instances of nfsd can run concurrently, this situation can lead to lots of memory leak. Additionally, when we echo 0 to /proc/fs/nfsd/threads, warning will be triggered. NFS SERVER nfsd1 nfsd2 echo 0 > /proc/fs/nfsd/threads nfsd4_open nfsd4_process_open1 find_or_alloc_open_stateowner // alloc oo1, stateid1 nfsd4_open nfsd4_process_open1 find_or_alloc_open_stateowner // find oo1, without NFS4_OO_CONFIRMED release_openowner unhash_openowner_locked list_del_init(&oo->oo_perclient) // cannot find this oo // from client, LEAK!!! alloc_stateowner // alloc oo2 nfsd4_process_open2 init_open_stateid // associate oo1 // with stateid1, stateid1 LEAK!!! nfs4_get_vfs_file // alloc nfsd_file1 and nfsd_file_mark1 // all LEAK!!! nfsd4_process_open2 ... write_threads ... nfsd_destroy_serv nfsd_shutdown_net nfs4_state_shutdown_net nfs4_state_destroy_net destroy_client __destroy_client // won't find oo1!!! nfsd_shutdown_generic nfsd_file_cache_shutdown kmem_cache_destroy for nfsd_file_slab and nfsd_file_mark_slab // bark since nfsd_file1 // and nfsd_file_mark1 // still alive ======================================================================= BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on __kmem_cache_shutdown() ----------------------------------------------------------------------- Slab 0xffd4000004438a80 objects=34 used=1 fp=0xff11000110e2ad28 flags=0x17ffffc0000240(workingset|head|node=0|zone=2|lastcpupid=0x1fffff) CPU: 4 UID: 0 PID: 757 Comm: sh Not tainted 6.12.0-rc6+ #19 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: dum ---truncated---
5.5
Medium
CVE-2024-56778 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/sti: avoid potential dereference of error pointers in sti_hqvdp_atomic_check The return value of drm_atomic_get_crtc_state() needs to be checked. To avoid use of error pointer 'crtc_state' in case of the failure.
5.5
Medium
CVE-2024-56777 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/sti: avoid potential dereference of error pointers in sti_gdp_atomic_check The return value of drm_atomic_get_crtc_state() needs to be checked. To avoid use of error pointer 'crtc_state' in case of the failure.
5.5
Medium
CVE-2024-56776 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/sti: avoid potential dereference of error pointers The return value of drm_atomic_get_crtc_state() needs to be checked. To avoid use of error pointer 'crtc_state' in case of the failure.
5.5
Medium
CVE-2024-56775 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix handling of plane refcount [Why] The mechanism to backup and restore plane states doesn't maintain refcount, which can cause issues if the refcount of the plane changes in between backup and restore operations, such as memory leaks if the refcount was supposed to go down, or double frees / invalid memory accesses if the refcount was supposed to go up. [How] Cache and re-apply current refcount when restoring plane states.
7.8
High
CVE-2024-56774 2025-01-08 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: add a sanity check for btrfs root in btrfs_search_slot() Syzbot reports a null-ptr-deref in btrfs_search_slot(). The reproducer is using rescue=ibadroots, and the extent tree root is corrupted thus the extent tree is NULL. When scrub tries to search the extent tree to gather the needed extent info, btrfs_search_slot() doesn't check if the target root is NULL or not, resulting the null-ptr-deref. Add sanity check for btrfs root before using it in btrfs_search_slot().
5.5
Medium
CVE-2024-56770 2025-01-08 16h36 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: netem: account for backlog updates from child qdisc In general, 'qlen' of any classful qdisc should keep track of the number of packets that the qdisc itself and all of its children holds. In case of netem, 'qlen' only accounts for the packets in its internal tfifo. When netem is used with a child qdisc, the child qdisc can use 'qdisc_tree_reduce_backlog' to inform its parent, netem, about created or dropped SKBs. This function updates 'qlen' and the backlog statistics of netem, but netem does not account for changes made by a child qdisc. 'qlen' then indicates the wrong number of packets in the tfifo. If a child qdisc creates new SKBs during enqueue and informs its parent about this, netem's 'qlen' value is increased. When netem dequeues the newly created SKBs from the child, the 'qlen' in netem is not updated. If 'qlen' reaches the configured sch->limit, the enqueue function stops working, even though the tfifo is not full. Reproduce the bug: Ensure that the sender machine has GSO enabled. Configure netem as root qdisc and tbf as its child on the outgoing interface of the machine as follows: $ tc qdisc add dev root handle 1: netem delay 100ms limit 100 $ tc qdisc add dev parent 1:0 tbf rate 50Mbit burst 1542 latency 50ms Send bulk TCP traffic out via this interface, e.g., by running an iPerf3 client on the machine. Check the qdisc statistics: $ tc -s qdisc show dev Statistics after 10s of iPerf3 TCP test before the fix (note that netem's backlog > limit, netem stopped accepting packets): qdisc netem 1: root refcnt 2 limit 1000 delay 100ms Sent 2767766 bytes 1848 pkt (dropped 652, overlimits 0 requeues 0) backlog 4294528236b 1155p requeues 0 qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms Sent 2767766 bytes 1848 pkt (dropped 327, overlimits 7601 requeues 0) backlog 0b 0p requeues 0 Statistics after the fix: qdisc netem 1: root refcnt 2 limit 1000 delay 100ms Sent 37766372 bytes 24974 pkt (dropped 9, overlimits 0 requeues 0) backlog 0b 0p requeues 0 qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms Sent 37766372 bytes 24974 pkt (dropped 327, overlimits 96017 requeues 0) backlog 0b 0p requeues 0 tbf segments the GSO SKBs (tbf_segment) and updates the netem's 'qlen'. The interface fully stops transferring packets and "locks". In this case, the child qdisc and tfifo are empty, but 'qlen' indicates the tfifo is at its limit and no more packets are accepted. This patch adds a counter for the entries in the tfifo. Netem's 'qlen' is only decreased when a packet is returned by its dequeue function, and not during enqueuing into the child qdisc. External updates to 'qlen' are thus accounted for and only the behavior of the backlog statistics changes. As in other qdiscs, 'qlen' then keeps track of how many packets are held in netem and all of its children. As before, sch->limit remains as the maximum number of packets in the tfifo. The same applies to netem's backlog statistics.
5.5
Medium
CVE-2024-56769 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: dib3000mb: fix uninit-value in dib3000_write_reg Syzbot reports [1] an uninitialized value issue found by KMSAN in dib3000_read_reg(). Local u8 rb[2] is used in i2c_transfer() as a read buffer; in case that call fails, the buffer may end up with some undefined values. Since no elaborate error handling is expected in dib3000_write_reg(), simply zero out rb buffer to mitigate the problem. [1] Syzkaller report dvb-usb: bulk message failed: -22 (6/0) ===================================================== BUG: KMSAN: uninit-value in dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 dibusb_dib3000mb_frontend_attach+0x155/0x2f0 drivers/media/usb/dvb-usb/dibusb-mb.c:31 dvb_usb_adapter_frontend_init+0xed/0x9a0 drivers/media/usb/dvb-usb/dvb-usb-dvb.c:290 dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:90 [inline] dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:186 [inline] dvb_usb_device_init+0x25a8/0x3760 drivers/media/usb/dvb-usb/dvb-usb-init.c:310 dibusb_probe+0x46/0x250 drivers/media/usb/dvb-usb/dibusb-mb.c:110 ... Local variable rb created at: dib3000_read_reg+0x86/0x4e0 drivers/media/dvb-frontends/dib3000mb.c:54 dib3000mb_attach+0x123/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758 ...
5.5
Medium
CVE-2024-56767 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: dmaengine: at_xdmac: avoid null_prt_deref in at_xdmac_prep_dma_memset The at_xdmac_memset_create_desc may return NULL, which will lead to a null pointer dereference. For example, the len input is error, or the atchan->free_descs_list is empty and memory is exhausted. Therefore, add check to avoid this.
5.5
Medium
CVE-2024-56765 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/vas: Add close() callback in vas_vm_ops struct The mapping VMA address is saved in VAS window struct when the paste address is mapped. This VMA address is used during migration to unmap the paste address if the window is active. The paste address mapping will be removed when the window is closed or with the munmap(). But the VMA address in the VAS window is not updated with munmap() which is causing invalid access during migration. The KASAN report shows: [16386.254991] BUG: KASAN: slab-use-after-free in reconfig_close_windows+0x1a0/0x4e8 [16386.255043] Read of size 8 at addr c00000014a819670 by task drmgr/696928 [16386.255096] CPU: 29 UID: 0 PID: 696928 Comm: drmgr Kdump: loaded Tainted: G B 6.11.0-rc5-nxgzip #2 [16386.255128] Tainted: [B]=BAD_PAGE [16386.255148] Hardware name: IBM,9080-HEX Power11 (architected) 0x820200 0xf000007 of:IBM,FW1110.00 (NH1110_016) hv:phyp pSeries [16386.255181] Call Trace: [16386.255202] [c00000016b297660] [c0000000018ad0ac] dump_stack_lvl+0x84/0xe8 (unreliable) [16386.255246] [c00000016b297690] [c0000000006e8a90] print_report+0x19c/0x764 [16386.255285] [c00000016b297760] [c0000000006e9490] kasan_report+0x128/0x1f8 [16386.255309] [c00000016b297880] [c0000000006eb5c8] __asan_load8+0xac/0xe0 [16386.255326] [c00000016b2978a0] [c00000000013f898] reconfig_close_windows+0x1a0/0x4e8 [16386.255343] [c00000016b297990] [c000000000140e58] vas_migration_handler+0x3a4/0x3fc [16386.255368] [c00000016b297a90] [c000000000128848] pseries_migrate_partition+0x4c/0x4c4 ... [16386.256136] Allocated by task 696554 on cpu 31 at 16377.277618s: [16386.256149] kasan_save_stack+0x34/0x68 [16386.256163] kasan_save_track+0x34/0x80 [16386.256175] kasan_save_alloc_info+0x58/0x74 [16386.256196] __kasan_slab_alloc+0xb8/0xdc [16386.256209] kmem_cache_alloc_noprof+0x200/0x3d0 [16386.256225] vm_area_alloc+0x44/0x150 [16386.256245] mmap_region+0x214/0x10c4 [16386.256265] do_mmap+0x5fc/0x750 [16386.256277] vm_mmap_pgoff+0x14c/0x24c [16386.256292] ksys_mmap_pgoff+0x20c/0x348 [16386.256303] sys_mmap+0xd0/0x160 ... [16386.256350] Freed by task 0 on cpu 31 at 16386.204848s: [16386.256363] kasan_save_stack+0x34/0x68 [16386.256374] kasan_save_track+0x34/0x80 [16386.256384] kasan_save_free_info+0x64/0x10c [16386.256396] __kasan_slab_free+0x120/0x204 [16386.256415] kmem_cache_free+0x128/0x450 [16386.256428] vm_area_free_rcu_cb+0xa8/0xd8 [16386.256441] rcu_do_batch+0x2c8/0xcf0 [16386.256458] rcu_core+0x378/0x3c4 [16386.256473] handle_softirqs+0x20c/0x60c [16386.256495] do_softirq_own_stack+0x6c/0x88 [16386.256509] do_softirq_own_stack+0x58/0x88 [16386.256521] __irq_exit_rcu+0x1a4/0x20c [16386.256533] irq_exit+0x20/0x38 [16386.256544] interrupt_async_exit_prepare.constprop.0+0x18/0x2c ... [16386.256717] Last potentially related work creation: [16386.256729] kasan_save_stack+0x34/0x68 [16386.256741] __kasan_record_aux_stack+0xcc/0x12c [16386.256753] __call_rcu_common.constprop.0+0x94/0xd04 [16386.256766] vm_area_free+0x28/0x3c [16386.256778] remove_vma+0xf4/0x114 [16386.256797] do_vmi_align_munmap.constprop.0+0x684/0x870 [16386.256811] __vm_munmap+0xe0/0x1f8 [16386.256821] sys_munmap+0x54/0x6c [16386.256830] system_call_exception+0x1a0/0x4a0 [16386.256841] system_call_vectored_common+0x15c/0x2ec [16386.256868] The buggy address belongs to the object at c00000014a819670 which belongs to the cache vm_area_struct of size 168 [16386.256887] The buggy address is located 0 bytes inside of freed 168-byte region [c00000014a819670, c00000014a819718) [16386.256915] The buggy address belongs to the physical page: [16386.256928] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14a81 [16386.256950] memcg:c0000000ba430001 [16386.256961] anon flags: 0x43ffff800000000(node=4|zone=0|lastcpupid=0x7ffff) [16386.256975] page_type: 0xfdffffff(slab) [16386 ---truncated---
7.8
High
CVE-2024-56763 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: tracing: Prevent bad count for tracing_cpumask_write If a large count is provided, it will trigger a warning in bitmap_parse_user. Also check zero for it.
5.5
Medium
CVE-2024-56761 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/fred: Clear WFE in missing-ENDBRANCH #CPs An indirect branch instruction sets the CPU indirect branch tracker (IBT) into WAIT_FOR_ENDBRANCH (WFE) state and WFE stays asserted across the instruction boundary. When the decoder finds an inappropriate instruction while WFE is set ENDBR, the CPU raises a #CP fault. For the "kernel IBT no ENDBR" selftest where #CPs are deliberately triggered, the WFE state of the interrupted context needs to be cleared to let execution continue. Otherwise when the CPU resumes from the instruction that just caused the previous #CP, another missing-ENDBRANCH #CP is raised and the CPU enters a dead loop. This is not a problem with IDT because it doesn't preserve WFE and IRET doesn't set WFE. But FRED provides space on the entry stack (in an expanded CS area) to save and restore the WFE state, thus the WFE state is no longer clobbered, so software must clear it. Clear WFE to avoid dead looping in ibt_clear_fred_wfe() and the !ibt_fatal code path when execution is allowed to continue. Clobbering WFE in any other circumstance is a security-relevant bug. [ dhansen: changelog rewording ]
5.5
Medium
CVE-2024-56760 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI/MSI: Handle lack of irqdomain gracefully Alexandre observed a warning emitted from pci_msi_setup_msi_irqs() on a RISCV platform which does not provide PCI/MSI support: WARNING: CPU: 1 PID: 1 at drivers/pci/msi/msi.h:121 pci_msi_setup_msi_irqs+0x2c/0x32 __pci_enable_msix_range+0x30c/0x596 pci_msi_setup_msi_irqs+0x2c/0x32 pci_alloc_irq_vectors_affinity+0xb8/0xe2 RISCV uses hierarchical interrupt domains and correctly does not implement the legacy fallback. The warning triggers from the legacy fallback stub. That warning is bogus as the PCI/MSI layer knows whether a PCI/MSI parent domain is associated with the device or not. There is a check for MSI-X, which has a legacy assumption. But that legacy fallback assumption is only valid when legacy support is enabled, but otherwise the check should simply return -ENOTSUPP. Loongarch tripped over the same problem and blindly enabled legacy support without implementing the legacy fallbacks. There are weak implementations which return an error, so the problem was papered over. Correct pci_msi_domain_supports() to evaluate the legacy mode and add the missing supported check into the MSI enable path to complete it.
5.5
Medium
CVE-2024-56759 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when COWing tree bock and tracing is enabled When a COWing a tree block, at btrfs_cow_block(), and we have the tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled (CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent buffer while inside the tracepoint code. This is because in some paths that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding the last reference on the extent buffer @buf so btrfs_force_cow_block() drops the last reference on the @buf extent buffer when it calls free_extent_buffer_stale(buf), which schedules the release of the extent buffer with RCU. This means that if we are on a kernel with preemption, the current task may be preempted before calling trace_btrfs_cow_block() and the extent buffer already released by the time trace_btrfs_cow_block() is called, resulting in a use-after-free. Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to btrfs_force_cow_block() before the COWed extent buffer is freed. This also has a side effect of invoking the tracepoint in the tree defrag code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is called there, but this is fine and it was actually missing there.
7.8
High
CVE-2024-56758 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: check folio mapping after unlock in relocate_one_folio() When we call btrfs_read_folio() to bring a folio uptodate, we unlock the folio. The result of that is that a different thread can modify the mapping (like remove it with invalidate) before we call folio_lock(). This results in an invalid page and we need to try again. In particular, if we are relocating concurrently with aborting a transaction, this can result in a crash like the following: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 76 PID: 1411631 Comm: kworker/u322:5 Workqueue: events_unbound btrfs_reclaim_bgs_work RIP: 0010:set_page_extent_mapped+0x20/0xb0 RSP: 0018:ffffc900516a7be8 EFLAGS: 00010246 RAX: ffffea009e851d08 RBX: ffffea009e0b1880 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffc900516a7b90 RDI: ffffea009e0b1880 RBP: 0000000003573000 R08: 0000000000000001 R09: ffff88c07fd2f3f0 R10: 0000000000000000 R11: 0000194754b575be R12: 0000000003572000 R13: 0000000003572fff R14: 0000000000100cca R15: 0000000005582fff FS: 0000000000000000(0000) GS:ffff88c07fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000407d00f002 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: ? __die+0x78/0xc0 ? page_fault_oops+0x2a8/0x3a0 ? __switch_to+0x133/0x530 ? wq_worker_running+0xa/0x40 ? exc_page_fault+0x63/0x130 ? asm_exc_page_fault+0x22/0x30 ? set_page_extent_mapped+0x20/0xb0 relocate_file_extent_cluster+0x1a7/0x940 relocate_data_extent+0xaf/0x120 relocate_block_group+0x20f/0x480 btrfs_relocate_block_group+0x152/0x320 btrfs_relocate_chunk+0x3d/0x120 btrfs_reclaim_bgs_work+0x2ae/0x4e0 process_scheduled_works+0x184/0x370 worker_thread+0xc6/0x3e0 ? blk_add_timer+0xb0/0xb0 kthread+0xae/0xe0 ? flush_tlb_kernel_range+0x90/0x90 ret_from_fork+0x2f/0x40 ? flush_tlb_kernel_range+0x90/0x90 ret_from_fork_asm+0x11/0x20 This occurs because cleanup_one_transaction() calls destroy_delalloc_inodes() which calls invalidate_inode_pages2() which takes the folio_lock before setting mapping to NULL. We fail to check this, and subsequently call set_extent_mapping(), which assumes that mapping != NULL (in fact it asserts that in debug mode) Note that the "fixes" patch here is not the one that introduced the race (the very first iteration of this code from 2009) but a more recent change that made this particular crash happen in practice.
5.5
Medium
CVE-2024-56757 2025-01-06 16h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: add intf release flow when usb disconnect MediaTek claim an special usb intr interface for ISO data transmission. The interface need to be released before unregistering hci device when usb disconnect. Removing BT usb dongle without properly releasing the interface may cause Kernel panic while unregister hci device.
5.5
Medium
CVE-2024-56756 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix freeing of the HMB descriptor table The HMB descriptor table is sized to the maximum number of descriptors that could be used for a given device, but __nvme_alloc_host_mem could break out of the loop earlier on memory allocation failure and end up using less descriptors than planned for, which leads to an incorrect size passed to dma_free_coherent. In practice this was not showing up because the number of descriptors tends to be low and the dma coherent allocator always allocates and frees at least a page.
5.5
Medium
CVE-2024-56755 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfs/fscache: Add a memory barrier for FSCACHE_VOLUME_CREATING In fscache_create_volume(), there is a missing memory barrier between the bit-clearing operation and the wake-up operation. This may cause a situation where, after a wake-up, the bit-clearing operation hasn't been detected yet, leading to an indefinite wait. The triggering process is as follows: [cookie1] [cookie2] [volume_work] fscache_perform_lookup fscache_create_volume fscache_perform_lookup fscache_create_volume fscache_create_volume_work cachefiles_acquire_volume clear_and_wake_up_bit test_and_set_bit test_and_set_bit goto maybe_wait goto no_wait In the above process, cookie1 and cookie2 has the same volume. When cookie1 enters the -no_wait- process, it will clear the bit and wake up the waiting process. If a barrier is missing, it may cause cookie2 to remain in the -wait- process indefinitely. In commit 3288666c7256 ("fscache: Use clear_and_wake_up_bit() in fscache_create_volume_work()"), barriers were added to similar operations in fscache_create_volume_work(), but fscache_create_volume() was missed. By combining the clear and wake operations into clear_and_wake_up_bit() to fix this issue.
5.5
Medium
CVE-2024-56754 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: caam - Fix the pointer passed to caam_qi_shutdown() The type of the last parameter given to devm_add_action_or_reset() is "struct caam_drv_private *", but in caam_qi_shutdown(), it is casted to "struct device *". Pass the correct parameter to devm_add_action_or_reset() so that the resources are released as expected.
5.5
Medium
CVE-2024-56752 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/gr/gf100: Fix missing unlock in gf100_gr_chan_new() When the call to gf100_grctx_generate() fails, unlock gr->fecs.mutex before returning the error. Fixes smatch warning: drivers/gpu/drm/nouveau/nvkm/engine/gr/gf100.c:480 gf100_gr_chan_new() warn: inconsistent returns '&gr->fecs.mutex'.
5.5
Medium
CVE-2024-56751 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv6: release nexthop on device removal The CI is hitting some aperiodic hangup at device removal time in the pmtu.sh self-test: unregister_netdevice: waiting for veth_A-R1 to become free. Usage count = 6 ref_tracker: veth_A-R1@ffff888013df15d8 has 1/5 users at dst_init+0x84/0x4a0 dst_alloc+0x97/0x150 ip6_dst_alloc+0x23/0x90 ip6_rt_pcpu_alloc+0x1e6/0x520 ip6_pol_route+0x56f/0x840 fib6_rule_lookup+0x334/0x630 ip6_route_output_flags+0x259/0x480 ip6_dst_lookup_tail.constprop.0+0x5c2/0x940 ip6_dst_lookup_flow+0x88/0x190 udp_tunnel6_dst_lookup+0x2a7/0x4c0 vxlan_xmit_one+0xbde/0x4a50 [vxlan] vxlan_xmit+0x9ad/0xf20 [vxlan] dev_hard_start_xmit+0x10e/0x360 __dev_queue_xmit+0xf95/0x18c0 arp_solicit+0x4a2/0xe00 neigh_probe+0xaa/0xf0 While the first suspect is the dst_cache, explicitly tracking the dst owing the last device reference via probes proved such dst is held by the nexthop in the originating fib6_info. Similar to commit f5b51fe804ec ("ipv6: route: purge exception on removal"), we need to explicitly release the originating fib info when disconnecting a to-be-removed device from a live ipv6 dst: move the fib6_info cleanup into ip6_dst_ifdown(). Tested running: ./pmtu.sh cleanup_ipv6_exception in a tight loop for more than 400 iterations with no spat, running an unpatched kernel I observed a splat every ~10 iterations.
5.5
Medium
CVE-2024-56748 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: qedf: Fix a possible memory leak in qedf_alloc_and_init_sb() Hook "qed_ops->common->sb_init = qed_sb_init" does not release the DMA memory sb_virt when it fails. Add dma_free_coherent() to free it. This is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb().
5.5
Medium
CVE-2024-56747 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: qedi: Fix a possible memory leak in qedi_alloc_and_init_sb() Hook "qedi_ops->common->sb_init = qed_sb_init" does not release the DMA memory sb_virt when it fails. Add dma_free_coherent() to free it. This is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb().
5.5
Medium
CVE-2024-56746 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: fbdev: sh7760fb: Fix a possible memory leak in sh7760fb_alloc_mem() When information such as info->screen_base is not ready, calling sh7760fb_free_mem() does not release memory correctly. Call dma_free_coherent() instead.
5.5
Medium
CVE-2024-56745 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: Fix reset_method_store() memory leak In reset_method_store(), a string is allocated via kstrndup() and assigned to the local "options". options is then used in with strsep() to find spaces: while ((name = strsep(&options, " ")) != NULL) { If there are no remaining spaces, then options is set to NULL by strsep(), so the subsequent kfree(options) doesn't free the memory allocated via kstrndup(). Fix by using a separate tmp_options to iterate with strsep() so options is preserved.
5.5
Medium
CVE-2024-56744 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid potential deadlock in f2fs_record_stop_reason() syzbot reports deadlock issue of f2fs as below: ====================================================== WARNING: possible circular locking dependency detected 6.12.0-rc3-syzkaller-00087-gc964ced77262 #0 Not tainted ------------------------------------------------------ kswapd0/79 is trying to acquire lock: ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_down_write fs/f2fs/f2fs.h:2199 [inline] ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_record_stop_reason+0x52/0x1d0 fs/f2fs/super.c:4068 but task is already holding lock: ffff88804bd92610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (sb_internal#2){.+.+}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1716 [inline] sb_start_intwrite+0x4d/0x1c0 include/linux/fs.h:1899 f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842 evict+0x4e8/0x9b0 fs/inode.c:725 f2fs_evict_inode+0x1a4/0x15c0 fs/f2fs/inode.c:807 evict+0x4e8/0x9b0 fs/inode.c:725 dispose_list fs/inode.c:774 [inline] prune_icache_sb+0x239/0x2f0 fs/inode.c:963 super_cache_scan+0x38c/0x4b0 fs/super.c:223 do_shrink_slab+0x701/0x1160 mm/shrinker.c:435 shrink_slab+0x1093/0x14d0 mm/shrinker.c:662 shrink_one+0x43b/0x850 mm/vmscan.c:4818 shrink_many mm/vmscan.c:4879 [inline] lru_gen_shrink_node mm/vmscan.c:4957 [inline] shrink_node+0x3799/0x3de0 mm/vmscan.c:5937 kswapd_shrink_node mm/vmscan.c:6765 [inline] balance_pgdat mm/vmscan.c:6957 [inline] kswapd+0x1ca3/0x3700 mm/vmscan.c:7226 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 -> #1 (fs_reclaim){+.+.}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 __fs_reclaim_acquire mm/page_alloc.c:3834 [inline] fs_reclaim_acquire+0x88/0x130 mm/page_alloc.c:3848 might_alloc include/linux/sched/mm.h:318 [inline] prepare_alloc_pages+0x147/0x5b0 mm/page_alloc.c:4493 __alloc_pages_noprof+0x16f/0x710 mm/page_alloc.c:4722 alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265 alloc_pages_noprof mm/mempolicy.c:2345 [inline] folio_alloc_noprof+0x128/0x180 mm/mempolicy.c:2352 filemap_alloc_folio_noprof+0xdf/0x500 mm/filemap.c:1010 do_read_cache_folio+0x2eb/0x850 mm/filemap.c:3787 read_mapping_folio include/linux/pagemap.h:1011 [inline] f2fs_commit_super+0x3c0/0x7d0 fs/f2fs/super.c:4032 f2fs_record_stop_reason+0x13b/0x1d0 fs/f2fs/super.c:4079 f2fs_handle_critical_error+0x2ac/0x5c0 fs/f2fs/super.c:4174 f2fs_write_inode+0x35f/0x4d0 fs/f2fs/inode.c:785 write_inode fs/fs-writeback.c:1503 [inline] __writeback_single_inode+0x711/0x10d0 fs/fs-writeback.c:1723 writeback_single_inode+0x1f3/0x660 fs/fs-writeback.c:1779 sync_inode_metadata+0xc4/0x120 fs/fs-writeback.c:2849 f2fs_release_file+0xa8/0x100 fs/f2fs/file.c:1941 __fput+0x23f/0x880 fs/file_table.c:431 task_work_run+0x24f/0x310 kernel/task_work.c:228 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop kernel/entry/common.c:114 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x168/0x370 kernel/entry/common.c:218 do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f ---truncated---
5.5
Medium
CVE-2024-56742 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: vfio/mlx5: Fix an unwind issue in mlx5vf_add_migration_pages() Fix an unwind issue in mlx5vf_add_migration_pages(). If a set of pages is allocated but fails to be added to the SG table, they need to be freed to prevent a memory leak. Any pages successfully added to the SG table will be freed as part of mlx5vf_free_data_buffer().
5.5
Medium
CVE-2024-56739 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: rtc: check if __rtc_read_time was successful in rtc_timer_do_work() If the __rtc_read_time call fails,, the struct rtc_time tm; may contain uninitialized data, or an illegal date/time read from the RTC hardware. When calling rtc_tm_to_ktime later, the result may be a very large value (possibly KTIME_MAX). If there are periodic timers in rtc->timerqueue, they will continually expire, may causing kernel softlockup.
5.5
Medium
CVE-2024-56729 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: Initialize cfid->tcon before performing network ops Avoid leaking a tcon ref when a lease break races with opening the cached directory. Processing the leak break might take a reference to the tcon in cached_dir_lease_break() and then fail to release the ref in cached_dir_offload_close, since cfid->tcon is still NULL.
4.7
Medium
CVE-2024-56728 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_ethtool.c Add error pointer check after calling otx2_mbox_get_rsp().
5.5
Medium
CVE-2024-56727 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_flows.c Adding error pointer check after calling otx2_mbox_get_rsp().
5.5
Medium
CVE-2024-56726 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in cn10k.c Add error pointer check after calling otx2_mbox_get_rsp().
5.5
Medium
CVE-2024-56725 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_dcbnl.c Add error pointer check after calling otx2_mbox_get_rsp().
5.5
Medium
CVE-2024-56724 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: mfd: intel_soc_pmic_bxtwc: Use IRQ domain for TMU device While design wise the idea of converting the driver to use the hierarchy of the IRQ chips is correct, the implementation has (inherited) flaws. This was unveiled when platform_get_irq() had started WARN() on IRQ 0 that is supposed to be a Linux IRQ number (also known as vIRQ). Rework the driver to respect IRQ domain when creating each MFD device separately, as the domain is not the same for all of them.
5.5
Medium
CVE-2024-56723 2024-12-29 11h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: mfd: intel_soc_pmic_bxtwc: Use IRQ domain for PMIC devices While design wise the idea of converting the driver to use the hierarchy of the IRQ chips is correct, the implementation has (inherited) flaws. This was unveiled when platform_get_irq() had started WARN() on IRQ 0 that is supposed to be a Linux IRQ number (also known as vIRQ). Rework the driver to respect IRQ domain when creating each MFD device separately, as the domain is not the same for all of them.
5.5
Medium
CVE-2024-56722 2024-12-29 11h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix cpu stuck caused by printings during reset During reset, cmd to destroy resources such as qp, cq, and mr may fail, and error logs will be printed. When a large number of resources are destroyed, there will be lots of printings, and it may lead to a cpu stuck. Delete some unnecessary printings and replace other printing functions in these paths with the ratelimited version.
5.5
Medium
CVE-2024-56720 2024-12-29 11h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Several fixes to bpf_msg_pop_data Several fixes to bpf_msg_pop_data, 1. In sk_msg_shift_left, we should put_page 2. if (len == 0), return early is better 3. pop the entire sk_msg (last == msg->sg.size) should be supported 4. Fix for the value of variable "a" 5. In sk_msg_shift_left, after shifting, i has already pointed to the next element. Addtional sk_msg_iter_var_next may result in BUG.
5.5
Medium
CVE-2024-56719 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix TSO DMA API usage causing oops Commit 66600fac7a98 ("net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data") moved the assignment of tx_skbuff_dma[]'s members to be later in stmmac_tso_xmit(). The buf (dma cookie) and len stored in this structure are passed to dma_unmap_single() by stmmac_tx_clean(). The DMA API requires that the dma cookie passed to dma_unmap_single() is the same as the value returned from dma_map_single(). However, by moving the assignment later, this is not the case when priv->dma_cap.addr64 > 32 as "des" is offset by proto_hdr_len. This causes problems such as: dwc-eth-dwmac 2490000.ethernet eth0: Tx DMA map failed and with DMA_API_DEBUG enabled: DMA-API: dwc-eth-dwmac 2490000.ethernet: device driver tries to +free DMA memory it has not allocated [device address=0x000000ffffcf65c0] [size=66 bytes] Fix this by maintaining "des" as the original DMA cookie, and use tso_des to pass the offset DMA cookie to stmmac_tso_allocator(). Full details of the crashes can be found at: https://lore.kernel.org/all/[email protected]/ https://lore.kernel.org/all/klkzp5yn5kq5efgtrow6wbvnc46bcqfxs65nz3qy77ujr5turc@bwwhelz2l4dw/
5.5
Medium
CVE-2024-56718 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/smc: protect link down work from execute after lgr freed link down work may be scheduled before lgr freed but execute after lgr freed, which may result in crash. So it is need to hold a reference before shedule link down work, and put the reference after work executed or canceled. The relevant crash call stack as follows: list_del corruption. prev->next should be ffffb638c9c0fe20, but was 0000000000000000 ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:51! invalid opcode: 0000 [#1] SMP NOPTI CPU: 6 PID: 978112 Comm: kworker/6:119 Kdump: loaded Tainted: G #1 Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 2221b89 04/01/2014 Workqueue: events smc_link_down_work [smc] RIP: 0010:__list_del_entry_valid.cold+0x31/0x47 RSP: 0018:ffffb638c9c0fdd8 EFLAGS: 00010086 RAX: 0000000000000054 RBX: ffff942fb75e5128 RCX: 0000000000000000 RDX: ffff943520930aa0 RSI: ffff94352091fc80 RDI: ffff94352091fc80 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffb638c9c0fc38 R10: ffffb638c9c0fc30 R11: ffffffffa015eb28 R12: 0000000000000002 R13: ffffb638c9c0fe20 R14: 0000000000000001 R15: ffff942f9cd051c0 FS: 0000000000000000(0000) GS:ffff943520900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4f25214000 CR3: 000000025fbae004 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: rwsem_down_write_slowpath+0x17e/0x470 smc_link_down_work+0x3c/0x60 [smc] process_one_work+0x1ac/0x350 worker_thread+0x49/0x2f0 ? rescuer_thread+0x360/0x360 kthread+0x118/0x140 ? __kthread_bind_mask+0x60/0x60 ret_from_fork+0x1f/0x30
5.5
Medium
CVE-2024-56717 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: mscc: ocelot: fix incorrect IFH SRC_PORT field in ocelot_ifh_set_basic() Packets injected by the CPU should have a SRC_PORT field equal to the CPU port module index in the Analyzer block (ocelot->num_phys_ports). The blamed commit copied the ocelot_ifh_set_basic() call incorrectly from ocelot_xmit_common() in net/dsa/tag_ocelot.c. Instead of calling with "x", it calls with BIT_ULL(x), but the field is not a port mask, but rather a single port index. [ side note: this is the technical debt of code duplication :( ] The error used to be silent and doesn't appear to have other user-visible manifestations, but with new changes in the packing library, it now fails loudly as follows: ------------[ cut here ]------------ Cannot store 0x40 inside bits 46-43 - will truncate sja1105 spi2.0: xmit timed out WARNING: CPU: 1 PID: 102 at lib/packing.c:98 __pack+0x90/0x198 sja1105 spi2.0: timed out polling for tstamp CPU: 1 UID: 0 PID: 102 Comm: felix_xmit Tainted: G W N 6.13.0-rc1-00372-gf706b85d972d-dirty #2605 Call trace: __pack+0x90/0x198 (P) __pack+0x90/0x198 (L) packing+0x78/0x98 ocelot_ifh_set_basic+0x260/0x368 ocelot_port_inject_frame+0xa8/0x250 felix_port_deferred_xmit+0x14c/0x258 kthread_worker_fn+0x134/0x350 kthread+0x114/0x138 The code path pertains to the ocelot switchdev driver and to the felix secondary DSA tag protocol, ocelot-8021q. Here seen with ocelot-8021q. The messenger (packing) is not really to blame, so fix the original commit instead.
5.5
Medium
CVE-2024-56716 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: netdevsim: prevent bad user input in nsim_dev_health_break_write() If either a zero count or a large one is provided, kernel can crash.
5.5
Medium
CVE-2024-56715 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: ionic: Fix netdev notifier unregister on failure If register_netdev() fails, then the driver leaks the netdev notifier. Fix this by calling ionic_lif_unregister() on register_netdev() failure. This will also call ionic_lif_unregister_phc() if it has already been registered.
5.5
Medium
CVE-2024-56712 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: udmabuf: fix memory leak on last export_udmabuf() error path In export_udmabuf(), if dma_buf_fd() fails because the FD table is full, a dma_buf owning the udmabuf has already been created; but the error handling in udmabuf_create() will tear down the udmabuf without doing anything about the containing dma_buf. This leaves a dma_buf in memory that contains a dangling pointer; though that doesn't seem to lead to anything bad except a memory leak. Fix it by moving the dma_buf_fd() call out of export_udmabuf() so that we can give it different error handling. Note that the shape of this code changed a lot in commit 5e72b2b41a21 ("udmabuf: convert udmabuf driver to use folios"); but the memory leak seems to have existed since the introduction of udmabuf.
5.5
Medium
CVE-2024-56710 2024-12-29 08h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: ceph: fix memory leak in ceph_direct_read_write() The bvecs array which is allocated in iter_get_bvecs_alloc() is leaked and pages remain pinned if ceph_alloc_sparse_ext_map() fails. There is no need to delay the allocation of sparse_ext map until after the bvecs array is set up, so fix this by moving sparse_ext allocation a bit earlier. Also, make a similar adjustment in __ceph_sync_read() for consistency (a leak of the same kind in __ceph_sync_read() has been addressed differently).
5.5
Medium
CVE-2024-56708 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: EDAC/igen6: Avoid segmentation fault on module unload The segmentation fault happens because: During modprobe: 1. In igen6_probe(), igen6_pvt will be allocated with kzalloc() 2. In igen6_register_mci(), mci->pvt_info will point to &igen6_pvt->imc[mc] During rmmod: 1. In mci_release() in edac_mc.c, it will kfree(mci->pvt_info) 2. In igen6_remove(), it will kfree(igen6_pvt); Fix this issue by setting mci->pvt_info to NULL to avoid the double kfree.
7.8
High
CVE-2024-56704 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: 9p/xen: fix release of IRQ Kernel logs indicate an IRQ was double-freed. Pass correct device ID during IRQ release. [Dominique: remove confusing variable reset to 0]
7.8
High
CVE-2024-56702 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Mark raw_tp arguments with PTR_MAYBE_NULL Arguments to a raw tracepoint are tagged as trusted, which carries the semantics that the pointer will be non-NULL. However, in certain cases, a raw tracepoint argument may end up being NULL. More context about this issue is available in [0]. Thus, there is a discrepancy between the reality, that raw_tp arguments can actually be NULL, and the verifier's knowledge, that they are never NULL, causing explicit NULL checks to be deleted, and accesses to such pointers potentially crashing the kernel. To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special case the dereference and pointer arithmetic to permit it, and allow passing them into helpers/kfuncs; these exceptions are made for raw_tp programs only. Ensure that we don't do this when ref_obj_id > 0, as in that case this is an acquired object and doesn't need such adjustment. The reason we do mask_raw_tp_trusted_reg logic is because other will recheck in places whether the register is a trusted_reg, and then consider our register as untrusted when detecting the presence of the PTR_MAYBE_NULL flag. To allow safe dereference, we enable PROBE_MEM marking when we see loads into trusted pointers with PTR_MAYBE_NULL. While trusted raw_tp arguments can also be passed into helpers or kfuncs where such broken assumption may cause issues, a future patch set will tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can already be passed into helpers and causes similar problems. Thus, they are left alone for now. It is possible that these checks also permit passing non-raw_tp args that are trusted PTR_TO_BTF_ID with null marking. In such a case, allowing dereference when pointer is NULL expands allowed behavior, so won't regress existing programs, and the case of passing these into helpers is the same as above and will be dealt with later. Also update the failure case in tp_btf_nullable selftest to capture the new behavior, as the verifier will no longer cause an error when directly dereference a raw tracepoint argument marked as __nullable. [0]: https://lore.kernel.org/bpf/[email protected]
5.5
Medium
CVE-2024-56698 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: gadget: Fix looping of queued SG entries The dwc3_request->num_queued_sgs is decremented on completion. If a partially completed request is handled, then the dwc3_request->num_queued_sgs no longer reflects the total number of num_queued_sgs (it would be cleared). Correctly check the number of request SG entries remained to be prepare and queued. Failure to do this may cause null pointer dereference when accessing non-existent SG entry.
5.5
Medium
CVE-2024-56694 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: fix recursive lock when verdict program return SK_PASS When the stream_verdict program returns SK_PASS, it places the received skb into its own receive queue, but a recursive lock eventually occurs, leading to an operating system deadlock. This issue has been present since v6.9. ''' sk_psock_strp_data_ready write_lock_bh(&sk->sk_callback_lock) strp_data_ready strp_read_sock read_sock -> tcp_read_sock strp_recv cb.rcv_msg -> sk_psock_strp_read # now stream_verdict return SK_PASS without peer sock assign __SK_PASS = sk_psock_map_verd(SK_PASS, NULL) sk_psock_verdict_apply sk_psock_skb_ingress_self sk_psock_skb_ingress_enqueue sk_psock_data_ready read_lock_bh(&sk->sk_callback_lock) <= dead lock ''' This topic has been discussed before, but it has not been fixed. Previous discussion: https://lore.kernel.org/all/[email protected]
5.5
Medium
CVE-2024-56693 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: brd: defer automatic disk creation until module initialization succeeds My colleague Wupeng found the following problems during fault injection: BUG: unable to handle page fault for address: fffffbfff809d073 PGD 6e648067 P4D 123ec8067 PUD 123ec4067 PMD 100e38067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 5 UID: 0 PID: 755 Comm: modprobe Not tainted 6.12.0-rc3+ #17 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:__asan_load8+0x4c/0xa0 ... Call Trace: blkdev_put_whole+0x41/0x70 bdev_release+0x1a3/0x250 blkdev_release+0x11/0x20 __fput+0x1d7/0x4a0 task_work_run+0xfc/0x180 syscall_exit_to_user_mode+0x1de/0x1f0 do_syscall_64+0x6b/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e loop_init() is calling loop_add() after __register_blkdev() succeeds and is ignoring disk_add() failure from loop_add(), for loop_add() failure is not fatal and successfully created disks are already visible to bdev_open(). brd_init() is currently calling brd_alloc() before __register_blkdev() succeeds and is releasing successfully created disks when brd_init() returns an error. This can cause UAF for the latter two case: case 1: T1: modprobe brd brd_init brd_alloc(0) // success add_disk disk_scan_partitions bdev_file_open_by_dev // alloc file fput // won't free until back to userspace brd_alloc(1) // failed since mem alloc error inject // error path for modprobe will release code segment // back to userspace __fput blkdev_release bdev_release blkdev_put_whole bdev->bd_disk->fops->release // fops is freed now, UAF! case 2: T1: T2: modprobe brd brd_init brd_alloc(0) // success open(/dev/ram0) brd_alloc(1) // fail // error path for modprobe close(/dev/ram0) ... /* UAF! */ bdev->bd_disk->fops->release Fix this problem by following what loop_init() does. Besides, reintroduce brd_devices_mutex to help serialize modifications to brd_list.
7.8
High
CVE-2024-56692 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on node blkaddr in truncate_node() syzbot reports a f2fs bug as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/segment.c:2534! RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 Call Trace: truncate_node+0x1ae/0x8c0 fs/f2fs/node.c:909 f2fs_remove_inode_page+0x5c2/0x870 fs/f2fs/node.c:1288 f2fs_evict_inode+0x879/0x15c0 fs/f2fs/inode.c:856 evict+0x4e8/0x9b0 fs/inode.c:723 f2fs_handle_failed_inode+0x271/0x2e0 fs/f2fs/inode.c:986 f2fs_create+0x357/0x530 fs/f2fs/namei.c:394 lookup_open fs/namei.c:3595 [inline] open_last_lookups fs/namei.c:3694 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3930 do_filp_open+0x235/0x490 fs/namei.c:3960 do_sys_openat2+0x13e/0x1d0 fs/open.c:1415 do_sys_open fs/open.c:1430 [inline] __do_sys_openat fs/open.c:1446 [inline] __se_sys_openat fs/open.c:1441 [inline] __x64_sys_openat+0x247/0x2a0 fs/open.c:1441 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 The root cause is: on a fuzzed image, blkaddr in nat entry may be corrupted, then it will cause system panic when using it in f2fs_invalidate_blocks(), to avoid this, let's add sanity check on nat blkaddr in truncate_node().
5.5
Medium
CVE-2024-56689 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: epf-mhi: Avoid NULL dereference if DT lacks 'mmio' If platform_get_resource_byname() fails and returns NULL because DT lacks an 'mmio' property for the MHI endpoint, dereferencing res->start will cause a NULL pointer access. Add a check to prevent it. [kwilczynski: error message update per the review feedback] [bhelgaas: commit log]
5.5
Medium
CVE-2024-56688 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: sunrpc: clear XPRT_SOCK_UPD_TIMEOUT when reset transport Since transport->sock has been set to NULL during reset transport, XPRT_SOCK_UPD_TIMEOUT also needs to be cleared. Otherwise, the xs_tcp_set_socket_timeouts() may be triggered in xs_tcp_send_request() to dereference the transport->sock that has been set to NULL.
5.5
Medium
CVE-2024-56687 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: musb: Fix hardware lockup on first Rx endpoint request There is a possibility that a request's callback could be invoked from usb_ep_queue() (call trace below, supplemented with missing calls): req->complete from usb_gadget_giveback_request (drivers/usb/gadget/udc/core.c:999) usb_gadget_giveback_request from musb_g_giveback (drivers/usb/musb/musb_gadget.c:147) musb_g_giveback from rxstate (drivers/usb/musb/musb_gadget.c:784) rxstate from musb_ep_restart (drivers/usb/musb/musb_gadget.c:1169) musb_ep_restart from musb_ep_restart_resume_work (drivers/usb/musb/musb_gadget.c:1176) musb_ep_restart_resume_work from musb_queue_resume_work (drivers/usb/musb/musb_core.c:2279) musb_queue_resume_work from musb_gadget_queue (drivers/usb/musb/musb_gadget.c:1241) musb_gadget_queue from usb_ep_queue (drivers/usb/gadget/udc/core.c:300) According to the docstring of usb_ep_queue(), this should not happen: "Note that @req's ->complete() callback must never be called from within usb_ep_queue() as that can create deadlock situations." In fact, a hardware lockup might occur in the following sequence: 1. The gadget is initialized using musb_gadget_enable(). 2. Meanwhile, a packet arrives, and the RXPKTRDY flag is set, raising an interrupt. 3. If IRQs are enabled, the interrupt is handled, but musb_g_rx() finds an empty queue (next_request() returns NULL). The interrupt flag has already been cleared by the glue layer handler, but the RXPKTRDY flag remains set. 4. The first request is enqueued using usb_ep_queue(), leading to the call of req->complete(), as shown in the call trace above. 5. If the callback enables IRQs and another packet is waiting, step (3) repeats. The request queue is empty because usb_g_giveback() removes the request before invoking the callback. 6. The endpoint remains locked up, as the interrupt triggered by hardware setting the RXPKTRDY flag has been handled, but the flag itself remains set. For this scenario to occur, it is only necessary for IRQs to be enabled at some point during the complete callback. This happens with the USB Ethernet gadget, whose rx_complete() callback calls netif_rx(). If called in the task context, netif_rx() disables the bottom halves (BHs). When the BHs are re-enabled, IRQs are also enabled to allow soft IRQs to be processed. The gadget itself is initialized at module load (or at boot if built-in), but the first request is enqueued when the network interface is brought up, triggering rx_complete() in the task context via ioctl(). If a packet arrives while the interface is down, it can prevent the interface from receiving any further packets from the USB host. The situation is quite complicated with many parties involved. This particular issue can be resolved in several possible ways: 1. Ensure that callbacks never enable IRQs. This would be difficult to enforce, as discovering how netif_rx() interacts with interrupts was already quite challenging and u_ether is not the only function driver. Similar "bugs" could be hidden in other drivers as well. 2. Disable MUSB interrupts in musb_g_giveback() before calling the callback and re-enable them afterwars (by calling musb_{dis,en}able_interrupts(), for example). This would ensure that MUSB interrupts are not handled during the callback, even if IRQs are enabled. In fact, it would allow IRQs to be enabled when releasing the lock. However, this feels like an inelegant hack. 3. Modify the interrupt handler to clear the RXPKTRDY flag if the request queue is empty. While this approach also feels like a hack, it wastes CPU time by attempting to handle incoming packets when the software is not ready to process them. 4. Flush the Rx FIFO instead of calling rxstate() in musb_ep_restart(). This ensures that the hardware can receive packets when there is at least one request in the queue. Once I ---truncated---
5.5
Medium
CVE-2024-56678 2024-12-28 09h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/mm/fault: Fix kfence page fault reporting copy_from_kernel_nofault() can be called when doing read of /proc/kcore. /proc/kcore can have some unmapped kfence objects which when read via copy_from_kernel_nofault() can cause page faults. Since *_nofault() functions define their own fixup table for handling fault, use that instead of asking kfence to handle such faults. Hence we search the exception tables for the nip which generated the fault. If there is an entry then we let the fixup table handler handle the page fault by returning an error from within ___do_page_fault(). This can be easily triggered if someone tries to do dd from /proc/kcore. eg. dd if=/proc/kcore of=/dev/null bs=1M Some example false negatives: =============================== BUG: KFENCE: invalid read in copy_from_kernel_nofault+0x9c/0x1a0 Invalid read at 0xc0000000fdff0000: copy_from_kernel_nofault+0x9c/0x1a0 0xc00000000665f950 read_kcore_iter+0x57c/0xa04 proc_reg_read_iter+0xe4/0x16c vfs_read+0x320/0x3ec ksys_read+0x90/0x154 system_call_exception+0x120/0x310 system_call_vectored_common+0x15c/0x2ec BUG: KFENCE: use-after-free read in copy_from_kernel_nofault+0x9c/0x1a0 Use-after-free read at 0xc0000000fe050000 (in kfence-#2): copy_from_kernel_nofault+0x9c/0x1a0 0xc00000000665f950 read_kcore_iter+0x57c/0xa04 proc_reg_read_iter+0xe4/0x16c vfs_read+0x320/0x3ec ksys_read+0x90/0x154 system_call_exception+0x120/0x310 system_call_vectored_common+0x15c/0x2ec
7.8
High
CVE-2024-56675 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix UAF via mismatching bpf_prog/attachment RCU flavors Uprobes always use bpf_prog_run_array_uprobe() under tasks-trace-RCU protection. But it is possible to attach a non-sleepable BPF program to a uprobe, and non-sleepable BPF programs are freed via normal RCU (see __bpf_prog_put_noref()). This leads to UAF of the bpf_prog because a normal RCU grace period does not imply a tasks-trace-RCU grace period. Fix it by explicitly waiting for a tasks-trace-RCU grace period after removing the attachment of a bpf_prog to a perf_event.
7.8
High
CVE-2024-56672 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: Fix UAF in blkcg_unpin_online() blkcg_unpin_online() walks up the blkcg hierarchy putting the online pin. To walk up, it uses blkcg_parent(blkcg) but it was calling that after blkcg_destroy_blkgs(blkcg) which could free the blkcg, leading to the following UAF: ================================================================== BUG: KASAN: slab-use-after-free in blkcg_unpin_online+0x15a/0x270 Read of size 8 at addr ffff8881057678c0 by task kworker/9:1/117 CPU: 9 UID: 0 PID: 117 Comm: kworker/9:1 Not tainted 6.13.0-rc1-work-00182-gb8f52214c61a-dirty #48 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 02/02/2022 Workqueue: cgwb_release cgwb_release_workfn Call Trace: dump_stack_lvl+0x27/0x80 print_report+0x151/0x710 kasan_report+0xc0/0x100 blkcg_unpin_online+0x15a/0x270 cgwb_release_workfn+0x194/0x480 process_scheduled_works+0x71b/0xe20 worker_thread+0x82a/0xbd0 kthread+0x242/0x2c0 ret_from_fork+0x33/0x70 ret_from_fork_asm+0x1a/0x30 ... Freed by task 1944: kasan_save_track+0x2b/0x70 kasan_save_free_info+0x3c/0x50 __kasan_slab_free+0x33/0x50 kfree+0x10c/0x330 css_free_rwork_fn+0xe6/0xb30 process_scheduled_works+0x71b/0xe20 worker_thread+0x82a/0xbd0 kthread+0x242/0x2c0 ret_from_fork+0x33/0x70 ret_from_fork_asm+0x1a/0x30 Note that the UAF is not easy to trigger as the free path is indirected behind a couple RCU grace periods and a work item execution. I could only trigger it with artifical msleep() injected in blkcg_unpin_online(). Fix it by reading the parent pointer before destroying the blkcg's blkg's.
7.8
High
CVE-2024-56670 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_serial: Fix the issue that gs_start_io crashed due to accessing null pointer Considering that in some extreme cases, when u_serial driver is accessed by multiple threads, Thread A is executing the open operation and calling the gs_open, Thread B is executing the disconnect operation and calling the gserial_disconnect function,The port->port_usb pointer will be set to NULL. E.g. Thread A Thread B gs_open() gadget_unbind_driver() gs_start_io() composite_disconnect() gs_start_rx() gserial_disconnect() ... ... spin_unlock(&port->port_lock) status = usb_ep_queue() spin_lock(&port->port_lock) spin_lock(&port->port_lock) port->port_usb = NULL gs_free_requests(port->port_usb->in) spin_unlock(&port->port_lock) Crash This causes thread A to access a null pointer (port->port_usb is null) when calling the gs_free_requests function, causing a crash. If port_usb is NULL, the release request will be skipped as it will be done by gserial_disconnect. So add a null pointer check to gs_start_io before attempting to access the value of the pointer port->port_usb. Call trace: gs_start_io+0x164/0x25c gs_open+0x108/0x13c tty_open+0x314/0x638 chrdev_open+0x1b8/0x258 do_dentry_open+0x2c4/0x700 vfs_open+0x2c/0x3c path_openat+0xa64/0xc60 do_filp_open+0xb8/0x164 do_sys_openat2+0x84/0xf0 __arm64_sys_openat+0x70/0x9c invoke_syscall+0x58/0x114 el0_svc_common+0x80/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x38/0x68
5.5
Medium
CVE-2024-56667 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915: Fix NULL pointer dereference in capture_engine When the intel_context structure contains NULL, it raises a NULL pointer dereference error in drm_info(). (cherry picked from commit 754302a5bc1bd8fd3b7d85c168b0a1af6d4bba4d)
5.5
Medium
CVE-2024-56665 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf,perf: Fix invalid prog_array access in perf_event_detach_bpf_prog Syzbot reported [1] crash that happens for following tracing scenario: - create tracepoint perf event with attr.inherit=1, attach it to the process and set bpf program to it - attached process forks -> chid creates inherited event the new child event shares the parent's bpf program and tp_event (hence prog_array) which is global for tracepoint - exit both process and its child -> release both events - first perf_event_detach_bpf_prog call will release tp_event->prog_array and second perf_event_detach_bpf_prog will crash, because tp_event->prog_array is NULL The fix makes sure the perf_event_detach_bpf_prog checks prog_array is valid before it tries to remove the bpf program from it. [1] https://lore.kernel.org/bpf/Z1MR6dCIKajNS6nU@krava/T/#m91dbf0688221ec7a7fc95e896a7ef9ff93b0b8ad
5.5
Medium
CVE-2024-56664 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix race between element replace and close() Element replace (with a socket different from the one stored) may race with socket's close() link popping & unlinking. __sock_map_delete() unconditionally unrefs the (wrong) element: // set map[0] = s0 map_update_elem(map, 0, s0) // drop fd of s0 close(s0) sock_map_close() lock_sock(sk) (s0!) sock_map_remove_links(sk) link = sk_psock_link_pop() sock_map_unlink(sk, link) sock_map_delete_from_link // replace map[0] with s1 map_update_elem(map, 0, s1) sock_map_update_elem (s1!) lock_sock(sk) sock_map_update_common psock = sk_psock(sk) spin_lock(&stab->lock) osk = stab->sks[idx] sock_map_add_link(..., &stab->sks[idx]) sock_map_unref(osk, &stab->sks[idx]) psock = sk_psock(osk) sk_psock_put(sk, psock) if (refcount_dec_and_test(&psock)) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) unlock_sock(sk) __sock_map_delete spin_lock(&stab->lock) sk = *psk // s1 replaced s0; sk == s1 if (!sk_test || sk_test == sk) // sk_test (s0) != sk (s1); no branch sk = xchg(psk, NULL) if (sk) sock_map_unref(sk, psk) // unref s1; sks[idx] will dangle psock = sk_psock(sk) sk_psock_put(sk, psock) if (refcount_dec_and_test()) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) release_sock(sk) Then close(map) enqueues bpf_map_free_deferred, which finally calls sock_map_free(). This results in some refcount_t warnings along with a KASAN splat [1]. Fix __sock_map_delete(), do not allow sock_map_unref() on elements that may have been replaced. [1]: BUG: KASAN: slab-use-after-free in sock_map_free+0x10e/0x330 Write of size 4 at addr ffff88811f5b9100 by task kworker/u64:12/1063 CPU: 14 UID: 0 PID: 1063 Comm: kworker/u64:12 Not tainted 6.12.0+ #125 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 Workqueue: events_unbound bpf_map_free_deferred Call Trace: dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 kasan_check_range+0x10f/0x1e0 sock_map_free+0x10e/0x330 bpf_map_free_deferred+0x173/0x320 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 Allocated by task 1202: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 unix_create1+0x88/0x8a0 unix_create+0xc5/0x180 __sock_create+0x241/0x650 __sys_socketpair+0x1ce/0x420 __x64_sys_socketpair+0x92/0x100 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 46: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 sk_psock_destroy+0x73e/0xa50 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 The bu ---truncated---
7
High
CVE-2024-56663 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: fix NL80211_ATTR_MLO_LINK_ID off-by-one Since the netlink attribute range validation provides inclusive checking, the *max* of attribute NL80211_ATTR_MLO_LINK_ID should be IEEE80211_MLD_MAX_NUM_LINKS - 1 otherwise causing an off-by-one. One crash stack for demonstration: ================================================================== BUG: KASAN: wild-memory-access in ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939 Read of size 6 at addr 001102080000000c by task fuzzer.386/9508 CPU: 1 PID: 9508 Comm: syz.1.386 Not tainted 6.1.70 #2 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106 print_report+0xe0/0x750 mm/kasan/report.c:398 kasan_report+0x139/0x170 mm/kasan/report.c:495 kasan_check_range+0x287/0x290 mm/kasan/generic.c:189 memcpy+0x25/0x60 mm/kasan/shadow.c:65 ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939 rdev_tx_control_port net/wireless/rdev-ops.h:761 [inline] nl80211_tx_control_port+0x7b3/0xc40 net/wireless/nl80211.c:15453 genl_family_rcv_msg_doit+0x22e/0x320 net/netlink/genetlink.c:756 genl_family_rcv_msg net/netlink/genetlink.c:833 [inline] genl_rcv_msg+0x539/0x740 net/netlink/genetlink.c:850 netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508 genl_rcv+0x24/0x40 net/netlink/genetlink.c:861 netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline] netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352 netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874 sock_sendmsg_nosec net/socket.c:716 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499 ___sys_sendmsg+0x21c/0x290 net/socket.c:2553 __sys_sendmsg net/socket.c:2582 [inline] __do_sys_sendmsg net/socket.c:2591 [inline] __se_sys_sendmsg+0x19e/0x270 net/socket.c:2589 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x63/0xcd Update the policy to ensure correct validation.
7.1
High
CVE-2024-56662 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: acpi: nfit: vmalloc-out-of-bounds Read in acpi_nfit_ctl Fix an issue detected by syzbot with KASAN: BUG: KASAN: vmalloc-out-of-bounds in cmd_to_func drivers/acpi/nfit/ core.c:416 [inline] BUG: KASAN: vmalloc-out-of-bounds in acpi_nfit_ctl+0x20e8/0x24a0 drivers/acpi/nfit/core.c:459 The issue occurs in cmd_to_func when the call_pkg->nd_reserved2 array is accessed without verifying that call_pkg points to a buffer that is appropriately sized as a struct nd_cmd_pkg. This can lead to out-of-bounds access and undefined behavior if the buffer does not have sufficient space. To address this, a check was added in acpi_nfit_ctl() to ensure that buf is not NULL and that buf_len is less than sizeof(*call_pkg) before accessing it. This ensures safe access to the members of call_pkg, including the nd_reserved2 array.
7.1
High
CVE-2024-56660 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: DR, prevent potential error pointer dereference The dr_domain_add_vport_cap() function generally returns NULL on error but sometimes we want it to return ERR_PTR(-EBUSY) so the caller can retry. The problem here is that "ret" can be either -EBUSY or -ENOMEM and if it's and -ENOMEM then the error pointer is propogated back and eventually dereferenced in dr_ste_v0_build_src_gvmi_qpn_tag().
5.5
Medium
CVE-2024-56659 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: lapb: increase LAPB_HEADER_LEN It is unclear if net/lapb code is supposed to be ready for 8021q. We can at least avoid crashes like the following : skbuff: skb_under_panic: text:ffffffff8aabe1f6 len:24 put:20 head:ffff88802824a400 data:ffff88802824a3fe tail:0x16 end:0x140 dev:nr0.2 ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:206 ! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 5508 Comm: dhcpcd Not tainted 6.12.0-rc7-syzkaller-00144-g66418447d27b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 RIP: 0010:skb_panic net/core/skbuff.c:206 [inline] RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216 Code: 0d 8d 48 c7 c6 2e 9e 29 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 1a 6f 37 02 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 RSP: 0018:ffffc90002ddf638 EFLAGS: 00010282 RAX: 0000000000000086 RBX: dffffc0000000000 RCX: 7a24750e538ff600 RDX: 0000000000000000 RSI: 0000000000000201 RDI: 0000000000000000 RBP: ffff888034a86650 R08: ffffffff8174b13c R09: 1ffff920005bbe60 R10: dffffc0000000000 R11: fffff520005bbe61 R12: 0000000000000140 R13: ffff88802824a400 R14: ffff88802824a3fe R15: 0000000000000016 FS: 00007f2a5990d740(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000110c2631fd CR3: 0000000029504000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: skb_push+0xe5/0x100 net/core/skbuff.c:2636 nr_header+0x36/0x320 net/netrom/nr_dev.c:69 dev_hard_header include/linux/netdevice.h:3148 [inline] vlan_dev_hard_header+0x359/0x480 net/8021q/vlan_dev.c:83 dev_hard_header include/linux/netdevice.h:3148 [inline] lapbeth_data_transmit+0x1f6/0x2a0 drivers/net/wan/lapbether.c:257 lapb_data_transmit+0x91/0xb0 net/lapb/lapb_iface.c:447 lapb_transmit_buffer+0x168/0x1f0 net/lapb/lapb_out.c:149 lapb_establish_data_link+0x84/0xd0 lapb_device_event+0x4e0/0x670 notifier_call_chain+0x19f/0x3e0 kernel/notifier.c:93 __dev_notify_flags+0x207/0x400 dev_change_flags+0xf0/0x1a0 net/core/dev.c:8922 devinet_ioctl+0xa4e/0x1aa0 net/ipv4/devinet.c:1188 inet_ioctl+0x3d7/0x4f0 net/ipv4/af_inet.c:1003 sock_do_ioctl+0x158/0x460 net/socket.c:1227 sock_ioctl+0x626/0x8e0 net/socket.c:1346 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
5.5
Medium
CVE-2024-56658 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: defer final 'struct net' free in netns dismantle Ilya reported a slab-use-after-free in dst_destroy [1] Issue is in xfrm6_net_init() and xfrm4_net_init() : They copy xfrm[46]_dst_ops_template into net->xfrm.xfrm[46]_dst_ops. But net structure might be freed before all the dst callbacks are called. So when dst_destroy() calls later : if (dst->ops->destroy) dst->ops->destroy(dst); dst->ops points to the old net->xfrm.xfrm[46]_dst_ops, which has been freed. See a relevant issue fixed in : ac888d58869b ("net: do not delay dst_entries_add() in dst_release()") A fix is to queue the 'struct net' to be freed after one another cleanup_net() round (and existing rcu_barrier()) [1] BUG: KASAN: slab-use-after-free in dst_destroy (net/core/dst.c:112) Read of size 8 at addr ffff8882137ccab0 by task swapper/37/0 Dec 03 05:46:18 kernel: CPU: 37 UID: 0 PID: 0 Comm: swapper/37 Kdump: loaded Not tainted 6.12.0 #67 Hardware name: Red Hat KVM/RHEL, BIOS 1.16.1-1.el9 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:124) print_address_description.constprop.0 (mm/kasan/report.c:378) ? dst_destroy (net/core/dst.c:112) print_report (mm/kasan/report.c:489) ? dst_destroy (net/core/dst.c:112) ? kasan_addr_to_slab (mm/kasan/common.c:37) kasan_report (mm/kasan/report.c:603) ? dst_destroy (net/core/dst.c:112) ? rcu_do_batch (kernel/rcu/tree.c:2567) dst_destroy (net/core/dst.c:112) rcu_do_batch (kernel/rcu/tree.c:2567) ? __pfx_rcu_do_batch (kernel/rcu/tree.c:2491) ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4339 kernel/locking/lockdep.c:4406) rcu_core (kernel/rcu/tree.c:2825) handle_softirqs (kernel/softirq.c:554) __irq_exit_rcu (kernel/softirq.c:589 kernel/softirq.c:428 kernel/softirq.c:637) irq_exit_rcu (kernel/softirq.c:651) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1049 arch/x86/kernel/apic/apic.c:1049) asm_sysvec_apic_timer_interrupt (./arch/x86/include/asm/idtentry.h:702) RIP: 0010:default_idle (./arch/x86/include/asm/irqflags.h:37 ./arch/x86/include/asm/irqflags.h:92 arch/x86/kernel/process.c:743) Code: 00 4d 29 c8 4c 01 c7 4c 29 c2 e9 6e ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 0f 00 2d c7 c9 27 00 fb f4 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 RSP: 0018:ffff888100d2fe00 EFLAGS: 00000246 RAX: 00000000001870ed RBX: 1ffff110201a5fc2 RCX: ffffffffb61a3e46 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffb3d4d123 RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed11c7e1835d R10: ffff888e3f0c1aeb R11: 0000000000000000 R12: 0000000000000000 R13: ffff888100d20000 R14: dffffc0000000000 R15: 0000000000000000 ? ct_kernel_exit.constprop.0 (kernel/context_tracking.c:148) ? cpuidle_idle_call (kernel/sched/idle.c:186) default_idle_call (./include/linux/cpuidle.h:143 kernel/sched/idle.c:118) cpuidle_idle_call (kernel/sched/idle.c:186) ? __pfx_cpuidle_idle_call (kernel/sched/idle.c:168) ? lock_release (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5848) ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4347 kernel/locking/lockdep.c:4406) ? tsc_verify_tsc_adjust (arch/x86/kernel/tsc_sync.c:59) do_idle (kernel/sched/idle.c:326) cpu_startup_entry (kernel/sched/idle.c:423 (discriminator 1)) start_secondary (arch/x86/kernel/smpboot.c:202 arch/x86/kernel/smpboot.c:282) ? __pfx_start_secondary (arch/x86/kernel/smpboot.c:232) ? soft_restart_cpu (arch/x86/kernel/head_64.S:452) common_startup_64 (arch/x86/kernel/head_64.S:414) Dec 03 05:46:18 kernel: Allocated by task 12184: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (./arch/x86/include/asm/current.h:49 mm/kasan/common.c:60 mm/kasan/common.c:69) __kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345) kmem_cache_alloc_noprof (mm/slub.c:4085 mm/slub.c:4134 mm/slub.c:4141) copy_net_ns (net/core/net_namespace.c:421 net/core/net_namespace.c:480) create_new_namespaces ---truncated---
7.8
High
CVE-2024-56657 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: ALSA: control: Avoid WARN() for symlink errors Using WARN() for showing the error of symlink creations don't give more information than telling that something goes wrong, since the usual code path is a lregister callback from each control element creation. More badly, the use of WARN() rather confuses fuzzer as if it were serious issues. This patch downgrades the warning messages to use the normal dev_err() instead of WARN(). For making it clearer, add the function name to the prefix, too.
5.5
Medium
CVE-2024-56654 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: Fix using rcu_read_(un)lock while iterating The usage of rcu_read_(un)lock while inside list_for_each_entry_rcu is not safe since for the most part entries fetched this way shall be treated as rcu_dereference: Note that the value returned by rcu_dereference() is valid only within the enclosing RCU read-side critical section [1]_. For example, the following is **not** legal:: rcu_read_lock(); p = rcu_dereference(head.next); rcu_read_unlock(); x = p->address; /* BUG!!! */ rcu_read_lock(); y = p->data; /* BUG!!! */ rcu_read_unlock();
5.5
Medium
CVE-2024-56653 2024-12-27 15h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btmtk: avoid UAF in btmtk_process_coredump hci_devcd_append may lead to the release of the skb, so it cannot be accessed once it is called. ================================================================== BUG: KASAN: slab-use-after-free in btmtk_process_coredump+0x2a7/0x2d0 [btmtk] Read of size 4 at addr ffff888033cfabb0 by task kworker/0:3/82 CPU: 0 PID: 82 Comm: kworker/0:3 Tainted: G U 6.6.40-lockdep-03464-g1d8b4eb3060e #1 b0b3c1cc0c842735643fb411799d97921d1f688c Hardware name: Google Yaviks_Ufs/Yaviks_Ufs, BIOS Google_Yaviks_Ufs.15217.552.0 05/07/2024 Workqueue: events btusb_rx_work [btusb] Call Trace: dump_stack_lvl+0xfd/0x150 print_report+0x131/0x780 kasan_report+0x177/0x1c0 btmtk_process_coredump+0x2a7/0x2d0 [btmtk 03edd567dd71a65958807c95a65db31d433e1d01] btusb_recv_acl_mtk+0x11c/0x1a0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec] btusb_rx_work+0x9e/0xe0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec] worker_thread+0xe44/0x2cc0 kthread+0x2ff/0x3a0 ret_from_fork+0x51/0x80 ret_from_fork_asm+0x1b/0x30 Allocated by task 82: stack_trace_save+0xdc/0x190 kasan_set_track+0x4e/0x80 __kasan_slab_alloc+0x4e/0x60 kmem_cache_alloc+0x19f/0x360 skb_clone+0x132/0xf70 btusb_recv_acl_mtk+0x104/0x1a0 [btusb] btusb_rx_work+0x9e/0xe0 [btusb] worker_thread+0xe44/0x2cc0 kthread+0x2ff/0x3a0 ret_from_fork+0x51/0x80 ret_from_fork_asm+0x1b/0x30 Freed by task 1733: stack_trace_save+0xdc/0x190 kasan_set_track+0x4e/0x80 kasan_save_free_info+0x28/0xb0 ____kasan_slab_free+0xfd/0x170 kmem_cache_free+0x183/0x3f0 hci_devcd_rx+0x91a/0x2060 [bluetooth] worker_thread+0xe44/0x2cc0 kthread+0x2ff/0x3a0 ret_from_fork+0x51/0x80 ret_from_fork_asm+0x1b/0x30 The buggy address belongs to the object at ffff888033cfab40 which belongs to the cache skbuff_head_cache of size 232 The buggy address is located 112 bytes inside of freed 232-byte region [ffff888033cfab40, ffff888033cfac28) The buggy address belongs to the physical page: page:00000000a174ba93 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x33cfa head:00000000a174ba93 order:1 entire_mapcount:0 nr_pages_mapped:0 pincount:0 anon flags: 0x4000000000000840(slab|head|zone=1) page_type: 0xffffffff() raw: 4000000000000840 ffff888100848a00 0000000000000000 0000000000000001 raw: 0000000000000000 0000000080190019 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888033cfaa80: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc ffff888033cfab00: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb >ffff888033cfab80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888033cfac00: fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc ffff888033cfac80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Check if we need to call hci_devcd_complete before calling hci_devcd_append. That requires that we check data->cd_info.cnt >= MTK_COREDUMP_NUM instead of data->cd_info.cnt > MTK_COREDUMP_NUM, as we increment data->cd_info.cnt only once the call to hci_devcd_append succeeds.
7.8
High
CVE-2024-56651 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: can: hi311x: hi3110_can_ist(): fix potential use-after-free The commit a22bd630cfff ("can: hi311x: do not report txerr and rxerr during bus-off") removed the reporting of rxerr and txerr even in case of correct operation (i. e. not bus-off). The error count information added to the CAN frame after netif_rx() is a potential use after free, since there is no guarantee that the skb is in the same state. It might be freed or reused. Fix the issue by postponing the netif_rx() call in case of txerr and rxerr reporting.
7.8
High
CVE-2024-56650 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: x_tables: fix LED ID check in led_tg_check() Syzbot has reported the following BUG detected by KASAN: BUG: KASAN: slab-out-of-bounds in strlen+0x58/0x70 Read of size 1 at addr ffff8881022da0c8 by task repro/5879 ... Call Trace: dump_stack_lvl+0x241/0x360 ? __pfx_dump_stack_lvl+0x10/0x10 ? __pfx__printk+0x10/0x10 ? _printk+0xd5/0x120 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x183/0x530 print_report+0x169/0x550 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x45f/0x530 ? __phys_addr+0xba/0x170 ? strlen+0x58/0x70 kasan_report+0x143/0x180 ? strlen+0x58/0x70 strlen+0x58/0x70 kstrdup+0x20/0x80 led_tg_check+0x18b/0x3c0 xt_check_target+0x3bb/0xa40 ? __pfx_xt_check_target+0x10/0x10 ? stack_depot_save_flags+0x6e4/0x830 ? nft_target_init+0x174/0xc30 nft_target_init+0x82d/0xc30 ? __pfx_nft_target_init+0x10/0x10 ? nf_tables_newrule+0x1609/0x2980 ? nf_tables_newrule+0x1609/0x2980 ? rcu_is_watching+0x15/0xb0 ? nf_tables_newrule+0x1609/0x2980 ? nf_tables_newrule+0x1609/0x2980 ? __kmalloc_noprof+0x21a/0x400 nf_tables_newrule+0x1860/0x2980 ? __pfx_nf_tables_newrule+0x10/0x10 ? __nla_parse+0x40/0x60 nfnetlink_rcv+0x14e5/0x2ab0 ? __pfx_validate_chain+0x10/0x10 ? __pfx_nfnetlink_rcv+0x10/0x10 ? __lock_acquire+0x1384/0x2050 ? netlink_deliver_tap+0x2e/0x1b0 ? __pfx_lock_release+0x10/0x10 ? netlink_deliver_tap+0x2e/0x1b0 netlink_unicast+0x7f8/0x990 ? __pfx_netlink_unicast+0x10/0x10 ? __virt_addr_valid+0x183/0x530 ? __check_object_size+0x48e/0x900 netlink_sendmsg+0x8e4/0xcb0 ? __pfx_netlink_sendmsg+0x10/0x10 ? aa_sock_msg_perm+0x91/0x160 ? __pfx_netlink_sendmsg+0x10/0x10 __sock_sendmsg+0x223/0x270 ____sys_sendmsg+0x52a/0x7e0 ? __pfx_____sys_sendmsg+0x10/0x10 __sys_sendmsg+0x292/0x380 ? __pfx___sys_sendmsg+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x43d/0x780 ? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10 ? exc_page_fault+0x590/0x8c0 ? do_syscall_64+0xb6/0x230 do_syscall_64+0xf3/0x230 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... Since an invalid (without '\0' byte at all) byte sequence may be passed from userspace, add an extra check to ensure that such a sequence is rejected as possible ID and so never passed to 'kstrdup()' and further.
7.1
High
CVE-2024-56649 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: enetc: Do not configure preemptible TCs if SIs do not support Both ENETC PF and VF drivers share enetc_setup_tc_mqprio() to configure MQPRIO. And enetc_setup_tc_mqprio() calls enetc_change_preemptible_tcs() to configure preemptible TCs. However, only PF is able to configure preemptible TCs. Because only PF has related registers, while VF does not have these registers. So for VF, its hw->port pointer is NULL. Therefore, VF will access an invalid pointer when accessing a non-existent register, which will cause a crash issue. The simplified log is as follows. root@ls1028ardb:~# tc qdisc add dev eno0vf0 parent root handle 100: \ mqprio num_tc 4 map 0 0 1 1 2 2 3 3 queues 1@0 1@1 1@2 1@3 hw 1 [ 187.290775] Unable to handle kernel paging request at virtual address 0000000000001f00 [ 187.424831] pc : enetc_mm_commit_preemptible_tcs+0x1c4/0x400 [ 187.430518] lr : enetc_mm_commit_preemptible_tcs+0x30c/0x400 [ 187.511140] Call trace: [ 187.513588] enetc_mm_commit_preemptible_tcs+0x1c4/0x400 [ 187.518918] enetc_setup_tc_mqprio+0x180/0x214 [ 187.523374] enetc_vf_setup_tc+0x1c/0x30 [ 187.527306] mqprio_enable_offload+0x144/0x178 [ 187.531766] mqprio_init+0x3ec/0x668 [ 187.535351] qdisc_create+0x15c/0x488 [ 187.539023] tc_modify_qdisc+0x398/0x73c [ 187.542958] rtnetlink_rcv_msg+0x128/0x378 [ 187.547064] netlink_rcv_skb+0x60/0x130 [ 187.550910] rtnetlink_rcv+0x18/0x24 [ 187.554492] netlink_unicast+0x300/0x36c [ 187.558425] netlink_sendmsg+0x1a8/0x420 [ 187.606759] ---[ end trace 0000000000000000 ]--- In addition, some PFs also do not support configuring preemptible TCs, such as eno1 and eno3 on LS1028A. It won't crash like it does for VFs, but we should prevent these PFs from accessing these unimplemented registers.
5.5
Medium
CVE-2024-56648 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hsr: avoid potential out-of-bound access in fill_frame_info() syzbot is able to feed a packet with 14 bytes, pretending it is a vlan one. Since fill_frame_info() is relying on skb->mac_len already, extend the check to cover this case. BUG: KMSAN: uninit-value in fill_frame_info net/hsr/hsr_forward.c:709 [inline] BUG: KMSAN: uninit-value in hsr_forward_skb+0x9ee/0x3b10 net/hsr/hsr_forward.c:724 fill_frame_info net/hsr/hsr_forward.c:709 [inline] hsr_forward_skb+0x9ee/0x3b10 net/hsr/hsr_forward.c:724 hsr_dev_xmit+0x2f0/0x350 net/hsr/hsr_device.c:235 __netdev_start_xmit include/linux/netdevice.h:5002 [inline] netdev_start_xmit include/linux/netdevice.h:5011 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3606 __dev_queue_xmit+0x366a/0x57d0 net/core/dev.c:4434 dev_queue_xmit include/linux/netdevice.h:3168 [inline] packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3146 [inline] packet_sendmsg+0x91ae/0xa6f0 net/packet/af_packet.c:3178 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:726 __sys_sendto+0x594/0x750 net/socket.c:2197 __do_sys_sendto net/socket.c:2204 [inline] __se_sys_sendto net/socket.c:2200 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2200 x64_sys_call+0x346a/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:45 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4091 [inline] slab_alloc_node mm/slub.c:4134 [inline] kmem_cache_alloc_node_noprof+0x6bf/0xb80 mm/slub.c:4186 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:587 __alloc_skb+0x363/0x7b0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1323 [inline] alloc_skb_with_frags+0xc8/0xd00 net/core/skbuff.c:6612 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2881 packet_alloc_skb net/packet/af_packet.c:2995 [inline] packet_snd net/packet/af_packet.c:3089 [inline] packet_sendmsg+0x74c6/0xa6f0 net/packet/af_packet.c:3178 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:726 __sys_sendto+0x594/0x750 net/socket.c:2197 __do_sys_sendto net/socket.c:2204 [inline] __se_sys_sendto net/socket.c:2200 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2200 x64_sys_call+0x346a/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:45 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-56647 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: Fix icmp host relookup triggering ip_rt_bug arp link failure may trigger ip_rt_bug while xfrm enabled, call trace is: WARNING: CPU: 0 PID: 0 at net/ipv4/route.c:1241 ip_rt_bug+0x14/0x20 Modules linked in: CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:ip_rt_bug+0x14/0x20 Call Trace: ip_send_skb+0x14/0x40 __icmp_send+0x42d/0x6a0 ipv4_link_failure+0xe2/0x1d0 arp_error_report+0x3c/0x50 neigh_invalidate+0x8d/0x100 neigh_timer_handler+0x2e1/0x330 call_timer_fn+0x21/0x120 __run_timer_base.part.0+0x1c9/0x270 run_timer_softirq+0x4c/0x80 handle_softirqs+0xac/0x280 irq_exit_rcu+0x62/0x80 sysvec_apic_timer_interrupt+0x77/0x90 The script below reproduces this scenario: ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 \ dir out priority 0 ptype main flag localok icmp ip l a veth1 type veth ip a a 192.168.141.111/24 dev veth0 ip l s veth0 up ping 192.168.141.155 -c 1 icmp_route_lookup() create input routes for locally generated packets while xfrm relookup ICMP traffic.Then it will set input route (dst->out = ip_rt_bug) to skb for DESTUNREACH. For ICMP err triggered by locally generated packets, dst->dev of output route is loopback. Generally, xfrm relookup verification is not required on loopback interfaces (net.ipv4.conf.lo.disable_xfrm = 1). Skip icmp relookup for locally generated packets to fix it.
5.5
Medium
CVE-2024-56643 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: dccp: Fix memory leak in dccp_feat_change_recv If dccp_feat_push_confirm() fails after new value for SP feature was accepted without reconciliation ('entry == NULL' branch), memory allocated for that value with dccp_feat_clone_sp_val() is never freed. Here is the kmemleak stack for this: unreferenced object 0xffff88801d4ab488 (size 8): comm "syz-executor310", pid 1127, jiffies 4295085598 (age 41.666s) hex dump (first 8 bytes): 01 b4 4a 1d 80 88 ff ff ..J..... backtrace: [<00000000db7cabfe>] kmemdup+0x23/0x50 mm/util.c:128 [<0000000019b38405>] kmemdup include/linux/string.h:465 [inline] [<0000000019b38405>] dccp_feat_clone_sp_val net/dccp/feat.c:371 [inline] [<0000000019b38405>] dccp_feat_clone_sp_val net/dccp/feat.c:367 [inline] [<0000000019b38405>] dccp_feat_change_recv net/dccp/feat.c:1145 [inline] [<0000000019b38405>] dccp_feat_parse_options+0x1196/0x2180 net/dccp/feat.c:1416 [<00000000b1f6d94a>] dccp_parse_options+0xa2a/0x1260 net/dccp/options.c:125 [<0000000030d7b621>] dccp_rcv_state_process+0x197/0x13d0 net/dccp/input.c:650 [<000000001f74c72e>] dccp_v4_do_rcv+0xf9/0x1a0 net/dccp/ipv4.c:688 [<00000000a6c24128>] sk_backlog_rcv include/net/sock.h:1041 [inline] [<00000000a6c24128>] __release_sock+0x139/0x3b0 net/core/sock.c:2570 [<00000000cf1f3a53>] release_sock+0x54/0x1b0 net/core/sock.c:3111 [<000000008422fa23>] inet_wait_for_connect net/ipv4/af_inet.c:603 [inline] [<000000008422fa23>] __inet_stream_connect+0x5d0/0xf70 net/ipv4/af_inet.c:696 [<0000000015b6f64d>] inet_stream_connect+0x53/0xa0 net/ipv4/af_inet.c:735 [<0000000010122488>] __sys_connect_file+0x15c/0x1a0 net/socket.c:1865 [<00000000b4b70023>] __sys_connect+0x165/0x1a0 net/socket.c:1882 [<00000000f4cb3815>] __do_sys_connect net/socket.c:1892 [inline] [<00000000f4cb3815>] __se_sys_connect net/socket.c:1889 [inline] [<00000000f4cb3815>] __x64_sys_connect+0x6e/0xb0 net/socket.c:1889 [<00000000e7b1e839>] do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 [<0000000055e91434>] entry_SYSCALL_64_after_hwframe+0x67/0xd1 Clean up the allocated memory in case of dccp_feat_push_confirm() failure and bail out with an error reset code. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
5.5
Medium
CVE-2024-56642 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: tipc: Fix use-after-free of kernel socket in cleanup_bearer(). syzkaller reported a use-after-free of UDP kernel socket in cleanup_bearer() without repro. [0][1] When bearer_disable() calls tipc_udp_disable(), cleanup of the UDP kernel socket is deferred by work calling cleanup_bearer(). tipc_exit_net() waits for such works to finish by checking tipc_net(net)->wq_count. However, the work decrements the count too early before releasing the kernel socket, unblocking cleanup_net() and resulting in use-after-free. Let's move the decrement after releasing the socket in cleanup_bearer(). [0]: ref_tracker: net notrefcnt@000000009b3d1faf has 1/1 users at sk_alloc+0x438/0x608 inet_create+0x4c8/0xcb0 __sock_create+0x350/0x6b8 sock_create_kern+0x58/0x78 udp_sock_create4+0x68/0x398 udp_sock_create+0x88/0xc8 tipc_udp_enable+0x5e8/0x848 __tipc_nl_bearer_enable+0x84c/0xed8 tipc_nl_bearer_enable+0x38/0x60 genl_family_rcv_msg_doit+0x170/0x248 genl_rcv_msg+0x400/0x5b0 netlink_rcv_skb+0x1dc/0x398 genl_rcv+0x44/0x68 netlink_unicast+0x678/0x8b0 netlink_sendmsg+0x5e4/0x898 ____sys_sendmsg+0x500/0x830 [1]: BUG: KMSAN: use-after-free in udp_hashslot include/net/udp.h:85 [inline] BUG: KMSAN: use-after-free in udp_lib_unhash+0x3b8/0x930 net/ipv4/udp.c:1979 udp_hashslot include/net/udp.h:85 [inline] udp_lib_unhash+0x3b8/0x930 net/ipv4/udp.c:1979 sk_common_release+0xaf/0x3f0 net/core/sock.c:3820 inet_release+0x1e0/0x260 net/ipv4/af_inet.c:437 inet6_release+0x6f/0xd0 net/ipv6/af_inet6.c:489 __sock_release net/socket.c:658 [inline] sock_release+0xa0/0x210 net/socket.c:686 cleanup_bearer+0x42d/0x4c0 net/tipc/udp_media.c:819 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xcaf/0x1c90 kernel/workqueue.c:3310 worker_thread+0xf6c/0x1510 kernel/workqueue.c:3391 kthread+0x531/0x6b0 kernel/kthread.c:389 ret_from_fork+0x60/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:244 Uninit was created at: slab_free_hook mm/slub.c:2269 [inline] slab_free mm/slub.c:4580 [inline] kmem_cache_free+0x207/0xc40 mm/slub.c:4682 net_free net/core/net_namespace.c:454 [inline] cleanup_net+0x16f2/0x19d0 net/core/net_namespace.c:647 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xcaf/0x1c90 kernel/workqueue.c:3310 worker_thread+0xf6c/0x1510 kernel/workqueue.c:3391 kthread+0x531/0x6b0 kernel/kthread.c:389 ret_from_fork+0x60/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:244 CPU: 0 UID: 0 PID: 54 Comm: kworker/0:2 Not tainted 6.12.0-rc1-00131-gf66ebf37d69c #7 91723d6f74857f70725e1583cba3cf4adc716cfa Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 Workqueue: events cleanup_bearer
7.8
High
CVE-2024-56640 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/smc: fix LGR and link use-after-free issue We encountered a LGR/link use-after-free issue, which manifested as the LGR/link refcnt reaching 0 early and entering the clear process, making resource access unsafe. refcount_t: addition on 0; use-after-free. WARNING: CPU: 14 PID: 107447 at lib/refcount.c:25 refcount_warn_saturate+0x9c/0x140 Workqueue: events smc_lgr_terminate_work [smc] Call trace: refcount_warn_saturate+0x9c/0x140 __smc_lgr_terminate.part.45+0x2a8/0x370 [smc] smc_lgr_terminate_work+0x28/0x30 [smc] process_one_work+0x1b8/0x420 worker_thread+0x158/0x510 kthread+0x114/0x118 or refcount_t: underflow; use-after-free. WARNING: CPU: 6 PID: 93140 at lib/refcount.c:28 refcount_warn_saturate+0xf0/0x140 Workqueue: smc_hs_wq smc_listen_work [smc] Call trace: refcount_warn_saturate+0xf0/0x140 smcr_link_put+0x1cc/0x1d8 [smc] smc_conn_free+0x110/0x1b0 [smc] smc_conn_abort+0x50/0x60 [smc] smc_listen_find_device+0x75c/0x790 [smc] smc_listen_work+0x368/0x8a0 [smc] process_one_work+0x1b8/0x420 worker_thread+0x158/0x510 kthread+0x114/0x118 It is caused by repeated release of LGR/link refcnt. One suspect is that smc_conn_free() is called repeatedly because some smc_conn_free() from server listening path are not protected by sock lock. e.g. Calls under socklock | smc_listen_work ------------------------------------------------------- lock_sock(sk) | smc_conn_abort smc_conn_free | \- smc_conn_free \- smcr_link_put | \- smcr_link_put (duplicated) release_sock(sk) So here add sock lock protection in smc_listen_work() path, making it exclusive with other connection operations.
7.8
High
CVE-2024-56635 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: avoid potential UAF in default_operstate() syzbot reported an UAF in default_operstate() [1] Issue is a race between device and netns dismantles. After calling __rtnl_unlock() from netdev_run_todo(), we can not assume the netns of each device is still alive. Make sure the device is not in NETREG_UNREGISTERED state, and add an ASSERT_RTNL() before the call to __dev_get_by_index(). We might move this ASSERT_RTNL() in __dev_get_by_index() in the future. [1] BUG: KASAN: slab-use-after-free in __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 Read of size 8 at addr ffff888043eba1b0 by task syz.0.0/5339 CPU: 0 UID: 0 PID: 5339 Comm: syz.0.0 Not tainted 6.12.0-syzkaller-10296-gaaf20f870da0 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 default_operstate net/core/link_watch.c:51 [inline] rfc2863_policy+0x224/0x300 net/core/link_watch.c:67 linkwatch_do_dev+0x3e/0x170 net/core/link_watch.c:170 netdev_run_todo+0x461/0x1000 net/core/dev.c:10894 rtnl_unlock net/core/rtnetlink.c:152 [inline] rtnl_net_unlock include/linux/rtnetlink.h:133 [inline] rtnl_dellink+0x760/0x8d0 net/core/rtnetlink.c:3520 rtnetlink_rcv_msg+0x791/0xcf0 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2541 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f2a3cb80809 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f2a3d9cd058 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f2a3cd45fa0 RCX: 00007f2a3cb80809 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000008 RBP: 00007f2a3cbf393e R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f2a3cd45fa0 R15: 00007ffd03bc65c8 Allocated by task 5339: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kmalloc_array_noprof include/linux/slab.h:945 [inline] netdev_create_hash net/core/dev.c:11870 [inline] netdev_init+0x10c/0x250 net/core/dev.c:11890 ops_init+0x31e/0x590 net/core/net_namespace.c:138 setup_net+0x287/0x9e0 net/core/net_namespace.c:362 copy_net_ns+0x33f/0x570 net/core/net_namespace.c:500 create_new_namespaces+0x425/0x7b0 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0x124/0x180 kernel/nsproxy.c:228 ksys_unshare+0x57d/0xa70 kernel/fork.c:3314 __do_sys_unshare kernel/fork.c:3385 [inline] __se_sys_unshare kernel/fork.c:3383 [inline] __x64_sys_unshare+0x38/0x40 kernel/fork.c:3383 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x8 ---truncated---
7.8
High
CVE-2024-56634 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: gpio: grgpio: Add NULL check in grgpio_probe devm_kasprintf() can return a NULL pointer on failure,but this returned value in grgpio_probe is not checked. Add NULL check in grgpio_probe, to handle kernel NULL pointer dereference error.
5.5
Medium
CVE-2024-56631 2024-12-27 15h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: sg: Fix slab-use-after-free read in sg_release() Fix a use-after-free bug in sg_release(), detected by syzbot with KASAN: BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5838 __mutex_unlock_slowpath+0xe2/0x750 kernel/locking/mutex.c:912 sg_release+0x1f4/0x2e0 drivers/scsi/sg.c:407 In sg_release(), the function kref_put(&sfp->f_ref, sg_remove_sfp) is called before releasing the open_rel_lock mutex. The kref_put() call may decrement the reference count of sfp to zero, triggering its cleanup through sg_remove_sfp(). This cleanup includes scheduling deferred work via sg_remove_sfp_usercontext(), which ultimately frees sfp. After kref_put(), sg_release() continues to unlock open_rel_lock and may reference sfp or sdp. If sfp has already been freed, this results in a slab-use-after-free error. Move the kref_put(&sfp->f_ref, sg_remove_sfp) call after unlocking the open_rel_lock mutex. This ensures: - No references to sfp or sdp occur after the reference count is decremented. - Cleanup functions such as sg_remove_sfp() and sg_remove_sfp_usercontext() can safely execute without impacting the mutex handling in sg_release(). The fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures proper sequencing of resource cleanup and mutex operations, eliminating the risk of use-after-free errors in sg_release().
7.8
High
CVE-2024-56629 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: HID: wacom: fix when get product name maybe null pointer Due to incorrect dev->product reporting by certain devices, null pointer dereferences occur when dev->product is empty, leading to potential system crashes. This issue was found on EXCELSIOR DL37-D05 device with Loongson-LS3A6000-7A2000-DL37 motherboard. Kernel logs: [ 56.470885] usb 4-3: new full-speed USB device number 4 using ohci-pci [ 56.671638] usb 4-3: string descriptor 0 read error: -22 [ 56.671644] usb 4-3: New USB device found, idVendor=056a, idProduct=0374, bcdDevice= 1.07 [ 56.671647] usb 4-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [ 56.678839] hid-generic 0003:056A:0374.0004: hiddev0,hidraw3: USB HID v1.10 Device [HID 056a:0374] on usb-0000:00:05.0-3/input0 [ 56.697719] CPU 2 Unable to handle kernel paging request at virtual address 0000000000000000, era == 90000000066e35c8, ra == ffff800004f98a80 [ 56.697732] Oops[#1]: [ 56.697734] CPU: 2 PID: 2742 Comm: (udev-worker) Tainted: G OE 6.6.0-loong64-desktop #25.00.2000.015 [ 56.697737] Hardware name: Inspur CE520L2/C09901N000000000, BIOS 2.09.00 10/11/2024 [ 56.697739] pc 90000000066e35c8 ra ffff800004f98a80 tp 9000000125478000 sp 900000012547b8a0 [ 56.697741] a0 0000000000000000 a1 ffff800004818b28 a2 0000000000000000 a3 0000000000000000 [ 56.697743] a4 900000012547b8f0 a5 0000000000000000 a6 0000000000000000 a7 0000000000000000 [ 56.697745] t0 ffff800004818b2d t1 0000000000000000 t2 0000000000000003 t3 0000000000000005 [ 56.697747] t4 0000000000000000 t5 0000000000000000 t6 0000000000000000 t7 0000000000000000 [ 56.697748] t8 0000000000000000 u0 0000000000000000 s9 0000000000000000 s0 900000011aa48028 [ 56.697750] s1 0000000000000000 s2 0000000000000000 s3 ffff800004818e80 s4 ffff800004810000 [ 56.697751] s5 90000001000b98d0 s6 ffff800004811f88 s7 ffff800005470440 s8 0000000000000000 [ 56.697753] ra: ffff800004f98a80 wacom_update_name+0xe0/0x300 [wacom] [ 56.697802] ERA: 90000000066e35c8 strstr+0x28/0x120 [ 56.697806] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 56.697816] PRMD: 0000000c (PPLV0 +PIE +PWE) [ 56.697821] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 56.697827] ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7) [ 56.697831] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 56.697835] BADV: 0000000000000000 [ 56.697836] PRID: 0014d000 (Loongson-64bit, Loongson-3A6000) [ 56.697838] Modules linked in: wacom(+) bnep bluetooth rfkill qrtr nls_iso8859_1 nls_cp437 snd_hda_codec_conexant snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_timer snd soundcore input_leds mousedev led_class joydev deepin_netmonitor(OE) fuse nfnetlink dmi_sysfs ip_tables x_tables overlay amdgpu amdxcp drm_exec gpu_sched drm_buddy radeon drm_suballoc_helper i2c_algo_bit drm_ttm_helper r8169 ttm drm_display_helper spi_loongson_pci xhci_pci cec xhci_pci_renesas spi_loongson_core hid_generic realtek gpio_loongson_64bit [ 56.697887] Process (udev-worker) (pid: 2742, threadinfo=00000000aee0d8b4, task=00000000a9eff1f3) [ 56.697890] Stack : 0000000000000000 ffff800004817e00 0000000000000000 0000251c00000000 [ 56.697896] 0000000000000000 00000011fffffffd 0000000000000000 0000000000000000 [ 56.697901] 0000000000000000 1b67a968695184b9 0000000000000000 90000001000b98d0 [ 56.697906] 90000001000bb8d0 900000011aa48028 0000000000000000 ffff800004f9d74c [ 56.697911] 90000001000ba000 ffff800004f9ce58 0000000000000000 ffff800005470440 [ 56.697916] ffff800004811f88 90000001000b98d0 9000000100da2aa8 90000001000bb8d0 [ 56.697921] 0000000000000000 90000001000ba000 900000011aa48028 ffff800004f9d74c [ 56.697926] ffff8000054704e8 90000001000bb8b8 90000001000ba000 0000000000000000 [ 56.697931] 90000001000bb8d0 ---truncated---
5.5
Medium
CVE-2024-56627 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Out-of-Bounds Read in ksmbd_vfs_stream_read An offset from client could be a negative value, It could lead to an out-of-bounds read from the stream_buf. Note that this issue is coming when setting 'vfs objects = streams_xattr parameter' in ksmbd.conf.
7.1
High
CVE-2024-56626 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Out-of-Bounds Write in ksmbd_vfs_stream_write An offset from client could be a negative value, It could allows to write data outside the bounds of the allocated buffer. Note that this issue is coming when setting 'vfs objects = streams_xattr parameter' in ksmbd.conf.
7.8
High
CVE-2024-56623 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix use after free on unload System crash is observed with stack trace warning of use after free. There are 2 signals to tell dpc_thread to terminate (UNLOADING flag and kthread_stop). On setting the UNLOADING flag when dpc_thread happens to run at the time and sees the flag, this causes dpc_thread to exit and clean up itself. When kthread_stop is called for final cleanup, this causes use after free. Remove UNLOADING signal to terminate dpc_thread. Use the kthread_stop as the main signal to exit dpc_thread. [596663.812935] kernel BUG at mm/slub.c:294! [596663.812950] invalid opcode: 0000 [#1] SMP PTI [596663.812957] CPU: 13 PID: 1475935 Comm: rmmod Kdump: loaded Tainted: G IOE --------- - - 4.18.0-240.el8.x86_64 #1 [596663.812960] Hardware name: HP ProLiant DL380p Gen8, BIOS P70 08/20/2012 [596663.812974] RIP: 0010:__slab_free+0x17d/0x360 ... [596663.813008] Call Trace: [596663.813022] ? __dentry_kill+0x121/0x170 [596663.813030] ? _cond_resched+0x15/0x30 [596663.813034] ? _cond_resched+0x15/0x30 [596663.813039] ? wait_for_completion+0x35/0x190 [596663.813048] ? try_to_wake_up+0x63/0x540 [596663.813055] free_task+0x5a/0x60 [596663.813061] kthread_stop+0xf3/0x100 [596663.813103] qla2x00_remove_one+0x284/0x440 [qla2xxx]
7.8
High
CVE-2024-56622 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: sysfs: Prevent div by zero Prevent a division by 0 when monitoring is not enabled.
5.5
Medium
CVE-2024-56620 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: qcom: Only free platform MSIs when ESI is enabled Otherwise, it will result in a NULL pointer dereference as below: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 Call trace: mutex_lock+0xc/0x54 platform_device_msi_free_irqs_all+0x14/0x20 ufs_qcom_remove+0x34/0x48 [ufs_qcom] platform_remove+0x28/0x44 device_remove+0x4c/0x80 device_release_driver_internal+0xd8/0x178 driver_detach+0x50/0x9c bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 platform_driver_unregister+0x14/0x20 ufs_qcom_pltform_exit+0x18/0xb94 [ufs_qcom] __arm64_sys_delete_module+0x180/0x260 invoke_syscall+0x44/0x100 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xdc el0t_64_sync_handler+0xc0/0xc4 el0t_64_sync+0x190/0x194
5.5
Medium
CVE-2024-56619 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential out-of-bounds memory access in nilfs_find_entry() Syzbot reported that when searching for records in a directory where the inode's i_size is corrupted and has a large value, memory access outside the folio/page range may occur, or a use-after-free bug may be detected if KASAN is enabled. This is because nilfs_last_byte(), which is called by nilfs_find_entry() and others to calculate the number of valid bytes of directory data in a page from i_size and the page index, loses the upper 32 bits of the 64-bit size information due to an inappropriate type of local variable to which the i_size value is assigned. This caused a large byte offset value due to underflow in the end address calculation in the calling nilfs_find_entry(), resulting in memory access that exceeds the folio/page size. Fix this issue by changing the type of the local variable causing the bit loss from "unsigned int" to "u64". The return value of nilfs_last_byte() is also of type "unsigned int", but it is truncated so as not to exceed PAGE_SIZE and no bit loss occurs, so no change is required.
7.8
High
CVE-2024-56617 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: cacheinfo: Allocate memory during CPU hotplug if not done from the primary CPU Commit 5944ce092b97 ("arch_topology: Build cacheinfo from primary CPU") adds functionality that architectures can use to optionally allocate and build cacheinfo early during boot. Commit 6539cffa9495 ("cacheinfo: Add arch specific early level initializer") lets secondary CPUs correct (and reallocate memory) cacheinfo data if needed. If the early build functionality is not used and cacheinfo does not need correction, memory for cacheinfo is never allocated. x86 does not use the early build functionality. Consequently, during the cacheinfo CPU hotplug callback, last_level_cache_is_valid() attempts to dereference a NULL pointer: BUG: kernel NULL pointer dereference, address: 0000000000000100 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not present page PGD 0 P4D 0 Oops: 0000 [#1] PREEPMT SMP NOPTI CPU: 0 PID 19 Comm: cpuhp/0 Not tainted 6.4.0-rc2 #1 RIP: 0010: last_level_cache_is_valid+0x95/0xe0a Allocate memory for cacheinfo during the cacheinfo CPU hotplug callback if not done earlier. Moreover, before determining the validity of the last-level cache info, ensure that it has been allocated. Simply checking for non-zero cache_leaves() is not sufficient, as some architectures (e.g., Intel processors) have non-zero cache_leaves() before allocation. Dereferencing NULL cacheinfo can occur in update_per_cpu_data_slice_size(). This function iterates over all online CPUs. However, a CPU may have come online recently, but its cacheinfo may not have been allocated yet. While here, remove an unnecessary indentation in allocate_cache_info(). [ bp: Massage. ]
5.5
Medium
CVE-2024-56615 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: fix OOB devmap writes when deleting elements Jordy reported issue against XSKMAP which also applies to DEVMAP - the index used for accessing map entry, due to being a signed integer, causes the OOB writes. Fix is simple as changing the type from int to u32, however, when compared to XSKMAP case, one more thing needs to be addressed. When map is released from system via dev_map_free(), we iterate through all of the entries and an iterator variable is also an int, which implies OOB accesses. Again, change it to be u32. Example splat below: [ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000 [ 160.731662] #PF: supervisor read access in kernel mode [ 160.736876] #PF: error_code(0x0000) - not-present page [ 160.742095] PGD 0 P4D 0 [ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP [ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487 [ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 160.767642] Workqueue: events_unbound bpf_map_free_deferred [ 160.773308] RIP: 0010:dev_map_free+0x77/0x170 [ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff [ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202 [ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024 [ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000 [ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001 [ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122 [ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000 [ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000 [ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0 [ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 160.874092] PKRU: 55555554 [ 160.876847] Call Trace: [ 160.879338] [ 160.881477] ? __die+0x20/0x60 [ 160.884586] ? page_fault_oops+0x15a/0x450 [ 160.888746] ? search_extable+0x22/0x30 [ 160.892647] ? search_bpf_extables+0x5f/0x80 [ 160.896988] ? exc_page_fault+0xa9/0x140 [ 160.900973] ? asm_exc_page_fault+0x22/0x30 [ 160.905232] ? dev_map_free+0x77/0x170 [ 160.909043] ? dev_map_free+0x58/0x170 [ 160.912857] bpf_map_free_deferred+0x51/0x90 [ 160.917196] process_one_work+0x142/0x370 [ 160.921272] worker_thread+0x29e/0x3b0 [ 160.925082] ? rescuer_thread+0x4b0/0x4b0 [ 160.929157] kthread+0xd4/0x110 [ 160.932355] ? kthread_park+0x80/0x80 [ 160.936079] ret_from_fork+0x2d/0x50 [ 160.943396] ? kthread_park+0x80/0x80 [ 160.950803] ret_from_fork_asm+0x11/0x20 [ 160.958482]
7.8
High
CVE-2024-56614 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: xsk: fix OOB map writes when deleting elements Jordy says: " In the xsk_map_delete_elem function an unsigned integer (map->max_entries) is compared with a user-controlled signed integer (k). Due to implicit type conversion, a large unsigned value for map->max_entries can bypass the intended bounds check: if (k >= map->max_entries) return -EINVAL; This allows k to hold a negative value (between -2147483648 and -2), which is then used as an array index in m->xsk_map[k], which results in an out-of-bounds access. spin_lock_bh(&m->lock); map_entry = &m->xsk_map[k]; // Out-of-bounds map_entry old_xs = unrcu_pointer(xchg(map_entry, NULL)); // Oob write if (old_xs) xsk_map_sock_delete(old_xs, map_entry); spin_unlock_bh(&m->lock); The xchg operation can then be used to cause an out-of-bounds write. Moreover, the invalid map_entry passed to xsk_map_sock_delete can lead to further memory corruption. " It indeed results in following splat: [76612.897343] BUG: unable to handle page fault for address: ffffc8fc2e461108 [76612.904330] #PF: supervisor write access in kernel mode [76612.909639] #PF: error_code(0x0002) - not-present page [76612.914855] PGD 0 P4D 0 [76612.917431] Oops: Oops: 0002 [#1] PREEMPT SMP [76612.921859] CPU: 11 UID: 0 PID: 10318 Comm: a.out Not tainted 6.12.0-rc1+ #470 [76612.929189] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [76612.939781] RIP: 0010:xsk_map_delete_elem+0x2d/0x60 [76612.944738] Code: 00 00 41 54 55 53 48 63 2e 3b 6f 24 73 38 4c 8d a7 f8 00 00 00 48 89 fb 4c 89 e7 e8 2d bf 05 00 48 8d b4 eb 00 01 00 00 31 ff <48> 87 3e 48 85 ff 74 05 e8 16 ff ff ff 4c 89 e7 e8 3e bc 05 00 31 [76612.963774] RSP: 0018:ffffc9002e407df8 EFLAGS: 00010246 [76612.969079] RAX: 0000000000000000 RBX: ffffc9002e461000 RCX: 0000000000000000 [76612.976323] RDX: 0000000000000001 RSI: ffffc8fc2e461108 RDI: 0000000000000000 [76612.983569] RBP: ffffffff80000001 R08: 0000000000000000 R09: 0000000000000007 [76612.990812] R10: ffffc9002e407e18 R11: ffff888108a38858 R12: ffffc9002e4610f8 [76612.998060] R13: ffff888108a38858 R14: 00007ffd1ae0ac78 R15: ffffc9002e4610c0 [76613.005303] FS: 00007f80b6f59740(0000) GS:ffff8897e0ec0000(0000) knlGS:0000000000000000 [76613.013517] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [76613.019349] CR2: ffffc8fc2e461108 CR3: 000000011e3ef001 CR4: 00000000007726f0 [76613.026595] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [76613.033841] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [76613.041086] PKRU: 55555554 [76613.043842] Call Trace: [76613.046331] [76613.048468] ? __die+0x20/0x60 [76613.051581] ? page_fault_oops+0x15a/0x450 [76613.055747] ? search_extable+0x22/0x30 [76613.059649] ? search_bpf_extables+0x5f/0x80 [76613.063988] ? exc_page_fault+0xa9/0x140 [76613.067975] ? asm_exc_page_fault+0x22/0x30 [76613.072229] ? xsk_map_delete_elem+0x2d/0x60 [76613.076573] ? xsk_map_delete_elem+0x23/0x60 [76613.080914] __sys_bpf+0x19b7/0x23c0 [76613.084555] __x64_sys_bpf+0x1a/0x20 [76613.088194] do_syscall_64+0x37/0xb0 [76613.091832] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [76613.096962] RIP: 0033:0x7f80b6d1e88d [76613.100592] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48 [76613.119631] RSP: 002b:00007ffd1ae0ac68 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 [76613.131330] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f80b6d1e88d [76613.142632] RDX: 0000000000000098 RSI: 00007ffd1ae0ad20 RDI: 0000000000000003 [76613.153967] RBP: 00007ffd1ae0adc0 R08: 0000000000000000 R09: 0000000000000000 [76613.166030] R10: 00007f80b6f77040 R11: 0000000000000206 R12: 00007ffd1ae0aed8 [76613.177130] R13: 000055ddf42ce1e9 R14: 000055ddf42d0d98 R15: 00 ---truncated---
7.8
High
CVE-2024-56613 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: sched/numa: fix memory leak due to the overwritten vma->numab_state [Problem Description] When running the hackbench program of LTP, the following memory leak is reported by kmemleak. # /opt/ltp/testcases/bin/hackbench 20 thread 1000 Running with 20*40 (== 800) tasks. # dmesg | grep kmemleak ... kmemleak: 480 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 665 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff888cd8ca2c40 (size 64): comm "hackbench", pid 17142, jiffies 4299780315 hex dump (first 32 bytes): ac 74 49 00 01 00 00 00 4c 84 49 00 01 00 00 00 .tI.....L.I..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc bff18fd4): [] __kmalloc_cache_noprof+0x2f9/0x3f0 [] task_numa_work+0x725/0xa00 [] task_work_run+0x58/0x90 [] syscall_exit_to_user_mode+0x1c8/0x1e0 [] do_syscall_64+0x85/0x150 [] entry_SYSCALL_64_after_hwframe+0x76/0x7e ... This issue can be consistently reproduced on three different servers: * a 448-core server * a 256-core server * a 192-core server [Root Cause] Since multiple threads are created by the hackbench program (along with the command argument 'thread'), a shared vma might be accessed by two or more cores simultaneously. When two or more cores observe that vma->numab_state is NULL at the same time, vma->numab_state will be overwritten. Although current code ensures that only one thread scans the VMAs in a single 'numa_scan_period', there might be a chance for another thread to enter in the next 'numa_scan_period' while we have not gotten till numab_state allocation [1]. Note that the command `/opt/ltp/testcases/bin/hackbench 50 process 1000` cannot the reproduce the issue. It is verified with 200+ test runs. [Solution] Use the cmpxchg atomic operation to ensure that only one thread executes the vma->numab_state assignment. [1] https://lore.kernel.org/lkml/[email protected]/
5.5
Medium
CVE-2024-56611 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/mempolicy: fix migrate_to_node() assuming there is at least one VMA in a MM We currently assume that there is at least one VMA in a MM, which isn't true. So we might end up having find_vma() return NULL, to then de-reference NULL. So properly handle find_vma() returning NULL. This fixes the report: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 6021 Comm: syz-executor284 Not tainted 6.12.0-rc7-syzkaller-00187-gf868cd251776 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 RIP: 0010:migrate_to_node mm/mempolicy.c:1090 [inline] RIP: 0010:do_migrate_pages+0x403/0x6f0 mm/mempolicy.c:1194 Code: ... RSP: 0018:ffffc9000375fd08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffc9000375fd78 RCX: 0000000000000000 RDX: ffff88807e171300 RSI: dffffc0000000000 RDI: ffff88803390c044 RBP: ffff88807e171428 R08: 0000000000000014 R09: fffffbfff2039ef1 R10: ffffffff901cf78f R11: 0000000000000000 R12: 0000000000000003 R13: ffffc9000375fe90 R14: ffffc9000375fe98 R15: ffffc9000375fdf8 FS: 00005555919e1380(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555919e1ca8 CR3: 000000007f12a000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: kernel_migrate_pages+0x5b2/0x750 mm/mempolicy.c:1709 __do_sys_migrate_pages mm/mempolicy.c:1727 [inline] __se_sys_migrate_pages mm/mempolicy.c:1723 [inline] __x64_sys_migrate_pages+0x96/0x100 mm/mempolicy.c:1723 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [[email protected]: add unlikely()]
5.5
Medium
CVE-2024-56608 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix out-of-bounds access in 'dcn21_link_encoder_create' An issue was identified in the dcn21_link_encoder_create function where an out-of-bounds access could occur when the hpd_source index was used to reference the link_enc_hpd_regs array. This array has a fixed size and the index was not being checked against the array's bounds before accessing it. This fix adds a conditional check to ensure that the hpd_source index is within the valid range of the link_enc_hpd_regs array. If the index is out of bounds, the function now returns NULL to prevent undefined behavior. References: [ 65.920507] ------------[ cut here ]------------ [ 65.920510] UBSAN: array-index-out-of-bounds in drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn21/dcn21_resource.c:1312:29 [ 65.920519] index 7 is out of range for type 'dcn10_link_enc_hpd_registers [5]' [ 65.920523] CPU: 3 PID: 1178 Comm: modprobe Tainted: G OE 6.8.0-cleanershaderfeatureresetasdntipmi200nv2132 #13 [ 65.920525] Hardware name: AMD Majolica-RN/Majolica-RN, BIOS WMJ0429N_Weekly_20_04_2 04/29/2020 [ 65.920527] Call Trace: [ 65.920529] [ 65.920532] dump_stack_lvl+0x48/0x70 [ 65.920541] dump_stack+0x10/0x20 [ 65.920543] __ubsan_handle_out_of_bounds+0xa2/0xe0 [ 65.920549] dcn21_link_encoder_create+0xd9/0x140 [amdgpu] [ 65.921009] link_create+0x6d3/0xed0 [amdgpu] [ 65.921355] create_links+0x18a/0x4e0 [amdgpu] [ 65.921679] dc_create+0x360/0x720 [amdgpu] [ 65.921999] ? dmi_matches+0xa0/0x220 [ 65.922004] amdgpu_dm_init+0x2b6/0x2c90 [amdgpu] [ 65.922342] ? console_unlock+0x77/0x120 [ 65.922348] ? dev_printk_emit+0x86/0xb0 [ 65.922354] dm_hw_init+0x15/0x40 [amdgpu] [ 65.922686] amdgpu_device_init+0x26a8/0x33a0 [amdgpu] [ 65.922921] amdgpu_driver_load_kms+0x1b/0xa0 [amdgpu] [ 65.923087] amdgpu_pci_probe+0x1b7/0x630 [amdgpu] [ 65.923087] local_pci_probe+0x4b/0xb0 [ 65.923087] pci_device_probe+0xc8/0x280 [ 65.923087] really_probe+0x187/0x300 [ 65.923087] __driver_probe_device+0x85/0x130 [ 65.923087] driver_probe_device+0x24/0x110 [ 65.923087] __driver_attach+0xac/0x1d0 [ 65.923087] ? __pfx___driver_attach+0x10/0x10 [ 65.923087] bus_for_each_dev+0x7d/0xd0 [ 65.923087] driver_attach+0x1e/0x30 [ 65.923087] bus_add_driver+0xf2/0x200 [ 65.923087] driver_register+0x64/0x130 [ 65.923087] ? __pfx_amdgpu_init+0x10/0x10 [amdgpu] [ 65.923087] __pci_register_driver+0x61/0x70 [ 65.923087] amdgpu_init+0x7d/0xff0 [amdgpu] [ 65.923087] do_one_initcall+0x49/0x310 [ 65.923087] ? kmalloc_trace+0x136/0x360 [ 65.923087] do_init_module+0x6a/0x270 [ 65.923087] load_module+0x1fce/0x23a0 [ 65.923087] init_module_from_file+0x9c/0xe0 [ 65.923087] ? init_module_from_file+0x9c/0xe0 [ 65.923087] idempotent_init_module+0x179/0x230 [ 65.923087] __x64_sys_finit_module+0x5d/0xa0 [ 65.923087] do_syscall_64+0x76/0x120 [ 65.923087] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 65.923087] RIP: 0033:0x7f2d80f1e88d [ 65.923087] Code: 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 b5 0f 00 f7 d8 64 89 01 48 [ 65.923087] RSP: 002b:00007ffc7bc1aa78 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [ 65.923087] RAX: ffffffffffffffda RBX: 0000564c9c1db130 RCX: 00007f2d80f1e88d [ 65.923087] RDX: 0000000000000000 RSI: 0000564c9c1e5480 RDI: 000000000000000f [ 65.923087] RBP: 0000000000040000 R08: 0000000000000000 R09: 0000000000000002 [ 65.923087] R10: 000000000000000f R11: 0000000000000246 R12: 0000564c9c1e5480 [ 65.923087] R13: 0000564c9c1db260 R14: 0000000000000000 R15: 0000564c9c1e54b0 [ 65.923087] [ 65.923927] ---[ end trace ]---
7.8
High
CVE-2024-56606 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: af_packet: avoid erroring out after sock_init_data() in packet_create() After sock_init_data() the allocated sk object is attached to the provided sock object. On error, packet_create() frees the sk object leaving the dangling pointer in the sock object on return. Some other code may try to use this pointer and cause use-after-free.
7.8
High
CVE-2024-56605 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create() bt_sock_alloc() allocates the sk object and attaches it to the provided sock object. On error l2cap_sock_alloc() frees the sk object, but the dangling pointer is still attached to the sock object, which may create use-after-free in other code.
7.8
High
CVE-2024-56604 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc() bt_sock_alloc() attaches allocated sk object to the provided sock object. If rfcomm_dlc_alloc() fails, we release the sk object, but leave the dangling pointer in the sock object, which may cause use-after-free. Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
7.8
High
CVE-2024-56603 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: af_can: do not leave a dangling sk pointer in can_create() On error can_create() frees the allocated sk object, but sock_init_data() has already attached it to the provided sock object. This will leave a dangling sk pointer in the sock object and may cause use-after-free later.
7.8
High
CVE-2024-56602 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: ieee802154: do not leave a dangling sk pointer in ieee802154_create() sock_init_data() attaches the allocated sk object to the provided sock object. If ieee802154_create() fails later, the allocated sk object is freed, but the dangling pointer remains in the provided sock object, which may allow use-after-free. Clear the sk pointer in the sock object on error.
7.8
High
CVE-2024-56601 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: inet: do not leave a dangling sk pointer in inet_create() sock_init_data() attaches the allocated sk object to the provided sock object. If inet_create() fails later, the sk object is freed, but the sock object retains the dangling pointer, which may create use-after-free later. Clear the sk pointer in the sock object on error.
7.8
High
CVE-2024-56600 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: inet6: do not leave a dangling sk pointer in inet6_create() sock_init_data() attaches the allocated sk pointer to the provided sock object. If inet6_create() fails later, the sk object is released, but the sock object retains the dangling sk pointer, which may cause use-after-free later. Clear the sock sk pointer on error.
7.8
High
CVE-2024-56599 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: avoid NULL pointer error during sdio remove When running 'rmmod ath10k', ath10k_sdio_remove() will free sdio workqueue by destroy_workqueue(). But if CONFIG_INIT_ON_FREE_DEFAULT_ON is set to yes, kernel panic will happen: Call trace: destroy_workqueue+0x1c/0x258 ath10k_sdio_remove+0x84/0x94 sdio_bus_remove+0x50/0x16c device_release_driver_internal+0x188/0x25c device_driver_detach+0x20/0x2c This is because during 'rmmod ath10k', ath10k_sdio_remove() will call ath10k_core_destroy() before destroy_workqueue(). wiphy_dev_release() will finally be called in ath10k_core_destroy(). This function will free struct cfg80211_registered_device *rdev and all its members, including wiphy, dev and the pointer of sdio workqueue. Then the pointer of sdio workqueue will be set to NULL due to CONFIG_INIT_ON_FREE_DEFAULT_ON. After device release, destroy_workqueue() will use NULL pointer then the kernel panic happen. Call trace: ath10k_sdio_remove ->ath10k_core_unregister …… ->ath10k_core_stop ->ath10k_hif_stop ->ath10k_sdio_irq_disable ->ath10k_hif_power_down ->del_timer_sync(&ar_sdio->sleep_timer) ->ath10k_core_destroy ->ath10k_mac_destroy ->ieee80211_free_hw ->wiphy_free …… ->wiphy_dev_release ->destroy_workqueue Need to call destroy_workqueue() before ath10k_core_destroy(), free the work queue buffer first and then free pointer of work queue by ath10k_core_destroy(). This order matches the error path order in ath10k_sdio_probe(). No work will be queued on sdio workqueue between it is destroyed and ath10k_core_destroy() is called. Based on the call_stack above, the reason is: Only ath10k_sdio_sleep_timer_handler(), ath10k_sdio_hif_tx_sg() and ath10k_sdio_irq_disable() will queue work on sdio workqueue. Sleep timer will be deleted before ath10k_core_destroy() in ath10k_hif_power_down(). ath10k_sdio_irq_disable() only be called in ath10k_hif_stop(). ath10k_core_unregister() will call ath10k_hif_power_down() to stop hif bus, so ath10k_sdio_hif_tx_sg() won't be called anymore. Tested-on: QCA6174 hw3.2 SDIO WLAN.RMH.4.4.1-00189
5.5
Medium
CVE-2024-56598 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: jfs: array-index-out-of-bounds fix in dtReadFirst The value of stbl can be sometimes out of bounds due to a bad filesystem. Added a check with appopriate return of error code in that case.
7.8
High
CVE-2024-56596 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in jfs_readdir The stbl might contain some invalid values. Added a check to return error code in that case.
7.8
High
CVE-2024-56595 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: jfs: add a check to prevent array-index-out-of-bounds in dbAdjTree When the value of lp is 0 at the beginning of the for loop, it will become negative in the next assignment and we should bail out.
7.8
High
CVE-2024-56593 2024-12-27 14h51 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix oops due to NULL pointer dereference in brcmf_sdiod_sglist_rw() This patch fixes a NULL pointer dereference bug in brcmfmac that occurs when a high 'sd_sgentry_align' value applies (e.g. 512) and a lot of queued SKBs are sent from the pkt queue. The problem is the number of entries in the pre-allocated sgtable, it is nents = max(rxglom_size, txglom_size) + max(rxglom_size, txglom_size) >> 4 + 1. Given the default [rt]xglom_size=32 it's actually 35 which is too small. Worst case, the pkt queue can end up with 64 SKBs. This occurs when a new SKB is added for each original SKB if tailroom isn't enough to hold tail_pad. At least one sg entry is needed for each SKB. So, eventually the "skb_queue_walk loop" in brcmf_sdiod_sglist_rw may run out of sg entries. This makes sg_next return NULL and this causes the oops. The patch sets nents to max(rxglom_size, txglom_size) * 2 to be able handle the worst-case. Btw. this requires only 64-35=29 * 16 (or 20 if CONFIG_NEED_SG_DMA_LENGTH) = 464 additional bytes of memory.
5.5
Medium
CVE-2024-56588 2024-12-27 14h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Create all dump files during debugfs initialization For the current debugfs of hisi_sas, after user triggers dump, the driver allocate memory space to save the register information and create debugfs files to display the saved information. In this process, the debugfs files created after each dump. Therefore, when the dump is triggered while the driver is unbind, the following hang occurs: [67840.853907] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [67840.862947] Mem abort info: [67840.865855] ESR = 0x0000000096000004 [67840.869713] EC = 0x25: DABT (current EL), IL = 32 bits [67840.875125] SET = 0, FnV = 0 [67840.878291] EA = 0, S1PTW = 0 [67840.881545] FSC = 0x04: level 0 translation fault [67840.886528] Data abort info: [67840.889524] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [67840.895117] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [67840.900284] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [67840.905709] user pgtable: 4k pages, 48-bit VAs, pgdp=0000002803a1f000 [67840.912263] [00000000000000a0] pgd=0000000000000000, p4d=0000000000000000 [67840.919177] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [67840.996435] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [67841.003628] pc : down_write+0x30/0x98 [67841.007546] lr : start_creating.part.0+0x60/0x198 [67841.012495] sp : ffff8000b979ba20 [67841.016046] x29: ffff8000b979ba20 x28: 0000000000000010 x27: 0000000000024b40 [67841.023412] x26: 0000000000000012 x25: ffff20202b355ae8 x24: ffff20202b35a8c8 [67841.030779] x23: ffffa36877928208 x22: ffffa368b4972240 x21: ffff8000b979bb18 [67841.038147] x20: ffff00281dc1e3c0 x19: fffffffffffffffe x18: 0000000000000020 [67841.045515] x17: 0000000000000000 x16: ffffa368b128a530 x15: ffffffffffffffff [67841.052888] x14: ffff8000b979bc18 x13: ffffffffffffffff x12: ffff8000b979bb18 [67841.060263] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa368b1289b18 [67841.067640] x8 : 0000000000000012 x7 : 0000000000000000 x6 : 00000000000003a9 [67841.075014] x5 : 0000000000000000 x4 : ffff002818c5cb00 x3 : 0000000000000001 [67841.082388] x2 : 0000000000000000 x1 : ffff002818c5cb00 x0 : 00000000000000a0 [67841.089759] Call trace: [67841.092456] down_write+0x30/0x98 [67841.096017] start_creating.part.0+0x60/0x198 [67841.100613] debugfs_create_dir+0x48/0x1f8 [67841.104950] debugfs_create_files_v3_hw+0x88/0x348 [hisi_sas_v3_hw] [67841.111447] debugfs_snapshot_regs_v3_hw+0x708/0x798 [hisi_sas_v3_hw] [67841.118111] debugfs_trigger_dump_v3_hw_write+0x9c/0x120 [hisi_sas_v3_hw] [67841.125115] full_proxy_write+0x68/0xc8 [67841.129175] vfs_write+0xd8/0x3f0 [67841.132708] ksys_write+0x70/0x108 [67841.136317] __arm64_sys_write+0x24/0x38 [67841.140440] invoke_syscall+0x50/0x128 [67841.144385] el0_svc_common.constprop.0+0xc8/0xf0 [67841.149273] do_el0_svc+0x24/0x38 [67841.152773] el0_svc+0x38/0xd8 [67841.156009] el0t_64_sync_handler+0xc0/0xc8 [67841.160361] el0t_64_sync+0x1a4/0x1a8 [67841.164189] Code: b9000882 d2800002 d2800023 f9800011 (c85ffc05) [67841.170443] ---[ end trace 0000000000000000 ]--- To fix this issue, create all directories and files during debugfs initialization. In this way, the driver only needs to allocate memory space to save information each time the user triggers dumping.
5.5
Medium
CVE-2024-56587 2024-12-27 14h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: leds: class: Protect brightness_show() with led_cdev->led_access mutex There is NULL pointer issue observed if from Process A where hid device being added which results in adding a led_cdev addition and later a another call to access of led_cdev attribute from Process B can result in NULL pointer issue. Use mutex led_cdev->led_access to protect access to led->cdev and its attribute inside brightness_show() and max_brightness_show() and also update the comment for mutex that it should be used to protect the led class device fields. Process A Process B kthread+0x114 worker_thread+0x244 process_scheduled_works+0x248 uhid_device_add_worker+0x24 hid_add_device+0x120 device_add+0x268 bus_probe_device+0x94 device_initial_probe+0x14 __device_attach+0xfc bus_for_each_drv+0x10c __device_attach_driver+0x14c driver_probe_device+0x3c __driver_probe_device+0xa0 really_probe+0x190 hid_device_probe+0x130 ps_probe+0x990 ps_led_register+0x94 devm_led_classdev_register_ext+0x58 led_classdev_register_ext+0x1f8 device_create_with_groups+0x48 device_create_groups_vargs+0xc8 device_add+0x244 kobject_uevent+0x14 kobject_uevent_env[jt]+0x224 mutex_unlock[jt]+0xc4 __mutex_unlock_slowpath+0xd4 wake_up_q+0x70 try_to_wake_up[jt]+0x48c preempt_schedule_common+0x28 __schedule+0x628 __switch_to+0x174 el0t_64_sync+0x1a8/0x1ac el0t_64_sync_handler+0x68/0xbc el0_svc+0x38/0x68 do_el0_svc+0x1c/0x28 el0_svc_common+0x80/0xe0 invoke_syscall+0x58/0x114 __arm64_sys_read+0x1c/0x2c ksys_read+0x78/0xe8 vfs_read+0x1e0/0x2c8 kernfs_fop_read_iter+0x68/0x1b4 seq_read_iter+0x158/0x4ec kernfs_seq_show+0x44/0x54 sysfs_kf_seq_show+0xb4/0x130 dev_attr_show+0x38/0x74 brightness_show+0x20/0x4c dualshock4_led_get_brightness+0xc/0x74 [ 3313.874295][ T4013] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000060 [ 3313.874301][ T4013] Mem abort info: [ 3313.874303][ T4013] ESR = 0x0000000096000006 [ 3313.874305][ T4013] EC = 0x25: DABT (current EL), IL = 32 bits [ 3313.874307][ T4013] SET = 0, FnV = 0 [ 3313.874309][ T4013] EA = 0, S1PTW = 0 [ 3313.874311][ T4013] FSC = 0x06: level 2 translation fault [ 3313.874313][ T4013] Data abort info: [ 3313.874314][ T4013] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000 [ 3313.874316][ T4013] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 3313.874318][ T4013] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 3313.874320][ T4013] user pgtable: 4k pages, 39-bit VAs, pgdp=00000008f2b0a000 .. [ 3313.874332][ T4013] Dumping ftrace buffer: [ 3313.874334][ T4013] (ftrace buffer empty) .. .. [ dd3313.874639][ T4013] CPU: 6 PID: 4013 Comm: InputReader [ 3313.874648][ T4013] pc : dualshock4_led_get_brightness+0xc/0x74 [ 3313.874653][ T4013] lr : led_update_brightness+0x38/0x60 [ 3313.874656][ T4013] sp : ffffffc0b910bbd0 .. .. [ 3313.874685][ T4013] Call trace: [ 3313.874687][ T4013] dualshock4_led_get_brightness+0xc/0x74 [ 3313.874690][ T4013] brightness_show+0x20/0x4c [ 3313.874692][ T4013] dev_attr_show+0x38/0x74 [ 3313.874696][ T4013] sysfs_kf_seq_show+0xb4/0x130 [ 3313.874700][ T4013] kernfs_seq_show+0x44/0x54 [ 3313.874703][ T4013] seq_read_iter+0x158/0x4ec [ 3313.874705][ T4013] kernfs_fop_read_iter+0x68/0x1b4 [ 3313.874708][ T4013] vfs_read+0x1e0/0x2c8 [ 3313.874711][ T4013] ksys_read+0x78/0xe8 [ 3313.874714][ T4013] __arm64_sys_read+0x1c/0x2c [ 3313.874718][ T4013] invoke_syscall+0x58/0x114 [ 3313.874721][ T4013] el0_svc_common+0x80/0xe0 [ 3313.874724][ T4013] do_el0_svc+0x1c/0x28 [ 3313.874727][ T4013] el0_svc+0x38/0x68 [ 3313.874730][ T4013] el0t_64_sync_handler+0x68/0xbc [ 3313.874732][ T4013] el0t_64_sync+0x1a8/0x1ac
5.5
Medium
CVE-2024-56582 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free in btrfs_encoded_read_endio() Shinichiro reported the following use-after free that sometimes is happening in our CI system when running fstests' btrfs/284 on a TCMU runner device: BUG: KASAN: slab-use-after-free in lock_release+0x708/0x780 Read of size 8 at addr ffff888106a83f18 by task kworker/u80:6/219 CPU: 8 UID: 0 PID: 219 Comm: kworker/u80:6 Not tainted 6.12.0-rc6-kts+ #15 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: dump_stack_lvl+0x6e/0xa0 ? lock_release+0x708/0x780 print_report+0x174/0x505 ? lock_release+0x708/0x780 ? __virt_addr_valid+0x224/0x410 ? lock_release+0x708/0x780 kasan_report+0xda/0x1b0 ? lock_release+0x708/0x780 ? __wake_up+0x44/0x60 lock_release+0x708/0x780 ? __pfx_lock_release+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? lock_is_held_type+0x9a/0x110 _raw_spin_unlock_irqrestore+0x1f/0x60 __wake_up+0x44/0x60 btrfs_encoded_read_endio+0x14b/0x190 [btrfs] btrfs_check_read_bio+0x8d9/0x1360 [btrfs] ? lock_release+0x1b0/0x780 ? trace_lock_acquire+0x12f/0x1a0 ? __pfx_btrfs_check_read_bio+0x10/0x10 [btrfs] ? process_one_work+0x7e3/0x1460 ? lock_acquire+0x31/0xc0 ? process_one_work+0x7e3/0x1460 process_one_work+0x85c/0x1460 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5e6/0xfc0 ? __pfx_worker_thread+0x10/0x10 kthread+0x2c3/0x3a0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 Allocated by task 3661: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_encoded_read_regular_fill_pages+0x16c/0x6d0 [btrfs] send_extent_data+0xf0f/0x24a0 [btrfs] process_extent+0x48a/0x1830 [btrfs] changed_cb+0x178b/0x2ea0 [btrfs] btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs] _btrfs_ioctl_send+0x117/0x330 [btrfs] btrfs_ioctl+0x184a/0x60a0 [btrfs] __x64_sys_ioctl+0x12e/0x1a0 do_syscall_64+0x95/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 3661: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x70 __kasan_slab_free+0x4f/0x70 kfree+0x143/0x490 btrfs_encoded_read_regular_fill_pages+0x531/0x6d0 [btrfs] send_extent_data+0xf0f/0x24a0 [btrfs] process_extent+0x48a/0x1830 [btrfs] changed_cb+0x178b/0x2ea0 [btrfs] btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs] _btrfs_ioctl_send+0x117/0x330 [btrfs] btrfs_ioctl+0x184a/0x60a0 [btrfs] __x64_sys_ioctl+0x12e/0x1a0 do_syscall_64+0x95/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff888106a83f00 which belongs to the cache kmalloc-rnd-07-96 of size 96 The buggy address is located 24 bytes inside of freed 96-byte region [ffff888106a83f00, ffff888106a83f60) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888106a83800 pfn:0x106a83 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff) page_type: f5(slab) raw: 0017ffffc0000000 ffff888100053680 ffffea0004917200 0000000000000004 raw: ffff888106a83800 0000000080200019 00000001f5000000 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888106a83e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888106a83e80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc >ffff888106a83f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ^ ffff888106a83f80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc ffff888106a84000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Further analyzing the trace and ---truncated---
7.8
High
CVE-2024-56581 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: ref-verify: fix use-after-free after invalid ref action At btrfs_ref_tree_mod() after we successfully inserted the new ref entry (local variable 'ref') into the respective block entry's rbtree (local variable 'be'), if we find an unexpected action of BTRFS_DROP_DELAYED_REF, we error out and free the ref entry without removing it from the block entry's rbtree. Then in the error path of btrfs_ref_tree_mod() we call btrfs_free_ref_cache(), which iterates over all block entries and then calls free_block_entry() for each one, and there we will trigger a use-after-free when we are called against the block entry to which we added the freed ref entry to its rbtree, since the rbtree still points to the block entry, as we didn't remove it from the rbtree before freeing it in the error path at btrfs_ref_tree_mod(). Fix this by removing the new ref entry from the rbtree before freeing it. Syzbot report this with the following stack traces: BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615 __btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523 update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512 btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594 btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754 btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116 btrfs_insert_empty_items+0x9c/0x1a0 fs/btrfs/ctree.c:4314 btrfs_insert_empty_item fs/btrfs/ctree.h:669 [inline] btrfs_insert_orphan_item+0x1f1/0x320 fs/btrfs/orphan.c:23 btrfs_orphan_add+0x6d/0x1a0 fs/btrfs/inode.c:3482 btrfs_unlink+0x267/0x350 fs/btrfs/inode.c:4293 vfs_unlink+0x365/0x650 fs/namei.c:4469 do_unlinkat+0x4ae/0x830 fs/namei.c:4533 __do_sys_unlinkat fs/namei.c:4576 [inline] __se_sys_unlinkat fs/namei.c:4569 [inline] __x64_sys_unlinkat+0xcc/0xf0 fs/namei.c:4569 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f BTRFS error (device loop0 state EA): Ref action 1, root 5, ref_root 5, parent 0, owner 260, offset 0, num_refs 1 __btrfs_mod_ref+0x76b/0xac0 fs/btrfs/extent-tree.c:2521 update_ref_for_cow+0x96a/0x11f0 btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594 btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754 btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116 btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411 __btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030 btrfs_update_delayed_inode fs/btrfs/delayed-inode.c:1114 [inline] __btrfs_commit_inode_delayed_items+0x2318/0x24a0 fs/btrfs/delayed-inode.c:1137 __btrfs_run_delayed_items+0x213/0x490 fs/btrfs/delayed-inode.c:1171 btrfs_commit_transaction+0x8a8/0x3740 fs/btrfs/transaction.c:2313 prepare_to_relocate+0x3c4/0x4c0 fs/btrfs/relocation.c:3586 relocate_block_group+0x16c/0xd40 fs/btrfs/relocation.c:3611 btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4081 btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3377 __btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4161 btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4538 BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615 __btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523 update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512 btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594 btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754 btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116 btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411 __btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030 btrfs_update_delayed_i ---truncated---
7.8
High
CVE-2024-56579 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: amphion: Set video drvdata before register video device The video drvdata should be set before the video device is registered, otherwise video_drvdata() may return NULL in the open() file ops, and led to oops.
5.5
Medium
CVE-2024-56578 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Set video drvdata before register video device The video drvdata should be set before the video device is registered, otherwise video_drvdata() may return NULL in the open() file ops, and led to oops.
5.5
Medium
CVE-2024-56577 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: mtk-jpeg: Fix null-ptr-deref during unload module The workqueue should be destroyed in mtk_jpeg_core.c since commit 09aea13ecf6f ("media: mtk-jpeg: refactor some variables"), otherwise the below calltrace can be easily triggered. [ 677.862514] Unable to handle kernel paging request at virtual address dfff800000000023 [ 677.863633] KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] ... [ 677.879654] CPU: 6 PID: 1071 Comm: modprobe Tainted: G O 6.8.12-mtk+gfa1a78e5d24b+ #17 ... [ 677.882838] pc : destroy_workqueue+0x3c/0x770 [ 677.883413] lr : mtk_jpegdec_destroy_workqueue+0x70/0x88 [mtk_jpeg_dec_hw] [ 677.884314] sp : ffff80008ad974f0 [ 677.884744] x29: ffff80008ad974f0 x28: ffff0000d7115580 x27: ffff0000dd691070 [ 677.885669] x26: ffff0000dd691408 x25: ffff8000844af3e0 x24: ffff80008ad97690 [ 677.886592] x23: ffff0000e051d400 x22: ffff0000dd691010 x21: dfff800000000000 [ 677.887515] x20: 0000000000000000 x19: 0000000000000000 x18: ffff800085397ac0 [ 677.888438] x17: 0000000000000000 x16: ffff8000801b87c8 x15: 1ffff000115b2e10 [ 677.889361] x14: 00000000f1f1f1f1 x13: 0000000000000000 x12: ffff7000115b2e4d [ 677.890285] x11: 1ffff000115b2e4c x10: ffff7000115b2e4c x9 : ffff80000aa43e90 [ 677.891208] x8 : 00008fffeea4d1b4 x7 : ffff80008ad97267 x6 : 0000000000000001 [ 677.892131] x5 : ffff80008ad97260 x4 : ffff7000115b2e4d x3 : 0000000000000000 [ 677.893054] x2 : 0000000000000023 x1 : dfff800000000000 x0 : 0000000000000118 [ 677.893977] Call trace: [ 677.894297] destroy_workqueue+0x3c/0x770 [ 677.894826] mtk_jpegdec_destroy_workqueue+0x70/0x88 [mtk_jpeg_dec_hw] [ 677.895677] devm_action_release+0x50/0x90 [ 677.896211] release_nodes+0xe8/0x170 [ 677.896688] devres_release_all+0xf8/0x178 [ 677.897219] device_unbind_cleanup+0x24/0x170 [ 677.897785] device_release_driver_internal+0x35c/0x480 [ 677.898461] device_release_driver+0x20/0x38 ... [ 677.912665] ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-56575 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Ensure power suppliers be suspended before detach them The power suppliers are always requested to suspend asynchronously, dev_pm_domain_detach() requires the caller to ensure proper synchronization of this function with power management callbacks. otherwise the detach may led to kernel panic, like below: [ 1457.107934] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000040 [ 1457.116777] Mem abort info: [ 1457.119589] ESR = 0x0000000096000004 [ 1457.123358] EC = 0x25: DABT (current EL), IL = 32 bits [ 1457.128692] SET = 0, FnV = 0 [ 1457.131764] EA = 0, S1PTW = 0 [ 1457.134920] FSC = 0x04: level 0 translation fault [ 1457.139812] Data abort info: [ 1457.142707] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 1457.148196] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 1457.153256] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 1457.158563] user pgtable: 4k pages, 48-bit VAs, pgdp=00000001138b6000 [ 1457.165000] [0000000000000040] pgd=0000000000000000, p4d=0000000000000000 [ 1457.171792] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 1457.178045] Modules linked in: v4l2_jpeg wave6_vpu_ctrl(-) [last unloaded: mxc_jpeg_encdec] [ 1457.186383] CPU: 0 PID: 51938 Comm: kworker/0:3 Not tainted 6.6.36-gd23d64eea511 #66 [ 1457.194112] Hardware name: NXP i.MX95 19X19 board (DT) [ 1457.199236] Workqueue: pm pm_runtime_work [ 1457.203247] pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 1457.210188] pc : genpd_runtime_suspend+0x20/0x290 [ 1457.214886] lr : __rpm_callback+0x48/0x1d8 [ 1457.218968] sp : ffff80008250bc50 [ 1457.222270] x29: ffff80008250bc50 x28: 0000000000000000 x27: 0000000000000000 [ 1457.229394] x26: 0000000000000000 x25: 0000000000000008 x24: 00000000000f4240 [ 1457.236518] x23: 0000000000000000 x22: ffff00008590f0e4 x21: 0000000000000008 [ 1457.243642] x20: ffff80008099c434 x19: ffff00008590f000 x18: ffffffffffffffff [ 1457.250766] x17: 5300326563697665 x16: 645f676e696c6f6f x15: 63343a6d726f6674 [ 1457.257890] x14: 0000000000000004 x13: 00000000000003a4 x12: 0000000000000002 [ 1457.265014] x11: 0000000000000000 x10: 0000000000000a60 x9 : ffff80008250bbb0 [ 1457.272138] x8 : ffff000092937200 x7 : ffff0003fdf6af80 x6 : 0000000000000000 [ 1457.279262] x5 : 00000000410fd050 x4 : 0000000000200000 x3 : 0000000000000000 [ 1457.286386] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff00008590f000 [ 1457.293510] Call trace: [ 1457.295946] genpd_runtime_suspend+0x20/0x290 [ 1457.300296] __rpm_callback+0x48/0x1d8 [ 1457.304038] rpm_callback+0x6c/0x78 [ 1457.307515] rpm_suspend+0x10c/0x570 [ 1457.311077] pm_runtime_work+0xc4/0xc8 [ 1457.314813] process_one_work+0x138/0x248 [ 1457.318816] worker_thread+0x320/0x438 [ 1457.322552] kthread+0x110/0x114 [ 1457.325767] ret_from_fork+0x10/0x20
5.5
Medium
CVE-2024-56574 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: ts2020: fix null-ptr-deref in ts2020_probe() KASAN reported a null-ptr-deref issue when executing the following command: # echo ts2020 0x20 > /sys/bus/i2c/devices/i2c-0/new_device KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017] CPU: 53 UID: 0 PID: 970 Comm: systemd-udevd Not tainted 6.12.0-rc2+ #24 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009) RIP: 0010:ts2020_probe+0xad/0xe10 [ts2020] RSP: 0018:ffffc9000abbf598 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffffc0714809 RDX: 0000000000000002 RSI: ffff88811550be00 RDI: 0000000000000010 RBP: ffff888109868800 R08: 0000000000000001 R09: fffff52001577eb6 R10: 0000000000000000 R11: ffffc9000abbff50 R12: ffffffffc0714790 R13: 1ffff92001577eb8 R14: ffffffffc07190d0 R15: 0000000000000001 FS: 00007f95f13b98c0(0000) GS:ffff888149280000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555d2634b000 CR3: 0000000152236000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ts2020_probe+0xad/0xe10 [ts2020] i2c_device_probe+0x421/0xb40 really_probe+0x266/0x850 ... The cause of the problem is that when using sysfs to dynamically register an i2c device, there is no platform data, but the probe process of ts2020 needs to use platform data, resulting in a null pointer being accessed. Solve this problem by adding checks to platform data.
5.5
Medium
CVE-2024-56572 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: platform: allegro-dvt: Fix possible memory leak in allocate_buffers_internal() The buffer in the loop should be released under the exception path, otherwise there may be a memory leak here. To mitigate this, free the buffer when allegro_alloc_buffer fails.
5.5
Medium
CVE-2024-56569 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix regression with module command in stack_trace_filter When executing the following command: # echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter The current mod command causes a null pointer dereference. While commit 0f17976568b3f ("ftrace: Fix regression with module command in stack_trace_filter") has addressed part of the issue, it left a corner case unhandled, which still results in a kernel crash.
5.5
Medium
CVE-2024-56568 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Defer probe of clients after smmu device bound Null pointer dereference occurs due to a race between smmu driver probe and client driver probe, when of_dma_configure() for client is called after the iommu_device_register() for smmu driver probe has executed but before the driver_bound() for smmu driver has been called. Following is how the race occurs: T1:Smmu device probe T2: Client device probe really_probe() arm_smmu_device_probe() iommu_device_register() really_probe() platform_dma_configure() of_dma_configure() of_dma_configure_id() of_iommu_configure() iommu_probe_device() iommu_init_device() arm_smmu_probe_device() arm_smmu_get_by_fwnode() driver_find_device_by_fwnode() driver_find_device() next_device() klist_next() /* null ptr assigned to smmu */ /* null ptr dereference while smmu->streamid_mask */ driver_bound() klist_add_tail() When this null smmu pointer is dereferenced later in arm_smmu_probe_device, the device crashes. Fix this by deferring the probe of the client device until the smmu device has bound to the arm smmu driver. [will: Add comment]
4.7
Medium
CVE-2024-56567 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: ad7780: fix division by zero in ad7780_write_raw() In the ad7780_write_raw() , val2 can be zero, which might lead to a division by zero error in DIV_ROUND_CLOSEST(). The ad7780_write_raw() is based on iio_info's write_raw. While val is explicitly declared that can be zero (in read mode), val2 is not specified to be non-zero.
5.5
Medium
CVE-2024-56558 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: make sure exp active before svc_export_show The function `e_show` was called with protection from RCU. This only ensures that `exp` will not be freed. Therefore, the reference count for `exp` can drop to zero, which will trigger a refcount use-after-free warning when `exp_get` is called. To resolve this issue, use `cache_get_rcu` to ensure that `exp` remains active. ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 3 PID: 819 at lib/refcount.c:25 refcount_warn_saturate+0xb1/0x120 CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb1/0x120 ... Call Trace: e_show+0x20b/0x230 [nfsd] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e
7.8
High
CVE-2024-56557 2024-12-27 14h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer The AD7923 was updated to support devices with 8 channels, but the size of tx_buf and ring_xfer was not increased accordingly, leading to a potential buffer overflow in ad7923_update_scan_mode().
5.5
Medium
CVE-2024-56551 2024-12-27 14h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix usage slab after free [ +0.000021] BUG: KASAN: slab-use-after-free in drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000027] Read of size 8 at addr ffff8881b8605f88 by task amd_pci_unplug/2147 [ +0.000023] CPU: 6 PID: 2147 Comm: amd_pci_unplug Not tainted 6.10.0+ #1 [ +0.000016] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000016] Call Trace: [ +0.000008] [ +0.000009] dump_stack_lvl+0x76/0xa0 [ +0.000017] print_report+0xce/0x5f0 [ +0.000017] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000019] ? srso_return_thunk+0x5/0x5f [ +0.000015] ? kasan_complete_mode_report_info+0x72/0x200 [ +0.000016] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000019] kasan_report+0xbe/0x110 [ +0.000015] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000023] __asan_report_load8_noabort+0x14/0x30 [ +0.000014] drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched] [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_write+0x14/0x30 [ +0.000016] ? __pfx_drm_sched_entity_flush+0x10/0x10 [gpu_sched] [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_write+0x14/0x30 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? enable_work+0x124/0x220 [ +0.000015] ? __pfx_enable_work+0x10/0x10 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? free_large_kmalloc+0x85/0xf0 [ +0.000016] drm_sched_entity_destroy+0x18/0x30 [gpu_sched] [ +0.000020] amdgpu_vce_sw_fini+0x55/0x170 [amdgpu] [ +0.000735] ? __kasan_check_read+0x11/0x20 [ +0.000016] vce_v4_0_sw_fini+0x80/0x110 [amdgpu] [ +0.000726] amdgpu_device_fini_sw+0x331/0xfc0 [amdgpu] [ +0.000679] ? mutex_unlock+0x80/0xe0 [ +0.000017] ? __pfx_amdgpu_device_fini_sw+0x10/0x10 [amdgpu] [ +0.000662] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_check_write+0x14/0x30 [ +0.000013] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? mutex_unlock+0x80/0xe0 [ +0.000016] amdgpu_driver_release_kms+0x16/0x80 [amdgpu] [ +0.000663] drm_minor_release+0xc9/0x140 [drm] [ +0.000081] drm_release+0x1fd/0x390 [drm] [ +0.000082] __fput+0x36c/0xad0 [ +0.000018] __fput_sync+0x3c/0x50 [ +0.000014] __x64_sys_close+0x7d/0xe0 [ +0.000014] x64_sys_call+0x1bc6/0x2680 [ +0.000014] do_syscall_64+0x70/0x130 [ +0.000014] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? irqentry_exit_to_user_mode+0x60/0x190 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? irqentry_exit+0x43/0x50 [ +0.000012] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? exc_page_fault+0x7c/0x110 [ +0.000015] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ +0.000014] RIP: 0033:0x7ffff7b14f67 [ +0.000013] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff [ +0.000026] RSP: 002b:00007fffffffe378 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 [ +0.000019] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffff7b14f67 [ +0.000014] RDX: 0000000000000000 RSI: 00007ffff7f6f47a RDI: 0000000000000003 [ +0.000014] RBP: 00007fffffffe3a0 R08: 0000555555569890 R09: 0000000000000000 [ +0.000014] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fffffffe5c8 [ +0.000013] R13: 00005555555552a9 R14: 0000555555557d48 R15: 00007ffff7ffd040 [ +0.000020] [ +0.000016] Allocated by task 383 on cpu 7 at 26.880319s: [ +0.000014] kasan_save_stack+0x28/0x60 [ +0.000008] kasan_save_track+0x18/0x70 [ +0.000007] kasan_save_alloc_info+0x38/0x60 [ +0.000007] __kasan_kmalloc+0xc1/0xd0 [ +0.000007] kmalloc_trace_noprof+0x180/0x380 [ +0.000007] drm_sched_init+0x411/0xec0 [gpu_sched] [ +0.000012] amdgpu_device_init+0x695f/0xa610 [amdgpu] [ +0.000658] amdgpu_driver_load_kms+0x1a/0x120 [amdgpu] [ +0.000662] amdgpu_pci_p ---truncated---
7.8
High
CVE-2024-56549 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: cachefiles: Fix NULL pointer dereference in object->file At present, the object->file has the NULL pointer dereference problem in ondemand-mode. The root cause is that the allocated fd and object->file lifetime are inconsistent, and the user-space invocation to anon_fd uses object->file. Following is the process that triggers the issue: [write fd] [umount] cachefiles_ondemand_fd_write_iter fscache_cookie_state_machine cachefiles_withdraw_cookie if (!file) return -ENOBUFS cachefiles_clean_up_object cachefiles_unmark_inode_in_use fput(object->file) object->file = NULL // file NULL pointer dereference! __cachefiles_write(..., file, ...) Fix this issue by add an additional reference count to the object->file before write/llseek, and decrement after it finished.
5.5
Medium
CVE-2024-56548 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: hfsplus: don't query the device logical block size multiple times Devices block sizes may change. One of these cases is a loop device by using ioctl LOOP_SET_BLOCK_SIZE. While this may cause other issues like IO being rejected, in the case of hfsplus, it will allocate a block by using that size and potentially write out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the latter function reads a different io_size. Using a new min_io_size initally set to sb_min_blocksize works for the purposes of the original fix, since it will be set to the max between HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not initialized. Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024 and 4096. The produced KASAN report before the fix looks like this: [ 419.944641] ================================================================== [ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a [ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678 [ 419.947612] [ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84 [ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 419.950035] Call Trace: [ 419.950384] [ 419.950676] dump_stack_lvl+0x57/0x78 [ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.951830] print_report+0x14c/0x49e [ 419.952361] ? __virt_addr_valid+0x267/0x278 [ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d [ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.954231] kasan_report+0x89/0xb0 [ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a [ 419.955367] hfsplus_read_wrapper+0x659/0xa0a [ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10 [ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9 [ 419.957214] ? _raw_spin_unlock+0x1a/0x2e [ 419.957772] hfsplus_fill_super+0x348/0x1590 [ 419.958355] ? hlock_class+0x4c/0x109 [ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.959499] ? __pfx_string+0x10/0x10 [ 419.960006] ? lock_acquire+0x3e2/0x454 [ 419.960532] ? bdev_name.constprop.0+0xce/0x243 [ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10 [ 419.961799] ? pointer+0x3f0/0x62f [ 419.962277] ? __pfx_pointer+0x10/0x10 [ 419.962761] ? vsnprintf+0x6c4/0xfba [ 419.963178] ? __pfx_vsnprintf+0x10/0x10 [ 419.963621] ? setup_bdev_super+0x376/0x3b3 [ 419.964029] ? snprintf+0x9d/0xd2 [ 419.964344] ? __pfx_snprintf+0x10/0x10 [ 419.964675] ? lock_acquired+0x45c/0x5e9 [ 419.965016] ? set_blocksize+0x139/0x1c1 [ 419.965381] ? sb_set_blocksize+0x6d/0xae [ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10 [ 419.966179] mount_bdev+0x12f/0x1bf [ 419.966512] ? __pfx_mount_bdev+0x10/0x10 [ 419.966886] ? vfs_parse_fs_string+0xce/0x111 [ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10 [ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10 [ 419.968073] legacy_get_tree+0x104/0x178 [ 419.968414] vfs_get_tree+0x86/0x296 [ 419.968751] path_mount+0xba3/0xd0b [ 419.969157] ? __pfx_path_mount+0x10/0x10 [ 419.969594] ? kmem_cache_free+0x1e2/0x260 [ 419.970311] do_mount+0x99/0xe0 [ 419.970630] ? __pfx_do_mount+0x10/0x10 [ 419.971008] __do_sys_mount+0x199/0x1c9 [ 419.971397] do_syscall_64+0xd0/0x135 [ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 419.972233] RIP: 0033:0x7c3cb812972e [ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48 [ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5 [ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e [ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI: ---truncated---
7.8
High
CVE-2024-56544 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: udmabuf: change folios array from kmalloc to kvmalloc When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine, page_alloc only support 4MB. If above this, trigger this warn and return NULL. udmabuf can change size limit, if change it to 3072(3GB), and then alloc 3GB udmabuf, will fail create. [ 4080.876581] ------------[ cut here ]------------ [ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350 [ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350 [ 4080.879470] Call Trace: [ 4080.879473] [ 4080.879473] ? __alloc_pages+0x2c8/0x350 [ 4080.879475] ? __warn.cold+0x8e/0xe8 [ 4080.880647] ? __alloc_pages+0x2c8/0x350 [ 4080.880909] ? report_bug+0xff/0x140 [ 4080.881175] ? handle_bug+0x3c/0x80 [ 4080.881556] ? exc_invalid_op+0x17/0x70 [ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20 [ 4080.882077] ? udmabuf_create+0x131/0x400 Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB memory, each array entry is pointer(8byte), so can save 524288 pages(2GB). Further more, costly order(order 3) may not be guaranteed that it can be applied for, due to fragmentation. This patch change udmabuf array use kvmalloc_array, this can fallback alloc into vmalloc, which can guarantee allocation for any size and does not affect the performance of kmalloc allocations.
5.5
Medium
CVE-2024-56538 2024-12-27 14h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm: zynqmp_kms: Unplug DRM device before removal Prevent userspace accesses to the DRM device from causing use-after-frees by unplugging the device before we remove it. This causes any further userspace accesses to result in an error without further calls into this driver's internals.
7.8
High
CVE-2024-53239 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: ALSA: 6fire: Release resources at card release The current 6fire code tries to release the resources right after the call of usb6fire_chip_abort(). But at this moment, the card object might be still in use (as we're calling snd_card_free_when_closed()). For avoid potential UAFs, move the release of resources to the card's private_free instead of the manual call of usb6fire_chip_destroy() at the USB disconnect callback.
7.8
High
CVE-2024-53237 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: fix use-after-free in device_for_each_child() Syzbot has reported the following KASAN splat: BUG: KASAN: slab-use-after-free in device_for_each_child+0x18f/0x1a0 Read of size 8 at addr ffff88801f605308 by task kbnepd bnep0/4980 CPU: 0 UID: 0 PID: 4980 Comm: kbnepd bnep0 Not tainted 6.12.0-rc4-00161-gae90f6a6170d #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 Call Trace: dump_stack_lvl+0x100/0x190 ? device_for_each_child+0x18f/0x1a0 print_report+0x13a/0x4cb ? __virt_addr_valid+0x5e/0x590 ? __phys_addr+0xc6/0x150 ? device_for_each_child+0x18f/0x1a0 kasan_report+0xda/0x110 ? device_for_each_child+0x18f/0x1a0 ? __pfx_dev_memalloc_noio+0x10/0x10 device_for_each_child+0x18f/0x1a0 ? __pfx_device_for_each_child+0x10/0x10 pm_runtime_set_memalloc_noio+0xf2/0x180 netdev_unregister_kobject+0x1ed/0x270 unregister_netdevice_many_notify+0x123c/0x1d80 ? __mutex_trylock_common+0xde/0x250 ? __pfx_unregister_netdevice_many_notify+0x10/0x10 ? trace_contention_end+0xe6/0x140 ? __mutex_lock+0x4e7/0x8f0 ? __pfx_lock_acquire.part.0+0x10/0x10 ? rcu_is_watching+0x12/0xc0 ? unregister_netdev+0x12/0x30 unregister_netdevice_queue+0x30d/0x3f0 ? __pfx_unregister_netdevice_queue+0x10/0x10 ? __pfx_down_write+0x10/0x10 unregister_netdev+0x1c/0x30 bnep_session+0x1fb3/0x2ab0 ? __pfx_bnep_session+0x10/0x10 ? __pfx_lock_release+0x10/0x10 ? __pfx_woken_wake_function+0x10/0x10 ? __kthread_parkme+0x132/0x200 ? __pfx_bnep_session+0x10/0x10 ? kthread+0x13a/0x370 ? __pfx_bnep_session+0x10/0x10 kthread+0x2b7/0x370 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x48/0x80 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 Allocated by task 4974: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 __kmalloc_noprof+0x1d1/0x440 hci_alloc_dev_priv+0x1d/0x2820 __vhci_create_device+0xef/0x7d0 vhci_write+0x2c7/0x480 vfs_write+0x6a0/0xfc0 ksys_write+0x12f/0x260 do_syscall_64+0xc7/0x250 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 4979: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x4f/0x70 kfree+0x141/0x490 hci_release_dev+0x4d9/0x600 bt_host_release+0x6a/0xb0 device_release+0xa4/0x240 kobject_put+0x1ec/0x5a0 put_device+0x1f/0x30 vhci_release+0x81/0xf0 __fput+0x3f6/0xb30 task_work_run+0x151/0x250 do_exit+0xa79/0x2c30 do_group_exit+0xd5/0x2a0 get_signal+0x1fcd/0x2210 arch_do_signal_or_restart+0x93/0x780 syscall_exit_to_user_mode+0x140/0x290 do_syscall_64+0xd4/0x250 entry_SYSCALL_64_after_hwframe+0x77/0x7f In 'hci_conn_del_sysfs()', 'device_unregister()' may be called when an underlying (kobject) reference counter is greater than 1. This means that reparenting (happened when the device is actually freed) is delayed and, during that delay, parent controller device (hciX) may be deleted. Since the latter may create a dangling pointer to freed parent, avoid that scenario by reparenting to NULL explicitly.
7.8
High
CVE-2024-53231 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix possible null-ptr-deref for cpufreq_cpu_get_raw() cpufreq_cpu_get_raw() may return NULL if the cpu is not in policy->cpus cpu mask and it will cause null pointer dereference.
5.5
Medium
CVE-2024-53230 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix possible null-ptr-deref for cppc_get_cpu_cost() cpufreq_cpu_get_raw() may return NULL if the cpu is not in policy->cpus cpu mask and it will cause null pointer dereference, so check NULL for cppc_get_cpu_cost().
5.5
Medium
CVE-2024-53227 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: bfa: Fix use-after-free in bfad_im_module_exit() BUG: KASAN: slab-use-after-free in __lock_acquire+0x2aca/0x3a20 Read of size 8 at addr ffff8881082d80c8 by task modprobe/25303 Call Trace: dump_stack_lvl+0x95/0xe0 print_report+0xcb/0x620 kasan_report+0xbd/0xf0 __lock_acquire+0x2aca/0x3a20 lock_acquire+0x19b/0x520 _raw_spin_lock+0x2b/0x40 attribute_container_unregister+0x30/0x160 fc_release_transport+0x19/0x90 [scsi_transport_fc] bfad_im_module_exit+0x23/0x60 [bfa] bfad_init+0xdb/0xff0 [bfa] do_one_initcall+0xdc/0x550 do_init_module+0x22d/0x6b0 load_module+0x4e96/0x5ff0 init_module_from_file+0xcd/0x130 idempotent_init_module+0x330/0x620 __x64_sys_finit_module+0xb3/0x110 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Allocated by task 25303: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7f/0x90 fc_attach_transport+0x4f/0x4740 [scsi_transport_fc] bfad_im_module_init+0x17/0x80 [bfa] bfad_init+0x23/0xff0 [bfa] do_one_initcall+0xdc/0x550 do_init_module+0x22d/0x6b0 load_module+0x4e96/0x5ff0 init_module_from_file+0xcd/0x130 idempotent_init_module+0x330/0x620 __x64_sys_finit_module+0xb3/0x110 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 25303: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x38/0x50 kfree+0x212/0x480 bfad_im_module_init+0x7e/0x80 [bfa] bfad_init+0x23/0xff0 [bfa] do_one_initcall+0xdc/0x550 do_init_module+0x22d/0x6b0 load_module+0x4e96/0x5ff0 init_module_from_file+0xcd/0x130 idempotent_init_module+0x330/0x620 __x64_sys_finit_module+0xb3/0x110 do_syscall_64+0xc1/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Above issue happens as follows: bfad_init error = bfad_im_module_init() fc_release_transport(bfad_im_scsi_transport_template); if (error) goto ext; ext: bfad_im_module_exit(); fc_release_transport(bfad_im_scsi_transport_template); --> Trigger double release Don't call bfad_im_module_exit() if bfad_im_module_init() failed.
7.8
High
CVE-2024-53226 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix NULL pointer derefernce in hns_roce_map_mr_sg() ib_map_mr_sg() allows ULPs to specify NULL as the sg_offset argument. The driver needs to check whether it is a NULL pointer before dereferencing it.
5.5
Medium
CVE-2024-53224 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Move events notifier registration to be after device registration Move pkey change work initialization and cleanup from device resources stage to notifier stage, since this is the stage which handles this work events. Fix a race between the device deregistration and pkey change work by moving MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to ensure that the notifier is deregistered before the device during cleanup. Which ensures there are no works that are being executed after the device has already unregistered which can cause the panic below. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023 Workqueue: events pkey_change_handler [mlx5_ib] RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib] Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40 RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36 RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128 RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001 R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000 R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905 FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib] process_one_work+0x1e8/0x3c0 worker_thread+0x50/0x3b0 ? rescuer_thread+0x380/0x380 kthread+0x149/0x170 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x22/0x30 Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core] CR2: 0000000000000000 ---[ end trace f6f8be4eae12f7bc ]---
5.5
Medium
CVE-2024-53222 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: zram: fix NULL pointer in comp_algorithm_show() LTP reported a NULL pointer dereference as followed: CPU: 7 UID: 0 PID: 5995 Comm: cat Kdump: loaded Not tainted 6.12.0-rc6+ #3 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __pi_strcmp+0x24/0x140 lr : zcomp_available_show+0x60/0x100 [zram] sp : ffff800088b93b90 x29: ffff800088b93b90 x28: 0000000000000001 x27: 0000000000400cc0 x26: 0000000000000ffe x25: ffff80007b3e2388 x24: 0000000000000000 x23: ffff80007b3e2390 x22: ffff0004041a9000 x21: ffff80007b3e2900 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000000 x10: ffff80007b3e2900 x9 : ffff80007b3cb280 x8 : 0101010101010101 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000040 x4 : 0000000000000000 x3 : 00656c722d6f7a6c x2 : 0000000000000000 x1 : ffff80007b3e2900 x0 : 0000000000000000 Call trace: __pi_strcmp+0x24/0x140 comp_algorithm_show+0x40/0x70 [zram] dev_attr_show+0x28/0x80 sysfs_kf_seq_show+0x90/0x140 kernfs_seq_show+0x34/0x48 seq_read_iter+0x1d4/0x4e8 kernfs_fop_read_iter+0x40/0x58 new_sync_read+0x9c/0x168 vfs_read+0x1a8/0x1f8 ksys_read+0x74/0x108 __arm64_sys_read+0x24/0x38 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x38/0x138 el0t_64_sync_handler+0xc0/0xc8 el0t_64_sync+0x188/0x190 The zram->comp_algs[ZRAM_PRIMARY_COMP] can be NULL in zram_add() if comp_algorithm_set() has not been called. User can access the zram device by sysfs after device_add_disk(), so there is a time window to trigger the NULL pointer dereference. Move it ahead device_add_disk() to make sure when user can access the zram device, it is ready. comp_algorithm_set() is protected by zram->init_lock in other places and no such problem.
5.5
Medium
CVE-2024-53221 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null-ptr-deref in f2fs_submit_page_bio() There's issue as follows when concurrently installing the f2fs.ko module and mounting the f2fs file system: KASAN: null-ptr-deref in range [0x0000000000000020-0x0000000000000027] RIP: 0010:__bio_alloc+0x2fb/0x6c0 [f2fs] Call Trace: f2fs_submit_page_bio+0x126/0x8b0 [f2fs] __get_meta_page+0x1d4/0x920 [f2fs] get_checkpoint_version.constprop.0+0x2b/0x3c0 [f2fs] validate_checkpoint+0xac/0x290 [f2fs] f2fs_get_valid_checkpoint+0x207/0x950 [f2fs] f2fs_fill_super+0x1007/0x39b0 [f2fs] mount_bdev+0x183/0x250 legacy_get_tree+0xf4/0x1e0 vfs_get_tree+0x88/0x340 do_new_mount+0x283/0x5e0 path_mount+0x2b2/0x15b0 __x64_sys_mount+0x1fe/0x270 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Above issue happens as the biset of the f2fs file system is not initialized before register "f2fs_fs_type". To address above issue just register "f2fs_fs_type" at the last in init_f2fs_fs(). Ensure that all f2fs file system resources are initialized.
5.5
Medium
CVE-2024-53218 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix race in concurrent f2fs_stop_gc_thread In my test case, concurrent calls to f2fs shutdown report the following stack trace: Oops: general protection fault, probably for non-canonical address 0xc6cfff63bb5513fc: 0000 [#1] PREEMPT SMP PTI CPU: 0 UID: 0 PID: 678 Comm: f2fs_rep_shutdo Not tainted 6.12.0-rc5-next-20241029-g6fb2fa9805c5-dirty #85 Call Trace: ? show_regs+0x8b/0xa0 ? __die_body+0x26/0xa0 ? die_addr+0x54/0x90 ? exc_general_protection+0x24b/0x5c0 ? asm_exc_general_protection+0x26/0x30 ? kthread_stop+0x46/0x390 f2fs_stop_gc_thread+0x6c/0x110 f2fs_do_shutdown+0x309/0x3a0 f2fs_ioc_shutdown+0x150/0x1c0 __f2fs_ioctl+0xffd/0x2ac0 f2fs_ioctl+0x76/0xe0 vfs_ioctl+0x23/0x60 __x64_sys_ioctl+0xce/0xf0 x64_sys_call+0x2b1b/0x4540 do_syscall_64+0xa7/0x240 entry_SYSCALL_64_after_hwframe+0x76/0x7e The root cause is a race condition in f2fs_stop_gc_thread() called from different f2fs shutdown paths: [CPU0] [CPU1] ---------------------- ----------------------- f2fs_stop_gc_thread f2fs_stop_gc_thread gc_th = sbi->gc_thread gc_th = sbi->gc_thread kfree(gc_th) sbi->gc_thread = NULL < gc_th != NULL > kthread_stop(gc_th->f2fs_gc_task) //UAF The commit c7f114d864ac ("f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread()") attempted to fix this issue by using a read semaphore to prevent races between shutdown and remount threads, but it fails to prevent all race conditions. Fix it by converting to write lock of s_umount in f2fs_do_shutdown().
7.8
High
CVE-2024-53217 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSD: Prevent NULL dereference in nfsd4_process_cb_update() @ses is initialized to NULL. If __nfsd4_find_backchannel() finds no available backchannel session, setup_callback_client() will try to dereference @ses and segfault.
5.5
Medium
CVE-2024-53216 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: release svc_expkey/svc_export with rcu_work The last reference for `cache_head` can be reduced to zero in `c_show` and `e_show`(using `rcu_read_lock` and `rcu_read_unlock`). Consequently, `svc_export_put` and `expkey_put` will be invoked, leading to two issues: 1. The `svc_export_put` will directly free ex_uuid. However, `e_show`/`c_show` will access `ex_uuid` after `cache_put`, which can trigger a use-after-free issue, shown below. ================================================================== BUG: KASAN: slab-use-after-free in svc_export_show+0x362/0x430 [nfsd] Read of size 1 at addr ff11000010fdc120 by task cat/870 CPU: 1 UID: 0 PID: 870 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: dump_stack_lvl+0x53/0x70 print_address_description.constprop.0+0x2c/0x3a0 print_report+0xb9/0x280 kasan_report+0xae/0xe0 svc_export_show+0x362/0x430 [nfsd] c_show+0x161/0x390 [sunrpc] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 proc_reg_read+0xe1/0x140 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 830: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc_node_track_caller_noprof+0x1bc/0x400 kmemdup_noprof+0x22/0x50 svc_export_parse+0x8a9/0xb80 [nfsd] cache_do_downcall+0x71/0xa0 [sunrpc] cache_write_procfs+0x8e/0xd0 [sunrpc] proc_reg_write+0xe1/0x140 vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 868: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kfree+0xf3/0x3e0 svc_export_put+0x87/0xb0 [nfsd] cache_purge+0x17f/0x1f0 [sunrpc] nfsd_destroy_serv+0x226/0x2d0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e 2. We cannot sleep while using `rcu_read_lock`/`rcu_read_unlock`. However, `svc_export_put`/`expkey_put` will call path_put, which subsequently triggers a sleeping operation due to the following `dput`. ============================= WARNING: suspicious RCU usage 5.10.0-dirty #141 Not tainted ----------------------------- ... Call Trace: dump_stack+0x9a/0xd0 ___might_sleep+0x231/0x240 dput+0x39/0x600 path_put+0x1b/0x30 svc_export_put+0x17/0x80 e_show+0x1c9/0x200 seq_read_iter+0x63f/0x7c0 seq_read+0x226/0x2d0 vfs_read+0x113/0x2c0 ksys_read+0xc9/0x170 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Fix these issues by using `rcu_work` to help release `svc_expkey`/`svc_export`. This approach allows for an asynchronous context to invoke `path_put` and also facilitates the freeing of `uuid/exp/key` after an RCU grace period.
7.8
High
CVE-2024-53215 2024-12-27 13h50 +00:00 In the Linux kernel, the following vulnerability has been resolved: svcrdma: fix miss destroy percpu_counter in svc_rdma_proc_init() There's issue as follows: RPC: Registered rdma transport module. RPC: Registered rdma backchannel transport module. RPC: Unregistered rdma transport module. RPC: Unregistered rdma backchannel transport module. BUG: unable to handle page fault for address: fffffbfff80c609a PGD 123fee067 P4D 123fee067 PUD 123fea067 PMD 10c624067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI RIP: 0010:percpu_counter_destroy_many+0xf7/0x2a0 Call Trace: __die+0x1f/0x70 page_fault_oops+0x2cd/0x860 spurious_kernel_fault+0x36/0x450 do_kern_addr_fault+0xca/0x100 exc_page_fault+0x128/0x150 asm_exc_page_fault+0x26/0x30 percpu_counter_destroy_many+0xf7/0x2a0 mmdrop+0x209/0x350 finish_task_switch.isra.0+0x481/0x840 schedule_tail+0xe/0xd0 ret_from_fork+0x23/0x80 ret_from_fork_asm+0x1a/0x30 If register_sysctl() return NULL, then svc_rdma_proc_cleanup() will not destroy the percpu counters which init in svc_rdma_proc_init(). If CONFIG_HOTPLUG_CPU is enabled, residual nodes may be in the 'percpu_counters' list. The above issue may occur once the module is removed. If the CONFIG_HOTPLUG_CPU configuration is not enabled, memory leakage occurs. To solve above issue just destroy all percpu counters when register_sysctl() return NULL.
5.5
Medium
CVE-2024-53213 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: usb: lan78xx: Fix double free issue with interrupt buffer allocation In lan78xx_probe(), the buffer `buf` was being freed twice: once implicitly through `usb_free_urb(dev->urb_intr)` with the `URB_FREE_BUFFER` flag and again explicitly by `kfree(buf)`. This caused a double free issue. To resolve this, reordered `kmalloc()` and `usb_alloc_urb()` calls to simplify the initialization sequence and removed the redundant `kfree(buf)`. Now, `buf` is allocated after `usb_alloc_urb()`, ensuring it is correctly managed by `usb_fill_int_urb()` and freed by `usb_free_urb()` as intended.
7.8
High
CVE-2024-53210 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/iucv: MSG_PEEK causes memory leak in iucv_sock_destruct() Passing MSG_PEEK flag to skb_recv_datagram() increments skb refcount (skb->users) and iucv_sock_recvmsg() does not decrement skb refcount at exit. This results in skb memory leak in skb_queue_purge() and WARN_ON in iucv_sock_destruct() during socket close. To fix this decrease skb refcount by one if MSG_PEEK is set in order to prevent memory leak and WARN_ON. WARNING: CPU: 2 PID: 6292 at net/iucv/af_iucv.c:286 iucv_sock_destruct+0x144/0x1a0 [af_iucv] CPU: 2 PID: 6292 Comm: afiucv_test_msg Kdump: loaded Tainted: G W 6.10.0-rc7 #1 Hardware name: IBM 3931 A01 704 (z/VM 7.3.0) Call Trace: [<001587c682c4aa98>] iucv_sock_destruct+0x148/0x1a0 [af_iucv] [<001587c682c4a9d0>] iucv_sock_destruct+0x80/0x1a0 [af_iucv] [<001587c704117a32>] __sk_destruct+0x52/0x550 [<001587c704104a54>] __sock_release+0xa4/0x230 [<001587c704104c0c>] sock_close+0x2c/0x40 [<001587c702c5f5a8>] __fput+0x2e8/0x970 [<001587c7024148c4>] task_work_run+0x1c4/0x2c0 [<001587c7023b0716>] do_exit+0x996/0x1050 [<001587c7023b13aa>] do_group_exit+0x13a/0x360 [<001587c7023b1626>] __s390x_sys_exit_group+0x56/0x60 [<001587c7022bccca>] do_syscall+0x27a/0x380 [<001587c7049a6a0c>] __do_syscall+0x9c/0x160 [<001587c7049ce8a8>] system_call+0x70/0x98 Last Breaking-Event-Address: [<001587c682c4a9d4>] iucv_sock_destruct+0x84/0x1a0 [af_iucv]
5.5
Medium
CVE-2024-53209 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix receive ring space parameters when XDP is active The MTU setting at the time an XDP multi-buffer is attached determines whether the aggregation ring will be used and the rx_skb_func handler. This is done in bnxt_set_rx_skb_mode(). If the MTU is later changed, the aggregation ring setting may need to be changed and it may become out-of-sync with the settings initially done in bnxt_set_rx_skb_mode(). This may result in random memory corruption and crashes as the HW may DMA data larger than the allocated buffer size, such as: BUG: kernel NULL pointer dereference, address: 00000000000003c0 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 17 PID: 0 Comm: swapper/17 Kdump: loaded Tainted: G S OE 6.1.0-226bf9805506 #1 Hardware name: Wiwynn Delta Lake PVT BZA.02601.0150/Delta Lake-Class1, BIOS F0E_3A12 08/26/2021 RIP: 0010:bnxt_rx_pkt+0xe97/0x1ae0 [bnxt_en] Code: 8b 95 70 ff ff ff 4c 8b 9d 48 ff ff ff 66 41 89 87 b4 00 00 00 e9 0b f7 ff ff 0f b7 43 0a 49 8b 95 a8 04 00 00 25 ff 0f 00 00 <0f> b7 14 42 48 c1 e2 06 49 03 95 a0 04 00 00 0f b6 42 33f RSP: 0018:ffffa19f40cc0d18 EFLAGS: 00010202 RAX: 00000000000001e0 RBX: ffff8e2c805c6100 RCX: 00000000000007ff RDX: 0000000000000000 RSI: ffff8e2c271ab990 RDI: ffff8e2c84f12380 RBP: ffffa19f40cc0e48 R08: 000000000001000d R09: 974ea2fcddfa4cbf R10: 0000000000000000 R11: ffffa19f40cc0ff8 R12: ffff8e2c94b58980 R13: ffff8e2c952d6600 R14: 0000000000000016 R15: ffff8e2c271ab990 FS: 0000000000000000(0000) GS:ffff8e3b3f840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000003c0 CR3: 0000000e8580a004 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: __bnxt_poll_work+0x1c2/0x3e0 [bnxt_en] To address the issue, we now call bnxt_set_rx_skb_mode() within bnxt_change_mtu() to properly set the AGG rings configuration and update rx_skb_func based on the new MTU value. Additionally, BNXT_FLAG_NO_AGG_RINGS is cleared at the beginning of bnxt_set_rx_skb_mode() to make sure it gets set or cleared based on the current MTU.
5.5
Medium
CVE-2024-53208 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix slab-use-after-free Read in set_powered_sync This fixes the following crash: ================================================================== BUG: KASAN: slab-use-after-free in set_powered_sync+0x3a/0xc0 net/bluetooth/mgmt.c:1353 Read of size 8 at addr ffff888029b4dd18 by task kworker/u9:0/54 CPU: 1 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-01155-gf723224742fc #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Workqueue: hci0 hci_cmd_sync_work Call Trace: __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 q kasan_report+0x143/0x180 mm/kasan/report.c:601 set_powered_sync+0x3a/0xc0 net/bluetooth/mgmt.c:1353 hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:328 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd10 kernel/workqueue.c:3389 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Allocated by task 5247: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __kmalloc_cache_noprof+0x19c/0x2c0 mm/slub.c:4193 kmalloc_noprof include/linux/slab.h:681 [inline] kzalloc_noprof include/linux/slab.h:807 [inline] mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296 set_powered+0x3cd/0x5e0 net/bluetooth/mgmt.c:1394 hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712 hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 sock_write_iter+0x2dd/0x400 net/socket.c:1160 new_sync_write fs/read_write.c:497 [inline] vfs_write+0xa72/0xc90 fs/read_write.c:590 ksys_write+0x1a0/0x2c0 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 5246: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579 poison_slab_object+0xe0/0x150 mm/kasan/common.c:240 __kasan_slab_free+0x37/0x60 mm/kasan/common.c:256 kasan_slab_free include/linux/kasan.h:184 [inline] slab_free_hook mm/slub.c:2256 [inline] slab_free mm/slub.c:4477 [inline] kfree+0x149/0x360 mm/slub.c:4598 settings_rsp+0x2bc/0x390 net/bluetooth/mgmt.c:1443 mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259 __mgmt_power_off+0x112/0x420 net/bluetooth/mgmt.c:9455 hci_dev_close_sync+0x665/0x11a0 net/bluetooth/hci_sync.c:5191 hci_dev_do_close net/bluetooth/hci_core.c:483 [inline] hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508 sock_do_ioctl+0x158/0x460 net/socket.c:1222 sock_ioctl+0x629/0x8e0 net/socket.c:1341 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83gv entry_SYSCALL_64_after_hwframe+0x77/0x7f
7.8
High
CVE-2024-53207 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible deadlocks This fixes possible deadlocks like the following caused by hci_cmd_sync_dequeue causing the destroy function to run: INFO: task kworker/u19:0:143 blocked for more than 120 seconds. Tainted: G W O 6.8.0-2024-03-19-intel-next-iLS-24ww14 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u19:0 state:D stack:0 pid:143 tgid:143 ppid:2 flags:0x00004000 Workqueue: hci0 hci_cmd_sync_work [bluetooth] Call Trace: __schedule+0x374/0xaf0 schedule+0x3c/0xf0 schedule_preempt_disabled+0x1c/0x30 __mutex_lock.constprop.0+0x3ef/0x7a0 __mutex_lock_slowpath+0x13/0x20 mutex_lock+0x3c/0x50 mgmt_set_connectable_complete+0xa4/0x150 [bluetooth] ? kfree+0x211/0x2a0 hci_cmd_sync_dequeue+0xae/0x130 [bluetooth] ? __pfx_cmd_complete_rsp+0x10/0x10 [bluetooth] cmd_complete_rsp+0x26/0x80 [bluetooth] mgmt_pending_foreach+0x4d/0x70 [bluetooth] __mgmt_power_off+0x8d/0x180 [bluetooth] ? _raw_spin_unlock_irq+0x23/0x40 hci_dev_close_sync+0x445/0x5b0 [bluetooth] hci_set_powered_sync+0x149/0x250 [bluetooth] set_powered_sync+0x24/0x60 [bluetooth] hci_cmd_sync_work+0x90/0x150 [bluetooth] process_one_work+0x13e/0x300 worker_thread+0x2f7/0x420 ? __pfx_worker_thread+0x10/0x10 kthread+0x107/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x3d/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30
5.5
Medium
CVE-2024-53206 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: tcp: Fix use-after-free of nreq in reqsk_timer_handler(). The cited commit replaced inet_csk_reqsk_queue_drop_and_put() with __inet_csk_reqsk_queue_drop() and reqsk_put() in reqsk_timer_handler(). Then, oreq should be passed to reqsk_put() instead of req; otherwise use-after-free of nreq could happen when reqsk is migrated but the retry attempt failed (e.g. due to timeout). Let's pass oreq to reqsk_put().
7.8
High
CVE-2024-53205 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: phy: realtek: usb: fix NULL deref in rtk_usb2phy_probe In rtk_usb2phy_probe() devm_kzalloc() may return NULL but this returned value is not checked.
5.5
Medium
CVE-2024-53204 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: phy: realtek: usb: fix NULL deref in rtk_usb3phy_probe In rtk_usb3phy_probe() devm_kzalloc() may return NULL but this returned value is not checked.
5.5
Medium
CVE-2024-53203 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential array underflow in ucsi_ccg_sync_control() The "command" variable can be controlled by the user via debugfs. The worry is that if con_index is zero then "&uc->ucsi->connector[con_index - 1]" would be an array underflow.
7.8
High
CVE-2024-53202 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware_loader: Fix possible resource leak in fw_log_firmware_info() The alg instance should be released under the exception path, otherwise there may be resource leak here. To mitigate this, free the alg instance with crypto_free_shash when kmalloc fails.
5.5
Medium
CVE-2024-53200 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix null check for pipe_ctx->plane_state in hwss_setup_dpp This commit addresses a null pointer dereference issue in hwss_setup_dpp(). The issue could occur when pipe_ctx->plane_state is null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null before accessing. This prevents a null pointer dereference.
5.5
Medium
CVE-2024-53194 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: Fix use-after-free of slot->bus on hot remove Dennis reports a boot crash on recent Lenovo laptops with a USB4 dock. Since commit 0fc70886569c ("thunderbolt: Reset USB4 v2 host router") and commit 59a54c5f3dbd ("thunderbolt: Reset topology created by the boot firmware"), USB4 v2 and v1 Host Routers are reset on probe of the thunderbolt driver. The reset clears the Presence Detect State and Data Link Layer Link Active bits at the USB4 Host Router's Root Port and thus causes hot removal of the dock. The crash occurs when pciehp is unbound from one of the dock's Downstream Ports: pciehp creates a pci_slot on bind and destroys it on unbind. The pci_slot contains a pointer to the pci_bus below the Downstream Port, but a reference on that pci_bus is never acquired. The pci_bus is destroyed before the pci_slot, so a use-after-free ensues when pci_slot_release() accesses slot->bus. In principle this should not happen because pci_stop_bus_device() unbinds pciehp (and therefore destroys the pci_slot) before the pci_bus is destroyed by pci_remove_bus_device(). However the stacktrace provided by Dennis shows that pciehp is unbound from pci_remove_bus_device() instead of pci_stop_bus_device(). To understand the significance of this, one needs to know that the PCI core uses a two step process to remove a portion of the hierarchy: It first unbinds all drivers in the sub-hierarchy in pci_stop_bus_device() and then actually removes the devices in pci_remove_bus_device(). There is no precaution to prevent driver binding in-between pci_stop_bus_device() and pci_remove_bus_device(). In Dennis' case, it seems removal of the hierarchy by pciehp races with driver binding by pci_bus_add_devices(). pciehp is bound to the Downstream Port after pci_stop_bus_device() has run, so it is unbound by pci_remove_bus_device() instead of pci_stop_bus_device(). Because the pci_bus has already been destroyed at that point, accesses to it result in a use-after-free. One might conclude that driver binding needs to be prevented after pci_stop_bus_device() has run. However it seems risky that pci_slot points to pci_bus without holding a reference. Solely relying on correct ordering of driver unbind versus pci_bus destruction is certainly not defensive programming. If pci_slot has a need to access data in pci_bus, it ought to acquire a reference. Amend pci_create_slot() accordingly. Dennis reports that the crash is not reproducible with this change. Abridged stacktrace: pcieport 0000:00:07.0: PME: Signaling with IRQ 156 pcieport 0000:00:07.0: pciehp: Slot #12 AttnBtn- PwrCtrl- MRL- AttnInd- PwrInd- HotPlug+ Surprise+ Interlock- NoCompl+ IbPresDis- LLActRep+ pci_bus 0000:20: dev 00, created physical slot 12 pcieport 0000:00:07.0: pciehp: Slot(12): Card not present ... pcieport 0000:21:02.0: pciehp: pcie_disable_notification: SLOTCTRL d8 write cmd 0 Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI CPU: 13 UID: 0 PID: 134 Comm: irq/156-pciehp Not tainted 6.11.0-devel+ #1 RIP: 0010:dev_driver_string+0x12/0x40 pci_destroy_slot pciehp_remove pcie_port_remove_service device_release_driver_internal bus_remove_device device_del device_unregister remove_iter device_for_each_child pcie_portdrv_remove pci_device_remove device_release_driver_internal bus_remove_device device_del pci_remove_bus_device (recursive invocation) pci_remove_bus_device pciehp_unconfigure_device pciehp_disable_slot pciehp_handle_presence_or_link_change pciehp_ist
7.8
High
CVE-2024-53191 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix warning when unbinding If there is an error during some initialization related to firmware, the buffers dp->tx_ring[i].tx_status are released. However this is released again when the device is unbinded (ath12k_pci), and we get: WARNING: CPU: 0 PID: 2098 at mm/slub.c:4689 free_large_kmalloc+0x4d/0x80 Call Trace: free_large_kmalloc ath12k_dp_free ath12k_core_deinit ath12k_pci_remove ... The issue is always reproducible from a VM because the MSI addressing initialization is failing. In order to fix the issue, just set the buffers to NULL after releasing in order to avoid the double free.
7.8
High
CVE-2024-53188 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix crash when unbinding If there is an error during some initialization related to firmware, the function ath12k_dp_cc_cleanup is called to release resources. However this is released again when the device is unbinded (ath12k_pci), and we get: BUG: kernel NULL pointer dereference, address: 0000000000000020 at RIP: 0010:ath12k_dp_cc_cleanup.part.0+0xb6/0x500 [ath12k] Call Trace: ath12k_dp_cc_cleanup ath12k_dp_free ath12k_core_deinit ath12k_pci_remove ... The issue is always reproducible from a VM because the MSI addressing initialization is failing. In order to fix the issue, just set to NULL the released structure in ath12k_dp_cc_cleanup at the end.
5.5
Medium
CVE-2024-53187 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: check for overflows in io_pin_pages WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144 CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0 Call Trace: __io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183 io_rings_map io_uring/io_uring.c:2611 [inline] io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470 io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692 io_uring_setup io_uring/io_uring.c:3781 [inline] ... io_pin_pages()'s uaddr parameter came directly from the user and can be garbage. Don't just add size to it as it can overflow.
5.5
Medium
CVE-2024-53186 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in SMB request handling A race condition exists between SMB request handling in `ksmbd_conn_handler_loop()` and the freeing of `ksmbd_conn` in the workqueue handler `handle_ksmbd_work()`. This leads to a UAF. - KASAN: slab-use-after-free Read in handle_ksmbd_work - KASAN: slab-use-after-free in rtlock_slowlock_locked This race condition arises as follows: - `ksmbd_conn_handler_loop()` waits for `conn->r_count` to reach zero: `wait_event(conn->r_count_q, atomic_read(&conn->r_count) == 0);` - Meanwhile, `handle_ksmbd_work()` decrements `conn->r_count` using `atomic_dec_return(&conn->r_count)`, and if it reaches zero, calls `ksmbd_conn_free()`, which frees `conn`. - However, after `handle_ksmbd_work()` decrements `conn->r_count`, it may still access `conn->r_count_q` in the following line: `waitqueue_active(&conn->r_count_q)` or `wake_up(&conn->r_count_q)` This results in a UAF, as `conn` has already been freed. The discovery of this UAF can be referenced in the following PR for syzkaller's support for SMB requests.
7.8
High
CVE-2024-53185 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix NULL ptr deref in crypto_aead_setkey() Neither SMB3.0 or SMB3.02 supports encryption negotiate context, so when SMB2_GLOBAL_CAP_ENCRYPTION flag is set in the negotiate response, the client uses AES-128-CCM as the default cipher. See MS-SMB2 3.3.5.4. Commit b0abcd65ec54 ("smb: client: fix UAF in async decryption") added a @server->cipher_type check to conditionally call smb3_crypto_aead_allocate(), but that check would always be false as @server->cipher_type is unset for SMB3.02. Fix the following KASAN splat by setting @server->cipher_type for SMB3.02 as well. mount.cifs //srv/share /mnt -o vers=3.02,seal,... BUG: KASAN: null-ptr-deref in crypto_aead_setkey+0x2c/0x130 Read of size 8 at addr 0000000000000020 by task mount.cifs/1095 CPU: 1 UID: 0 PID: 1095 Comm: mount.cifs Not tainted 6.12.0 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41 04/01/2014 Call Trace: dump_stack_lvl+0x5d/0x80 ? crypto_aead_setkey+0x2c/0x130 kasan_report+0xda/0x110 ? crypto_aead_setkey+0x2c/0x130 crypto_aead_setkey+0x2c/0x130 crypt_message+0x258/0xec0 [cifs] ? __asan_memset+0x23/0x50 ? __pfx_crypt_message+0x10/0x10 [cifs] ? mark_lock+0xb0/0x6a0 ? hlock_class+0x32/0xb0 ? mark_lock+0xb0/0x6a0 smb3_init_transform_rq+0x352/0x3f0 [cifs] ? lock_acquire.part.0+0xf4/0x2a0 smb_send_rqst+0x144/0x230 [cifs] ? __pfx_smb_send_rqst+0x10/0x10 [cifs] ? hlock_class+0x32/0xb0 ? smb2_setup_request+0x225/0x3a0 [cifs] ? __pfx_cifs_compound_last_callback+0x10/0x10 [cifs] compound_send_recv+0x59b/0x1140 [cifs] ? __pfx_compound_send_recv+0x10/0x10 [cifs] ? __create_object+0x5e/0x90 ? hlock_class+0x32/0xb0 ? do_raw_spin_unlock+0x9a/0xf0 cifs_send_recv+0x23/0x30 [cifs] SMB2_tcon+0x3ec/0xb30 [cifs] ? __pfx_SMB2_tcon+0x10/0x10 [cifs] ? lock_acquire.part.0+0xf4/0x2a0 ? __pfx_lock_release+0x10/0x10 ? do_raw_spin_trylock+0xc6/0x120 ? lock_acquire+0x3f/0x90 ? _get_xid+0x16/0xd0 [cifs] ? __pfx_SMB2_tcon+0x10/0x10 [cifs] ? cifs_get_smb_ses+0xcdd/0x10a0 [cifs] cifs_get_smb_ses+0xcdd/0x10a0 [cifs] ? __pfx_cifs_get_smb_ses+0x10/0x10 [cifs] ? cifs_get_tcp_session+0xaa0/0xca0 [cifs] cifs_mount_get_session+0x8a/0x210 [cifs] dfs_mount_share+0x1b0/0x11d0 [cifs] ? __pfx___lock_acquire+0x10/0x10 ? __pfx_dfs_mount_share+0x10/0x10 [cifs] ? lock_acquire.part.0+0xf4/0x2a0 ? find_held_lock+0x8a/0xa0 ? hlock_class+0x32/0xb0 ? lock_release+0x203/0x5d0 cifs_mount+0xb3/0x3d0 [cifs] ? do_raw_spin_trylock+0xc6/0x120 ? __pfx_cifs_mount+0x10/0x10 [cifs] ? lock_acquire+0x3f/0x90 ? find_nls+0x16/0xa0 ? smb3_update_mnt_flags+0x372/0x3b0 [cifs] cifs_smb3_do_mount+0x1e2/0xc80 [cifs] ? __pfx_vfs_parse_fs_string+0x10/0x10 ? __pfx_cifs_smb3_do_mount+0x10/0x10 [cifs] smb3_get_tree+0x1bf/0x330 [cifs] vfs_get_tree+0x4a/0x160 path_mount+0x3c1/0xfb0 ? kasan_quarantine_put+0xc7/0x1d0 ? __pfx_path_mount+0x10/0x10 ? kmem_cache_free+0x118/0x3e0 ? user_path_at+0x74/0xa0 __x64_sys_mount+0x1a6/0x1e0 ? __pfx___x64_sys_mount+0x10/0x10 ? mark_held_locks+0x1a/0x90 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
7.8
High
CVE-2024-53180 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Add sanity NULL check for the default mmap fault handler A driver might allow the mmap access before initializing its runtime->dma_area properly. Add a proper NULL check before passing to virt_to_page() for avoiding a panic.
5.5
Medium
CVE-2024-53179 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free of signing key Customers have reported use-after-free in @ses->auth_key.response with SMB2.1 + sign mounts which occurs due to following race: task A task B cifs_mount() dfs_mount_share() get_session() cifs_mount_get_session() cifs_send_recv() cifs_get_smb_ses() compound_send_recv() cifs_setup_session() smb2_setup_request() kfree_sensitive() smb2_calc_signature() crypto_shash_setkey() *UAF* Fix this by ensuring that we have a valid @ses->auth_key.response by checking whether @ses->ses_status is SES_GOOD or SES_EXITING with @ses->ses_lock held. After commit 24a9799aa8ef ("smb: client: fix UAF in smb2_reconnect_server()"), we made sure to call ->logoff() only when @ses was known to be good (e.g. valid ->auth_key.response), so it's safe to access signing key when @ses->ses_status == SES_EXITING.
7.8
High
CVE-2024-53177 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: prevent use-after-free due to open_cached_dir error paths If open_cached_dir() encounters an error parsing the lease from the server, the error handling may race with receiving a lease break, resulting in open_cached_dir() freeing the cfid while the queued work is pending. Update open_cached_dir() to drop refs rather than directly freeing the cfid. Have cached_dir_lease_break(), cfids_laundromat_worker(), and invalidate_all_cached_dirs() clear has_lease immediately while still holding cfids->cfid_list_lock, and then use this to also simplify the reference counting in cfids_laundromat_worker() and invalidate_all_cached_dirs(). Fixes this KASAN splat (which manually injects an error and lease break in open_cached_dir()): ================================================================== BUG: KASAN: slab-use-after-free in smb2_cached_lease_break+0x27/0xb0 Read of size 8 at addr ffff88811cc24c10 by task kworker/3:1/65 CPU: 3 UID: 0 PID: 65 Comm: kworker/3:1 Not tainted 6.12.0-rc6-g255cf264e6e5-dirty #87 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Workqueue: cifsiod smb2_cached_lease_break Call Trace: dump_stack_lvl+0x77/0xb0 print_report+0xce/0x660 kasan_report+0xd3/0x110 smb2_cached_lease_break+0x27/0xb0 process_one_work+0x50a/0xc50 worker_thread+0x2ba/0x530 kthread+0x17c/0x1c0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Allocated by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 open_cached_dir+0xa7d/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x51/0x70 kfree+0x174/0x520 open_cached_dir+0x97f/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Last potentially related work creation: kasan_save_stack+0x33/0x60 __kasan_record_aux_stack+0xad/0xc0 insert_work+0x32/0x100 __queue_work+0x5c9/0x870 queue_work_on+0x82/0x90 open_cached_dir+0x1369/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff88811cc24c00 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 16 bytes inside of freed 1024-byte region [ffff88811cc24c00, ffff88811cc25000)
7.8
High
CVE-2024-53175 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipc: fix memleak if msg_init_ns failed in create_ipc_ns Percpu memory allocation may failed during create_ipc_ns however this fail is not handled properly since ipc sysctls and mq sysctls is not released properly. Fix this by release these two resource when failure. Here is the kmemleak stack when percpu failed: unreferenced object 0xffff88819de2a600 (size 512): comm "shmem_2nstest", pid 120711, jiffies 4300542254 hex dump (first 32 bytes): 60 aa 9d 84 ff ff ff ff fc 18 48 b2 84 88 ff ff `.........H..... 04 00 00 00 a4 01 00 00 20 e4 56 81 ff ff ff ff ........ .V..... backtrace (crc be7cba35): [] __kmalloc_node_track_caller_noprof+0x333/0x420 [] kmemdup_noprof+0x26/0x50 [] setup_mq_sysctls+0x57/0x1d0 [] copy_ipcs+0x29c/0x3b0 [] create_new_namespaces+0x1d0/0x920 [] copy_namespaces+0x2e9/0x3e0 [] copy_process+0x29f3/0x7ff0 [] kernel_clone+0xc0/0x650 [] __do_sys_clone+0xa1/0xe0 [] do_syscall_64+0xbf/0x1c0 [] entry_SYSCALL_64_after_hwframe+0x4b/0x53
5.5
Medium
CVE-2024-53174 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: make sure cache entry active before cache_show The function `c_show` was called with protection from RCU. This only ensures that `cp` will not be freed. Therefore, the reference count for `cp` can drop to zero, which will trigger a refcount use-after-free warning when `cache_get` is called. To resolve this issue, use `cache_get_rcu` to ensure that `cp` remains active. ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 7 PID: 822 at lib/refcount.c:25 refcount_warn_saturate+0xb1/0x120 CPU: 7 UID: 0 PID: 822 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb1/0x120 Call Trace: c_show+0x2fc/0x380 [sunrpc] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 proc_reg_read+0xe1/0x140 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e
7.8
High
CVE-2024-53173 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSv4.0: Fix a use-after-free problem in the asynchronous open() Yang Erkun reports that when two threads are opening files at the same time, and are forced to abort before a reply is seen, then the call to nfs_release_seqid() in nfs4_opendata_free() can result in a use-after-free of the pointer to the defunct rpc task of the other thread. The fix is to ensure that if the RPC call is aborted before the call to nfs_wait_on_sequence() is complete, then we must call nfs_release_seqid() in nfs4_open_release() before the rpc_task is freed.
7.8
High
CVE-2024-53171 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: ubifs: authentication: Fix use-after-free in ubifs_tnc_end_commit After an insertion in TNC, the tree might split and cause a node to change its `znode->parent`. A further deletion of other nodes in the tree (which also could free the nodes), the aforementioned node's `znode->cparent` could still point to a freed node. This `znode->cparent` may not be updated when getting nodes to commit in `ubifs_tnc_start_commit()`. This could then trigger a use-after-free when accessing the `znode->cparent` in `write_index()` in `ubifs_tnc_end_commit()`. This can be triggered by running rm -f /etc/test-file.bin dd if=/dev/urandom of=/etc/test-file.bin bs=1M count=60 conv=fsync in a loop, and with `CONFIG_UBIFS_FS_AUTHENTICATION`. KASAN then reports: BUG: KASAN: use-after-free in ubifs_tnc_end_commit+0xa5c/0x1950 Write of size 32 at addr ffffff800a3af86c by task ubifs_bgt0_20/153 Call trace: dump_backtrace+0x0/0x340 show_stack+0x18/0x24 dump_stack_lvl+0x9c/0xbc print_address_description.constprop.0+0x74/0x2b0 kasan_report+0x1d8/0x1f0 kasan_check_range+0xf8/0x1a0 memcpy+0x84/0xf4 ubifs_tnc_end_commit+0xa5c/0x1950 do_commit+0x4e0/0x1340 ubifs_bg_thread+0x234/0x2e0 kthread+0x36c/0x410 ret_from_fork+0x10/0x20 Allocated by task 401: kasan_save_stack+0x38/0x70 __kasan_kmalloc+0x8c/0xd0 __kmalloc+0x34c/0x5bc tnc_insert+0x140/0x16a4 ubifs_tnc_add+0x370/0x52c ubifs_jnl_write_data+0x5d8/0x870 do_writepage+0x36c/0x510 ubifs_writepage+0x190/0x4dc __writepage+0x58/0x154 write_cache_pages+0x394/0x830 do_writepages+0x1f0/0x5b0 filemap_fdatawrite_wbc+0x170/0x25c file_write_and_wait_range+0x140/0x190 ubifs_fsync+0xe8/0x290 vfs_fsync_range+0xc0/0x1e4 do_fsync+0x40/0x90 __arm64_sys_fsync+0x34/0x50 invoke_syscall.constprop.0+0xa8/0x260 do_el0_svc+0xc8/0x1f0 el0_svc+0x34/0x70 el0t_64_sync_handler+0x108/0x114 el0t_64_sync+0x1a4/0x1a8 Freed by task 403: kasan_save_stack+0x38/0x70 kasan_set_track+0x28/0x40 kasan_set_free_info+0x28/0x4c __kasan_slab_free+0xd4/0x13c kfree+0xc4/0x3a0 tnc_delete+0x3f4/0xe40 ubifs_tnc_remove_range+0x368/0x73c ubifs_tnc_remove_ino+0x29c/0x2e0 ubifs_jnl_delete_inode+0x150/0x260 ubifs_evict_inode+0x1d4/0x2e4 evict+0x1c8/0x450 iput+0x2a0/0x3c4 do_unlinkat+0x2cc/0x490 __arm64_sys_unlinkat+0x90/0x100 invoke_syscall.constprop.0+0xa8/0x260 do_el0_svc+0xc8/0x1f0 el0_svc+0x34/0x70 el0t_64_sync_handler+0x108/0x114 el0t_64_sync+0x1a4/0x1a8 The offending `memcpy()` in `ubifs_copy_hash()` has a use-after-free when a node becomes root in TNC but still has a `cparent` to an already freed node. More specifically, consider the following TNC: zroot / / zp1 / / zn Inserting a new node `zn_new` with a key smaller then `zn` will trigger a split in `tnc_insert()` if `zp1` is full: zroot / \ / \ zp1 zp2 / \ / \ zn_new zn `zn->parent` has now been moved to `zp2`, *but* `zn->cparent` still points to `zp1`. Now, consider a removal of all the nodes _except_ `zn`. Just when `tnc_delete()` is about to delete `zroot` and `zp2`: zroot \ \ zp2 \ \ zn `zroot` and `zp2` get freed and the tree collapses: zn `zn` now becomes the new `zroot`. `get_znodes_to_commit()` will now only find `zn`, the new `zroot`, and `write_index()` will check its `znode->cparent` that wrongly points to the already freed `zp1`. `ubifs_copy_hash()` thus gets wrongly called with `znode->cparent->zbranch[znode->iip].hash` that triggers the use-after-free! Fix this by explicitly setting `znode->cparent` to `NULL` in `get_znodes_to_commit()` for the root node. The search for the dirty nodes ---truncated---
7.8
High
CVE-2024-53170 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: block: fix uaf for flush rq while iterating tags blk_mq_clear_flush_rq_mapping() is not called during scsi probe, by checking blk_queue_init_done(). However, QUEUE_FLAG_INIT_DONE is cleared in del_gendisk by commit aec89dc5d421 ("block: keep q_usage_counter in atomic mode after del_gendisk"), hence for disk like scsi, following blk_mq_destroy_queue() will not clear flush rq from tags->rqs[] as well, cause following uaf that is found by our syzkaller for v6.6: ================================================================== BUG: KASAN: slab-use-after-free in blk_mq_find_and_get_req+0x16e/0x1a0 block/blk-mq-tag.c:261 Read of size 4 at addr ffff88811c969c20 by task kworker/1:2H/224909 CPU: 1 PID: 224909 Comm: kworker/1:2H Not tainted 6.6.0-ga836a5060850 #32 Workqueue: kblockd blk_mq_timeout_work Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106 print_address_description.constprop.0+0x66/0x300 mm/kasan/report.c:364 print_report+0x3e/0x70 mm/kasan/report.c:475 kasan_report+0xb8/0xf0 mm/kasan/report.c:588 blk_mq_find_and_get_req+0x16e/0x1a0 block/blk-mq-tag.c:261 bt_iter block/blk-mq-tag.c:288 [inline] __sbitmap_for_each_set include/linux/sbitmap.h:295 [inline] sbitmap_for_each_set include/linux/sbitmap.h:316 [inline] bt_for_each+0x455/0x790 block/blk-mq-tag.c:325 blk_mq_queue_tag_busy_iter+0x320/0x740 block/blk-mq-tag.c:534 blk_mq_timeout_work+0x1a3/0x7b0 block/blk-mq.c:1673 process_one_work+0x7c4/0x1450 kernel/workqueue.c:2631 process_scheduled_works kernel/workqueue.c:2704 [inline] worker_thread+0x804/0xe40 kernel/workqueue.c:2785 kthread+0x346/0x450 kernel/kthread.c:388 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:293 Allocated by task 942: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc mm/kasan/common.c:383 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:380 kasan_kmalloc include/linux/kasan.h:198 [inline] __do_kmalloc_node mm/slab_common.c:1007 [inline] __kmalloc_node+0x69/0x170 mm/slab_common.c:1014 kmalloc_node include/linux/slab.h:620 [inline] kzalloc_node include/linux/slab.h:732 [inline] blk_alloc_flush_queue+0x144/0x2f0 block/blk-flush.c:499 blk_mq_alloc_hctx+0x601/0x940 block/blk-mq.c:3788 blk_mq_alloc_and_init_hctx+0x27f/0x330 block/blk-mq.c:4261 blk_mq_realloc_hw_ctxs+0x488/0x5e0 block/blk-mq.c:4294 blk_mq_init_allocated_queue+0x188/0x860 block/blk-mq.c:4350 blk_mq_init_queue_data block/blk-mq.c:4166 [inline] blk_mq_init_queue+0x8d/0x100 block/blk-mq.c:4176 scsi_alloc_sdev+0x843/0xd50 drivers/scsi/scsi_scan.c:335 scsi_probe_and_add_lun+0x77c/0xde0 drivers/scsi/scsi_scan.c:1189 __scsi_scan_target+0x1fc/0x5a0 drivers/scsi/scsi_scan.c:1727 scsi_scan_channel drivers/scsi/scsi_scan.c:1815 [inline] scsi_scan_channel+0x14b/0x1e0 drivers/scsi/scsi_scan.c:1791 scsi_scan_host_selected+0x2fe/0x400 drivers/scsi/scsi_scan.c:1844 scsi_scan+0x3a0/0x3f0 drivers/scsi/scsi_sysfs.c:151 store_scan+0x2a/0x60 drivers/scsi/scsi_sysfs.c:191 dev_attr_store+0x5c/0x90 drivers/base/core.c:2388 sysfs_kf_write+0x11c/0x170 fs/sysfs/file.c:136 kernfs_fop_write_iter+0x3fc/0x610 fs/kernfs/file.c:338 call_write_iter include/linux/fs.h:2083 [inline] new_sync_write+0x1b4/0x2d0 fs/read_write.c:493 vfs_write+0x76c/0xb00 fs/read_write.c:586 ksys_write+0x127/0x250 fs/read_write.c:639 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x70/0x120 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x78/0xe2 Freed by task 244687: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x50 mm/kasan/generic.c:522 ____kasan_slab_free mm/kasan/common.c:236 [inline] __kasan_slab_free+0x12a/0x1b0 mm/kasan/common.c:244 kasan_slab_free include/linux/kasan.h:164 [in ---truncated---
7.8
High
CVE-2024-53168 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix one UAF issue caused by sunrpc kernel tcp socket BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0 Read of size 1 at addr ffff888111f322cd by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 Call Trace: dump_stack_lvl+0x68/0xa0 print_address_description.constprop.0+0x2c/0x3d0 print_report+0xb4/0x270 kasan_report+0xbd/0xf0 tcp_write_timer_handler+0x156/0x3e0 tcp_write_timer+0x66/0x170 call_timer_fn+0xfb/0x1d0 __run_timers+0x3f8/0x480 run_timer_softirq+0x9b/0x100 handle_softirqs+0x153/0x390 __irq_exit_rcu+0x103/0x120 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0x76/0x90 asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242 RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000 R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0 default_idle_call+0x6b/0xa0 cpuidle_idle_call+0x1af/0x1f0 do_idle+0xbc/0x130 cpu_startup_entry+0x33/0x40 rest_init+0x11f/0x210 start_kernel+0x39a/0x420 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x97/0xa0 common_startup_64+0x13e/0x141 Allocated by task 595: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x87/0x90 kmem_cache_alloc_noprof+0x12b/0x3f0 copy_net_ns+0x94/0x380 create_new_namespaces+0x24c/0x500 unshare_nsproxy_namespaces+0x75/0xf0 ksys_unshare+0x24e/0x4f0 __x64_sys_unshare+0x1f/0x30 do_syscall_64+0x70/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 100: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x54/0x70 kmem_cache_free+0x156/0x5d0 cleanup_net+0x5d3/0x670 process_one_work+0x776/0xa90 worker_thread+0x2e2/0x560 kthread+0x1a8/0x1f0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Reproduction script: mkdir -p /mnt/nfsshare mkdir -p /mnt/nfs/netns_1 mkfs.ext4 /dev/sdb mount /dev/sdb /mnt/nfsshare systemctl restart nfs-server chmod 777 /mnt/nfsshare exportfs -i -o rw,no_root_squash *:/mnt/nfsshare ip netns add netns_1 ip link add name veth_1_peer type veth peer veth_1 ifconfig veth_1_peer 11.11.0.254 up ip link set veth_1 netns netns_1 ip netns exec netns_1 ifconfig veth_1 11.11.0.1 ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \ --tcp-flags FIN FIN -j DROP (note: In my environment, a DESTROY_CLIENTID operation is always sent immediately, breaking the nfs tcp connection.) ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \ 11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1 ip netns del netns_1 The reason here is that the tcp socket in netns_1 (nfs side) has been shutdown and closed (done in xs_destroy), but the FIN message (with ack) is discarded, and the nfsd side keeps sending retransmission messages. As a result, when the tcp sock in netns_1 processes the received message, it sends the message (FIN message) in the sending queue, and the tcp timer is re-established. When the network namespace is deleted, the net structure accessed by tcp's timer handler function causes problems. To fix this problem, let's hold netns refcnt for the tcp kernel socket as done in other modules. This is an ugly hack which can easily be backported to earlier kernels. A proper fix which cleans up the interfaces will follow, but may not be so easy to backport.
7.8
High
CVE-2024-53166 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix bfqq uaf in bfq_limit_depth() Set new allocated bfqq to bic or remove freed bfqq from bic are both protected by bfqd->lock, however bfq_limit_depth() is deferencing bfqq from bic without the lock, this can lead to UAF if the io_context is shared by multiple tasks. For example, test bfq with io_uring can trigger following UAF in v6.6: ================================================================== BUG: KASAN: slab-use-after-free in bfqq_group+0x15/0x50 Call Trace: dump_stack_lvl+0x47/0x80 print_address_description.constprop.0+0x66/0x300 print_report+0x3e/0x70 kasan_report+0xb4/0xf0 bfqq_group+0x15/0x50 bfqq_request_over_limit+0x130/0x9a0 bfq_limit_depth+0x1b5/0x480 __blk_mq_alloc_requests+0x2b5/0xa00 blk_mq_get_new_requests+0x11d/0x1d0 blk_mq_submit_bio+0x286/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __block_write_full_folio+0x3d0/0x640 writepage_cb+0x3b/0xc0 write_cache_pages+0x254/0x6c0 write_cache_pages+0x254/0x6c0 do_writepages+0x192/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork_asm+0x1b/0x30 Allocated by task 808602: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_slab_alloc+0x83/0x90 kmem_cache_alloc_node+0x1b1/0x6d0 bfq_get_queue+0x138/0xfa0 bfq_get_bfqq_handle_split+0xe3/0x2c0 bfq_init_rq+0x196/0xbb0 bfq_insert_request.isra.0+0xb5/0x480 bfq_insert_requests+0x156/0x180 blk_mq_insert_request+0x15d/0x440 blk_mq_submit_bio+0x8a4/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __blkdev_direct_IO_async+0x2dd/0x330 blkdev_write_iter+0x39a/0x450 io_write+0x22a/0x840 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Freed by task 808589: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x27/0x40 __kasan_slab_free+0x126/0x1b0 kmem_cache_free+0x10c/0x750 bfq_put_queue+0x2dd/0x770 __bfq_insert_request.isra.0+0x155/0x7a0 bfq_insert_request.isra.0+0x122/0x480 bfq_insert_requests+0x156/0x180 blk_mq_dispatch_plug_list+0x528/0x7e0 blk_mq_flush_plug_list.part.0+0xe5/0x590 __blk_flush_plug+0x3b/0x90 blk_finish_plug+0x40/0x60 do_writepages+0x19d/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Fix the problem by protecting bic_to_bfqq() with bfqd->lock.
7.8
High
CVE-2024-53165 2024-12-27 13h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: sh: intc: Fix use-after-free bug in register_intc_controller() In the error handling for this function, d is freed without ever removing it from intc_list which would lead to a use after free. To fix this, let's only add it to the list after everything has succeeded.
7.8
High
CVE-2024-53162 2024-12-24 11h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: qat/qat_4xxx - fix off by one in uof_get_name() The fw_objs[] array has "num_objs" elements so the > needs to be >= to prevent an out of bounds read.
7.1
High
CVE-2024-53161 2024-12-24 11h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: EDAC/bluefield: Fix potential integer overflow The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as 32-bits wide the left-shift operation truncates the upper 16 bits of information during the calculation of the SMC argument. The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any potential integer overflow, i.e. loss of data from upper 16 bits.
5.5
Medium
CVE-2024-53157 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scpi: Check the DVFS OPP count returned by the firmware Fix a kernel crash with the below call trace when the SCPI firmware returns OPP count of zero. dvfs_info.opp_count may be zero on some platforms during the reboot test, and the kernel will crash after dereferencing the pointer to kcalloc(info->count, sizeof(*opp), GFP_KERNEL). | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000028 | Mem abort info: | ESR = 0x96000004 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000004 | CM = 0, WnR = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000faefa08c | [0000000000000028] pgd=0000000000000000 | Internal error: Oops: 96000004 [#1] SMP | scpi-hwmon: probe of PHYT000D:00 failed with error -110 | Process systemd-udevd (pid: 1701, stack limit = 0x00000000aaede86c) | CPU: 2 PID: 1701 Comm: systemd-udevd Not tainted 4.19.90+ #1 | Hardware name: PHYTIUM LTD Phytium FT2000/4/Phytium FT2000/4, BIOS | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | lr : clk_register+0x438/0x720 | Call trace: | scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | devm_clk_hw_register+0x50/0xa0 | scpi_clk_ops_init.isra.2+0xa0/0x138 [clk_scpi] | scpi_clocks_probe+0x528/0x70c [clk_scpi] | platform_drv_probe+0x58/0xa8 | really_probe+0x260/0x3d0 | driver_probe_device+0x12c/0x148 | device_driver_attach+0x74/0x98 | __driver_attach+0xb4/0xe8 | bus_for_each_dev+0x88/0xe0 | driver_attach+0x30/0x40 | bus_add_driver+0x178/0x2b0 | driver_register+0x64/0x118 | __platform_driver_register+0x54/0x60 | scpi_clocks_driver_init+0x24/0x1000 [clk_scpi] | do_one_initcall+0x54/0x220 | do_init_module+0x54/0x1c8 | load_module+0x14a4/0x1668 | __se_sys_finit_module+0xf8/0x110 | __arm64_sys_finit_module+0x24/0x30 | el0_svc_common+0x78/0x170 | el0_svc_handler+0x38/0x78 | el0_svc+0x8/0x340 | Code: 937d7c00 a94153f3 a8c27bfd f9400421 (b8606820) | ---[ end trace 06feb22469d89fa8 ]--- | Kernel panic - not syncing: Fatal exception | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x10,a0002008 | Memory Limit: none
5.5
Medium
CVE-2024-53156 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: add range check for conn_rsp_epid in htc_connect_service() I found the following bug in my fuzzer: UBSAN: array-index-out-of-bounds in drivers/net/wireless/ath/ath9k/htc_hst.c:26:51 index 255 is out of range for type 'htc_endpoint [22]' CPU: 0 UID: 0 PID: 8 Comm: kworker/0:0 Not tainted 6.11.0-rc6-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: events request_firmware_work_func Call Trace: dump_stack_lvl+0x180/0x1b0 __ubsan_handle_out_of_bounds+0xd4/0x130 htc_issue_send.constprop.0+0x20c/0x230 ? _raw_spin_unlock_irqrestore+0x3c/0x70 ath9k_wmi_cmd+0x41d/0x610 ? mark_held_locks+0x9f/0xe0 ... Since this bug has been confirmed to be caused by insufficient verification of conn_rsp_epid, I think it would be appropriate to add a range check for conn_rsp_epid to htc_connect_service() to prevent the bug from occurring.
7.8
High
CVE-2024-53155 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix uninitialized value in ocfs2_file_read_iter() Syzbot has reported the following KMSAN splat: BUG: KMSAN: uninit-value in ocfs2_file_read_iter+0x9a4/0xf80 ocfs2_file_read_iter+0x9a4/0xf80 __io_read+0x8d4/0x20f0 io_read+0x3e/0xf0 io_issue_sqe+0x42b/0x22c0 io_wq_submit_work+0xaf9/0xdc0 io_worker_handle_work+0xd13/0x2110 io_wq_worker+0x447/0x1410 ret_from_fork+0x6f/0x90 ret_from_fork_asm+0x1a/0x30 Uninit was created at: __alloc_pages_noprof+0x9a7/0xe00 alloc_pages_mpol_noprof+0x299/0x990 alloc_pages_noprof+0x1bf/0x1e0 allocate_slab+0x33a/0x1250 ___slab_alloc+0x12ef/0x35e0 kmem_cache_alloc_bulk_noprof+0x486/0x1330 __io_alloc_req_refill+0x84/0x560 io_submit_sqes+0x172f/0x2f30 __se_sys_io_uring_enter+0x406/0x41c0 __x64_sys_io_uring_enter+0x11f/0x1a0 x64_sys_call+0x2b54/0x3ba0 do_syscall_64+0xcd/0x1e0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Since an instance of 'struct kiocb' may be passed from the block layer with 'private' field uninitialized, introduce 'ocfs2_iocb_init_rw_locked()' and use it from where 'ocfs2_dio_end_io()' might take care, i.e. in 'ocfs2_file_read_iter()' and 'ocfs2_file_write_iter()'.
7.1
High
CVE-2024-53154 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: clk: clk-apple-nco: Add NULL check in applnco_probe Add NULL check in applnco_probe, to handle kernel NULL pointer dereference error.
5.5
Medium
CVE-2024-53151 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: svcrdma: Address an integer overflow Dan Carpenter reports: > Commit 78147ca8b4a9 ("svcrdma: Add a "parsed chunk list" data > structure") from Jun 22, 2020 (linux-next), leads to the following > Smatch static checker warning: > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c:498 xdr_check_write_chunk() > warn: potential user controlled sizeof overflow 'segcount * 4 * 4' > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c > 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) > 489 { > 490 u32 segcount; > 491 __be32 *p; > 492 > 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount)) > ^^^^^^^^ > > 494 return false; > 495 > 496 /* A bogus segcount causes this buffer overflow check to fail. */ > 497 p = xdr_inline_decode(&rctxt->rc_stream, > --> 498 segcount * rpcrdma_segment_maxsz * sizeof(*p)); > > > segcount is an untrusted u32. On 32bit systems anything >= SIZE_MAX / 16 will > have an integer overflow and some those values will be accepted by > xdr_inline_decode().
5.5
Medium
CVE-2024-53150 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix out of bounds reads when finding clock sources The current USB-audio driver code doesn't check bLength of each descriptor at traversing for clock descriptors. That is, when a device provides a bogus descriptor with a shorter bLength, the driver might hit out-of-bounds reads. For addressing it, this patch adds sanity checks to the validator functions for the clock descriptor traversal. When the descriptor length is shorter than expected, it's skipped in the loop. For the clock source and clock multiplier descriptors, we can just check bLength against the sizeof() of each descriptor type. OTOH, the clock selector descriptor of UAC2 and UAC3 has an array of bNrInPins elements and two more fields at its tail, hence those have to be checked in addition to the sizeof() check.
7.1
High
CVE-2024-53146 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSD: Prevent a potential integer overflow If the tag length is >= U32_MAX - 3 then the "length + 4" addition can result in an integer overflow. Address this by splitting the decoding into several steps so that decode_cb_compound4res() does not have to perform arithmetic on the unsafe length value.
5.5
Medium
CVE-2024-53145 2024-12-24 11h28 +00:00 In the Linux kernel, the following vulnerability has been resolved: um: Fix potential integer overflow during physmem setup This issue happens when the real map size is greater than LONG_MAX, which can be easily triggered on UML/i386.
5.5
Medium
CVE-2024-53142 2024-12-06 09h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: initramfs: avoid filename buffer overrun The initramfs filename field is defined in Documentation/driver-api/early-userspace/buffer-format.rst as: 37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data ... 55 ============= ================== ========================= 56 Field name Field size Meaning 57 ============= ================== ========================= ... 70 c_namesize 8 bytes Length of filename, including final \0 When extracting an initramfs cpio archive, the kernel's do_name() path handler assumes a zero-terminated path at @collected, passing it directly to filp_open() / init_mkdir() / init_mknod(). If a specially crafted cpio entry carries a non-zero-terminated filename and is followed by uninitialized memory, then a file may be created with trailing characters that represent the uninitialized memory. The ability to create an initramfs entry would imply already having full control of the system, so the buffer overrun shouldn't be considered a security vulnerability. Append the output of the following bash script to an existing initramfs and observe any created /initramfs_test_fname_overrunAA* path. E.g. ./reproducer.sh | gzip >> /myinitramfs It's easiest to observe non-zero uninitialized memory when the output is gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(), rather than the initrd_start+initrd_size block. ---- reproducer.sh ---- nilchar="A" # change to "\0" to properly zero terminate / pad magic="070701" ino=1 mode=$(( 0100777 )) uid=0 gid=0 nlink=1 mtime=1 filesize=0 devmajor=0 devminor=1 rdevmajor=0 rdevminor=0 csum=0 fname="initramfs_test_fname_overrun" namelen=$(( ${#fname} + 1 )) # plus one to account for terminator printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \ $magic $ino $mode $uid $gid $nlink $mtime $filesize \ $devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) )) printf "%.s${nilchar}" $(seq 1 $termpadlen) ---- reproducer.sh ---- Symlink filename fields handled in do_symlink() won't overrun past the data segment, due to the explicit zero-termination of the symlink target. Fix filename buffer overrun by aborting the initramfs FSM if any cpio entry doesn't carry a zero-terminator at the expected (name_len - 1) offset.
7.8
High
CVE-2024-53141 2024-12-06 09h37 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: add missing range check in bitmap_ip_uadt When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists, the values of ip and ip_to are slightly swapped. Therefore, the range check for ip should be done later, but this part is missing and it seems that the vulnerability occurs. So we should add missing range checks and remove unnecessary range checks.
7.8
High
CVE-2024-53140 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: netlink: terminate outstanding dump on socket close Netlink supports iterative dumping of data. It provides the families the following ops: - start - (optional) kicks off the dumping process - dump - actual dump helper, keeps getting called until it returns 0 - done - (optional) pairs with .start, can be used for cleanup The whole process is asynchronous and the repeated calls to .dump don't actually happen in a tight loop, but rather are triggered in response to recvmsg() on the socket. This gives the user full control over the dump, but also means that the user can close the socket without getting to the end of the dump. To make sure .start is always paired with .done we check if there is an ongoing dump before freeing the socket, and if so call .done. The complication is that sockets can get freed from BH and .done is allowed to sleep. So we use a workqueue to defer the call, when needed. Unfortunately this does not work correctly. What we defer is not the cleanup but rather releasing a reference on the socket. We have no guarantee that we own the last reference, if someone else holds the socket they may release it in BH and we're back to square one. The whole dance, however, appears to be unnecessary. Only the user can interact with dumps, so we can clean up when socket is closed. And close always happens in process context. Some async code may still access the socket after close, queue notification skbs to it etc. but no dumps can start, end or otherwise make progress. Delete the workqueue and flush the dump state directly from the release handler. Note that further cleanup is possible in -next, for instance we now always call .done before releasing the main module reference, so dump doesn't have to take a reference of its own.
5.5
Medium
CVE-2024-53139 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: fix possible UAF in sctp_v6_available() A lockdep report [1] with CONFIG_PROVE_RCU_LIST=y hints that sctp_v6_available() is calling dev_get_by_index_rcu() and ipv6_chk_addr() without holding rcu. [1] ============================= WARNING: suspicious RCU usage 6.12.0-rc5-virtme #1216 Tainted: G W ----------------------------- net/core/dev.c:876 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by sctp_hello/31495: #0: ffff9f1ebbdb7418 (sk_lock-AF_INET6){+.+.}-{0:0}, at: sctp_bind (./arch/x86/include/asm/jump_label.h:27 net/sctp/socket.c:315) sctp stack backtrace: CPU: 7 UID: 0 PID: 31495 Comm: sctp_hello Tainted: G W 6.12.0-rc5-virtme #1216 Tainted: [W]=WARN Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: dump_stack_lvl (lib/dump_stack.c:123) lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822) dev_get_by_index_rcu (net/core/dev.c:876 (discriminator 7)) sctp_v6_available (net/sctp/ipv6.c:701) sctp sctp_do_bind (net/sctp/socket.c:400 (discriminator 1)) sctp sctp_bind (net/sctp/socket.c:320) sctp inet6_bind_sk (net/ipv6/af_inet6.c:465) ? security_socket_bind (security/security.c:4581 (discriminator 1)) __sys_bind (net/socket.c:1848 net/socket.c:1869) ? do_user_addr_fault (./include/linux/rcupdate.h:347 ./include/linux/rcupdate.h:880 ./include/linux/mm.h:729 arch/x86/mm/fault.c:1340) ? do_user_addr_fault (./arch/x86/include/asm/preempt.h:84 (discriminator 13) ./include/linux/rcupdate.h:98 (discriminator 13) ./include/linux/rcupdate.h:882 (discriminator 13) ./include/linux/mm.h:729 (discriminator 13) arch/x86/mm/fault.c:1340 (discriminator 13)) __x64_sys_bind (net/socket.c:1877 (discriminator 1) net/socket.c:1875 (discriminator 1) net/socket.c:1875 (discriminator 1)) do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1) arch/x86/entry/common.c:83 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f59b934a1e7 Code: 44 00 00 48 8b 15 39 8c 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 09 8c 0c 00 f7 d8 64 89 01 48 All code ======== 0: 44 00 00 add %r8b,(%rax) 3: 48 8b 15 39 8c 0c 00 mov 0xc8c39(%rip),%rdx # 0xc8c43 a: f7 d8 neg %eax c: 64 89 02 mov %eax,%fs:(%rdx) f: b8 ff ff ff ff mov $0xffffffff,%eax 14: eb bd jmp 0xffffffffffffffd3 16: 66 2e 0f 1f 84 00 00 cs nopw 0x0(%rax,%rax,1) 1d: 00 00 00 20: 0f 1f 00 nopl (%rax) 23: b8 31 00 00 00 mov $0x31,%eax 28: 0f 05 syscall 2a:* 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax <-- trapping instruction 30: 73 01 jae 0x33 32: c3 ret 33: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c43 3a: f7 d8 neg %eax 3c: 64 89 01 mov %eax,%fs:(%rcx) 3f: 48 rex.W Code starting with the faulting instruction =========================================== 0: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax 6: 73 01 jae 0x9 8: c3 ret 9: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c19 10: f7 d8 neg %eax 12: 64 89 01 mov %eax,%fs:(%rcx) 15: 48 rex.W RSP: 002b:00007ffe2d0ad398 EFLAGS: 00000202 ORIG_RAX: 0000000000000031 RAX: ffffffffffffffda RBX: 00007ffe2d0ad3d0 RCX: 00007f59b934a1e7 RDX: 000000000000001c RSI: 00007ffe2d0ad3d0 RDI: 0000000000000005 RBP: 0000000000000005 R08: 1999999999999999 R09: 0000000000000000 R10: 00007f59b9253298 R11: 000000000000 ---truncated---
7.8
High
CVE-2024-53138 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: kTLS, Fix incorrect page refcounting The kTLS tx handling code is using a mix of get_page() and page_ref_inc() APIs to increment the page reference. But on the release path (mlx5e_ktls_tx_handle_resync_dump_comp()), only put_page() is used. This is an issue when using pages from large folios: the get_page() references are stored on the folio page while the page_ref_inc() references are stored directly in the given page. On release the folio page will be dereferenced too many times. This was found while doing kTLS testing with sendfile() + ZC when the served file was read from NFS on a kernel with NFS large folios support (commit 49b29a573da8 ("nfs: add support for large folios")).
5.5
Medium
CVE-2024-53136 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: revert "mm: shmem: fix data-race in shmem_getattr()" Revert d949d1d14fa2 ("mm: shmem: fix data-race in shmem_getattr()") as suggested by Chuck [1]. It is causing deadlocks when accessing tmpfs over NFS. As Hugh commented, "added just to silence a syzbot sanitizer splat: added where there has never been any practical problem".
4.7
Medium
CVE-2024-53135 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKEN Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are myriad bugs in the implementation, some of which are fatal to the guest, and others which put the stability and health of the host at risk. For guest fatalities, the most glaring issue is that KVM fails to ensure tracing is disabled, and *stays* disabled prior to VM-Enter, which is necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing is enabled (enforced via a VMX consistency check). Per the SDM: If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load IA32_RTIT_CTL" VM-entry control must be 0. On the host side, KVM doesn't validate the guest CPUID configuration provided by userspace, and even worse, uses the guest configuration to decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring guest CPUID to enumerate more address ranges than are supported in hardware will result in KVM trying to passthrough, save, and load non-existent MSRs, which generates a variety of WARNs, ToPA ERRORs in the host, a potential deadlock, etc.
6.5
Medium
CVE-2024-53134 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx93-blk-ctrl: correct remove path The check condition should be 'i < bc->onecell_data.num_domains', not 'bc->onecell_data.num_domains' which will make the look never finish and cause kernel panic. Also disable runtime to address "imx93-blk-ctrl 4ac10000.system-controller: Unbalanced pm_runtime_enable!"
5.5
Medium
CVE-2024-53133 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Handle dml allocation failure to avoid crash [Why] In the case where a dml allocation fails for any reason, the current state's dml contexts would no longer be valid. Then subsequent calls dc_state_copy_internal would shallow copy invalid memory and if the new state was released, a double free would occur. [How] Reset dml pointers in new_state to NULL and avoid invalid pointer (cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c)
7.8
High
CVE-2024-53131 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint Patch series "nilfs2: fix null-ptr-deref bugs on block tracepoints". This series fixes null pointer dereference bugs that occur when using nilfs2 and two block-related tracepoints. This patch (of 2): It has been reported that when using "block:block_touch_buffer" tracepoint, touch_buffer() called from __nilfs_get_folio_block() causes a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because since the tracepoint was added in touch_buffer(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, the block_device structure is set after the function returns to the caller. Here, touch_buffer() is used to mark the folio/page that owns the buffer head as accessed, but the common search helper for folio/page used by the caller function was optimized to mark the folio/page as accessed when it was reimplemented a long time ago, eliminating the need to call touch_buffer() here in the first place. So this solves the issue by eliminating the touch_buffer() call itself.
5.5
Medium
CVE-2024-53130 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above. Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag.
5.5
Medium
CVE-2024-53129 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: vop: Fix a dereferenced before check warning The 'state' can't be NULL, we should check crtc_state. Fix warning: drivers/gpu/drm/rockchip/rockchip_drm_vop.c:1096 vop_plane_atomic_async_check() warn: variable dereferenced before check 'state' (see line 1077)
5.5
Medium
CVE-2024-53128 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the object_is_on_stack() function may produce incorrect results due to the presence of tags in the obj pointer, while the stack pointer does not have tags. This discrepancy can lead to incorrect stack object detection and subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled. Example of the warning: ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated. ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364 Modules linked in: CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4 Hardware name: linux,dummy-virt (DT) pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __debug_object_init+0x330/0x364 lr : __debug_object_init+0x330/0x364 sp : ffff800082ea7b40 x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534 x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0 x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418 x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000 x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800 x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001 x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4 x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050 Call trace: __debug_object_init+0x330/0x364 debug_object_init_on_stack+0x30/0x3c schedule_hrtimeout_range_clock+0xac/0x26c schedule_hrtimeout+0x1c/0x30 wait_task_inactive+0x1d4/0x25c kthread_bind_mask+0x28/0x98 init_rescuer+0x1e8/0x280 workqueue_init+0x1a0/0x3cc kernel_init_freeable+0x118/0x200 kernel_init+0x28/0x1f0 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated. ------------[ cut here ]------------
5.5
Medium
CVE-2024-53127 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: Revert "mmc: dw_mmc: Fix IDMAC operation with pages bigger than 4K" The commit 8396c793ffdf ("mmc: dw_mmc: Fix IDMAC operation with pages bigger than 4K") increased the max_req_size, even for 4K pages, causing various issues: - Panic booting the kernel/rootfs from an SD card on Rockchip RK3566 - Panic booting the kernel/rootfs from an SD card on StarFive JH7100 - "swiotlb buffer is full" and data corruption on StarFive JH7110 At this stage no fix have been found, so it's probably better to just revert the change. This reverts commit 8396c793ffdf28bb8aee7cfe0891080f8cab7890.
5.5
Medium
CVE-2024-53126 2024-12-04 14h20 +00:00 In the Linux kernel, the following vulnerability has been resolved: vdpa: solidrun: Fix UB bug with devres In psnet_open_pf_bar() and snet_open_vf_bar() a string later passed to pcim_iomap_regions() is placed on the stack. Neither pcim_iomap_regions() nor the functions it calls copy that string. Should the string later ever be used, this, consequently, causes undefined behavior since the stack frame will by then have disappeared. Fix the bug by allocating the strings on the heap through devm_kasprintf().
7.8
High
CVE-2024-53124 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fix data-races around sk->sk_forward_alloc Syzkaller reported this warning: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 16 at net/ipv4/af_inet.c:156 inet_sock_destruct+0x1c5/0x1e0 Modules linked in: CPU: 0 UID: 0 PID: 16 Comm: ksoftirqd/0 Not tainted 6.12.0-rc5 #26 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:inet_sock_destruct+0x1c5/0x1e0 Code: 24 12 4c 89 e2 5b 48 c7 c7 98 ec bb 82 41 5c e9 d1 18 17 ff 4c 89 e6 5b 48 c7 c7 d0 ec bb 82 41 5c e9 bf 18 17 ff 0f 0b eb 83 <0f> 0b eb 97 0f 0b eb 87 0f 0b e9 68 ff ff ff 66 66 2e 0f 1f 84 00 RSP: 0018:ffffc9000008bd90 EFLAGS: 00010206 RAX: 0000000000000300 RBX: ffff88810b172a90 RCX: 0000000000000007 RDX: 0000000000000002 RSI: 0000000000000300 RDI: ffff88810b172a00 RBP: ffff88810b172a00 R08: ffff888104273c00 R09: 0000000000100007 R10: 0000000000020000 R11: 0000000000000006 R12: ffff88810b172a00 R13: 0000000000000004 R14: 0000000000000000 R15: ffff888237c31f78 FS: 0000000000000000(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc63fecac8 CR3: 000000000342e000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn+0x88/0x130 ? inet_sock_destruct+0x1c5/0x1e0 ? report_bug+0x18e/0x1a0 ? handle_bug+0x53/0x90 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? inet_sock_destruct+0x1c5/0x1e0 __sk_destruct+0x2a/0x200 rcu_do_batch+0x1aa/0x530 ? rcu_do_batch+0x13b/0x530 rcu_core+0x159/0x2f0 handle_softirqs+0xd3/0x2b0 ? __pfx_smpboot_thread_fn+0x10/0x10 run_ksoftirqd+0x25/0x30 smpboot_thread_fn+0xdd/0x1d0 kthread+0xd3/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 ---[ end trace 0000000000000000 ]--- Its possible that two threads call tcp_v6_do_rcv()/sk_forward_alloc_add() concurrently when sk->sk_state == TCP_LISTEN with sk->sk_lock unlocked, which triggers a data-race around sk->sk_forward_alloc: tcp_v6_rcv tcp_v6_do_rcv skb_clone_and_charge_r sk_rmem_schedule __sk_mem_schedule sk_forward_alloc_add() skb_set_owner_r sk_mem_charge sk_forward_alloc_add() __kfree_skb skb_release_all skb_release_head_state sock_rfree sk_mem_uncharge sk_forward_alloc_add() sk_mem_reclaim // set local var reclaimable __sk_mem_reclaim sk_forward_alloc_add() In this syzkaller testcase, two threads call tcp_v6_do_rcv() with skb->truesize=768, the sk_forward_alloc changes like this: (cpu 1) | (cpu 2) | sk_forward_alloc ... | ... | 0 __sk_mem_schedule() | | +4096 = 4096 | __sk_mem_schedule() | +4096 = 8192 sk_mem_charge() | | -768 = 7424 | sk_mem_charge() | -768 = 6656 ... | ... | sk_mem_uncharge() | | +768 = 7424 reclaimable=7424 | | | sk_mem_uncharge() | +768 = 8192 | reclaimable=8192 | __sk_mem_reclaim() | | -4096 = 4096 | __sk_mem_reclaim() | -8192 = -4096 != 0 The skb_clone_and_charge_r() should not be called in tcp_v6_do_rcv() when sk->sk_state is TCP_LISTEN, it happens later in tcp_v6_syn_recv_sock(). Fix the same issue in dccp_v6_do_rcv().
4.7
Medium
CVE-2024-53123 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: error out earlier on disconnect Eric reported a division by zero splat in the MPTCP protocol: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 6094 Comm: syz-executor317 Not tainted 6.12.0-rc5-syzkaller-00291-g05b92660cdfe #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__tcp_select_window+0x5b4/0x1310 net/ipv4/tcp_output.c:3163 Code: f6 44 01 e3 89 df e8 9b 75 09 f8 44 39 f3 0f 8d 11 ff ff ff e8 0d 74 09 f8 45 89 f4 e9 04 ff ff ff e8 00 74 09 f8 44 89 f0 99 7c 24 14 41 29 d6 45 89 f4 e9 ec fe ff ff e8 e8 73 09 f8 48 89 RSP: 0018:ffffc900041f7930 EFLAGS: 00010293 RAX: 0000000000017e67 RBX: 0000000000017e67 RCX: ffffffff8983314b RDX: 0000000000000000 RSI: ffffffff898331b0 RDI: 0000000000000004 RBP: 00000000005d6000 R08: 0000000000000004 R09: 0000000000017e67 R10: 0000000000003e80 R11: 0000000000000000 R12: 0000000000003e80 R13: ffff888031d9b440 R14: 0000000000017e67 R15: 00000000002eb000 FS: 00007feb5d7f16c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007feb5d8adbb8 CR3: 0000000074e4c000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __tcp_cleanup_rbuf+0x3e7/0x4b0 net/ipv4/tcp.c:1493 mptcp_rcv_space_adjust net/mptcp/protocol.c:2085 [inline] mptcp_recvmsg+0x2156/0x2600 net/mptcp/protocol.c:2289 inet_recvmsg+0x469/0x6a0 net/ipv4/af_inet.c:885 sock_recvmsg_nosec net/socket.c:1051 [inline] sock_recvmsg+0x1b2/0x250 net/socket.c:1073 __sys_recvfrom+0x1a5/0x2e0 net/socket.c:2265 __do_sys_recvfrom net/socket.c:2283 [inline] __se_sys_recvfrom net/socket.c:2279 [inline] __x64_sys_recvfrom+0xe0/0x1c0 net/socket.c:2279 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7feb5d857559 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007feb5d7f1208 EFLAGS: 00000246 ORIG_RAX: 000000000000002d RAX: ffffffffffffffda RBX: 00007feb5d8e1318 RCX: 00007feb5d857559 RDX: 000000800000000e RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007feb5d8e1310 R08: 0000000000000000 R09: ffffffff81000000 R10: 0000000000000100 R11: 0000000000000246 R12: 00007feb5d8e131c R13: 00007feb5d8ae074 R14: 000000800000000e R15: 00000000fffffdef and provided a nice reproducer. The root cause is the current bad handling of racing disconnect. After the blamed commit below, sk_wait_data() can return (with error) with the underlying socket disconnected and a zero rcv_mss. Catch the error and return without performing any additional operations on the current socket.
5.5
Medium
CVE-2024-53122 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: mptcp: cope racing subflow creation in mptcp_rcv_space_adjust Additional active subflows - i.e. created by the in kernel path manager - are included into the subflow list before starting the 3whs. A racing recvmsg() spooling data received on an already established subflow would unconditionally call tcp_cleanup_rbuf() on all the current subflows, potentially hitting a divide by zero error on the newly created ones. Explicitly check that the subflow is in a suitable state before invoking tcp_cleanup_rbuf().
5.5
Medium
CVE-2024-53121 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fs, lock FTE when checking if active The referenced commits introduced a two-step process for deleting FTEs: - Lock the FTE, delete it from hardware, set the hardware deletion function to NULL and unlock the FTE. - Lock the parent flow group, delete the software copy of the FTE, and remove it from the xarray. However, this approach encounters a race condition if a rule with the same match value is added simultaneously. In this scenario, fs_core may set the hardware deletion function to NULL prematurely, causing a panic during subsequent rule deletions. To prevent this, ensure the active flag of the FTE is checked under a lock, which will prevent the fs_core layer from attaching a new steering rule to an FTE that is in the process of deletion. [ 438.967589] MOSHE: 2496 mlx5_del_flow_rules del_hw_func [ 438.968205] ------------[ cut here ]------------ [ 438.968654] refcount_t: decrement hit 0; leaking memory. [ 438.969249] WARNING: CPU: 0 PID: 8957 at lib/refcount.c:31 refcount_warn_saturate+0xfb/0x110 [ 438.970054] Modules linked in: act_mirred cls_flower act_gact sch_ingress openvswitch nsh mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core zram zsmalloc fuse [last unloaded: cls_flower] [ 438.973288] CPU: 0 UID: 0 PID: 8957 Comm: tc Not tainted 6.12.0-rc1+ #8 [ 438.973888] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 438.974874] RIP: 0010:refcount_warn_saturate+0xfb/0x110 [ 438.975363] Code: 40 66 3b 82 c6 05 16 e9 4d 01 01 e8 1f 7c a0 ff 0f 0b c3 cc cc cc cc 48 c7 c7 10 66 3b 82 c6 05 fd e8 4d 01 01 e8 05 7c a0 ff <0f> 0b c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 90 [ 438.976947] RSP: 0018:ffff888124a53610 EFLAGS: 00010286 [ 438.977446] RAX: 0000000000000000 RBX: ffff888119d56de0 RCX: 0000000000000000 [ 438.978090] RDX: ffff88852c828700 RSI: ffff88852c81b3c0 RDI: ffff88852c81b3c0 [ 438.978721] RBP: ffff888120fa0e88 R08: 0000000000000000 R09: ffff888124a534b0 [ 438.979353] R10: 0000000000000001 R11: 0000000000000001 R12: ffff888119d56de0 [ 438.979979] R13: ffff888120fa0ec0 R14: ffff888120fa0ee8 R15: ffff888119d56de0 [ 438.980607] FS: 00007fe6dcc0f800(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000 [ 438.983984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 438.984544] CR2: 00000000004275e0 CR3: 0000000186982001 CR4: 0000000000372eb0 [ 438.985205] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 438.985842] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 438.986507] Call Trace: [ 438.986799] [ 438.987070] ? __warn+0x7d/0x110 [ 438.987426] ? refcount_warn_saturate+0xfb/0x110 [ 438.987877] ? report_bug+0x17d/0x190 [ 438.988261] ? prb_read_valid+0x17/0x20 [ 438.988659] ? handle_bug+0x53/0x90 [ 438.989054] ? exc_invalid_op+0x14/0x70 [ 438.989458] ? asm_exc_invalid_op+0x16/0x20 [ 438.989883] ? refcount_warn_saturate+0xfb/0x110 [ 438.990348] mlx5_del_flow_rules+0x2f7/0x340 [mlx5_core] [ 438.990932] __mlx5_eswitch_del_rule+0x49/0x170 [mlx5_core] [ 438.991519] ? mlx5_lag_is_sriov+0x3c/0x50 [mlx5_core] [ 438.992054] ? xas_load+0x9/0xb0 [ 438.992407] mlx5e_tc_rule_unoffload+0x45/0xe0 [mlx5_core] [ 438.993037] mlx5e_tc_del_fdb_flow+0x2a6/0x2e0 [mlx5_core] [ 438.993623] mlx5e_flow_put+0x29/0x60 [mlx5_core] [ 438.994161] mlx5e_delete_flower+0x261/0x390 [mlx5_core] [ 438.994728] tc_setup_cb_destroy+0xb9/0x190 [ 438.995150] fl_hw_destroy_filter+0x94/0xc0 [cls_flower] [ 438.995650] fl_change+0x11a4/0x13c0 [cls_flower] [ 438.996105] tc_new_tfilter+0x347/0xbc0 [ 438.996503] ? __ ---truncated---
5.5
Medium
CVE-2024-53120 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: CT: Fix null-ptr-deref in add rule err flow In error flow of mlx5_tc_ct_entry_add_rule(), in case ct_rule_add() callback returns error, zone_rule->attr is used uninitiated. Fix it to use attr which has the needed pointer value. Kernel log: BUG: kernel NULL pointer dereference, address: 0000000000000110 RIP: 0010:mlx5_tc_ct_entry_add_rule+0x2b1/0x2f0 [mlx5_core] … Call Trace: ? __die+0x20/0x70 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x140 ? asm_exc_page_fault+0x22/0x30 ? mlx5_tc_ct_entry_add_rule+0x2b1/0x2f0 [mlx5_core] ? mlx5_tc_ct_entry_add_rule+0x1d5/0x2f0 [mlx5_core] mlx5_tc_ct_block_flow_offload+0xc6a/0xf90 [mlx5_core] ? nf_flow_offload_tuple+0xd8/0x190 [nf_flow_table] nf_flow_offload_tuple+0xd8/0x190 [nf_flow_table] flow_offload_work_handler+0x142/0x320 [nf_flow_table] ? finish_task_switch.isra.0+0x15b/0x2b0 process_one_work+0x16c/0x320 worker_thread+0x28c/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xb8/0xf0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53119 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio/vsock: Fix accept_queue memory leak As the final stages of socket destruction may be delayed, it is possible that virtio_transport_recv_listen() will be called after the accept_queue has been flushed, but before the SOCK_DONE flag has been set. As a result, sockets enqueued after the flush would remain unremoved, leading to a memory leak. vsock_release __vsock_release lock virtio_transport_release virtio_transport_close schedule_delayed_work(close_work) sk_shutdown = SHUTDOWN_MASK (!) flush accept_queue release virtio_transport_recv_pkt vsock_find_bound_socket lock if flag(SOCK_DONE) return virtio_transport_recv_listen child = vsock_create_connected (!) vsock_enqueue_accept(child) release close_work lock virtio_transport_do_close set_flag(SOCK_DONE) virtio_transport_remove_sock vsock_remove_sock vsock_remove_bound release Introduce a sk_shutdown check to disallow vsock_enqueue_accept() during socket destruction. unreferenced object 0xffff888109e3f800 (size 2040): comm "kworker/5:2", pid 371, jiffies 4294940105 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 28 00 0b 40 00 00 00 00 00 00 00 00 00 00 00 00 (..@............ backtrace (crc 9e5f4e84): [] kmem_cache_alloc_noprof+0x2c1/0x360 [] sk_prot_alloc+0x30/0x120 [] sk_alloc+0x2c/0x4b0 [] __vsock_create.constprop.0+0x2a/0x310 [] virtio_transport_recv_pkt+0x4dc/0x9a0 [] vsock_loopback_work+0xfd/0x140 [] process_one_work+0x20c/0x570 [] worker_thread+0x1bf/0x3a0 [] kthread+0xdd/0x110 [] ret_from_fork+0x2d/0x50 [] ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53114 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client A number of Zen4 client SoCs advertise the ability to use virtualized VMLOAD/VMSAVE, but using these instructions is reported to be a cause of a random host reboot. These instructions aren't intended to be advertised on Zen4 client so clear the capability.
5.5
Medium
CVE-2024-53113 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: fix NULL pointer dereference in alloc_pages_bulk_noprof We triggered a NULL pointer dereference for ac.preferred_zoneref->zone in alloc_pages_bulk_noprof() when the task is migrated between cpusets. When cpuset is enabled, in prepare_alloc_pages(), ac->nodemask may be ¤t->mems_allowed. when first_zones_zonelist() is called to find preferred_zoneref, the ac->nodemask may be modified concurrently if the task is migrated between different cpusets. Assuming we have 2 NUMA Node, when traversing Node1 in ac->zonelist, the nodemask is 2, and when traversing Node2 in ac->zonelist, the nodemask is 1. As a result, the ac->preferred_zoneref points to NULL zone. In alloc_pages_bulk_noprof(), for_each_zone_zonelist_nodemask() finds a allowable zone and calls zonelist_node_idx(ac.preferred_zoneref), leading to NULL pointer dereference. __alloc_pages_noprof() fixes this issue by checking NULL pointer in commit ea57485af8f4 ("mm, page_alloc: fix check for NULL preferred_zone") and commit df76cee6bbeb ("mm, page_alloc: remove redundant checks from alloc fastpath"). To fix it, check NULL pointer for preferred_zoneref->zone.
5.5
Medium
CVE-2024-53112 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: uncache inode which has failed entering the group Syzbot has reported the following BUG: kernel BUG at fs/ocfs2/uptodate.c:509! ... Call Trace: ? __die_body+0x5f/0xb0 ? die+0x9e/0xc0 ? do_trap+0x15a/0x3a0 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? do_error_trap+0x1dc/0x2c0 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? __pfx_do_error_trap+0x10/0x10 ? handle_invalid_op+0x34/0x40 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ? exc_invalid_op+0x38/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? ocfs2_set_new_buffer_uptodate+0x2e/0x160 ? ocfs2_set_new_buffer_uptodate+0x144/0x160 ? ocfs2_set_new_buffer_uptodate+0x145/0x160 ocfs2_group_add+0x39f/0x15a0 ? __pfx_ocfs2_group_add+0x10/0x10 ? __pfx_lock_acquire+0x10/0x10 ? mnt_get_write_access+0x68/0x2b0 ? __pfx_lock_release+0x10/0x10 ? rcu_read_lock_any_held+0xb7/0x160 ? __pfx_rcu_read_lock_any_held+0x10/0x10 ? smack_log+0x123/0x540 ? mnt_get_write_access+0x68/0x2b0 ? mnt_get_write_access+0x68/0x2b0 ? mnt_get_write_access+0x226/0x2b0 ocfs2_ioctl+0x65e/0x7d0 ? __pfx_ocfs2_ioctl+0x10/0x10 ? smack_file_ioctl+0x29e/0x3a0 ? __pfx_smack_file_ioctl+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x43d/0x780 ? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10 ? __pfx_ocfs2_ioctl+0x10/0x10 __se_sys_ioctl+0xfb/0x170 do_syscall_64+0xf3/0x230 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... When 'ioctl(OCFS2_IOC_GROUP_ADD, ...)' has failed for the particular inode in 'ocfs2_verify_group_and_input()', corresponding buffer head remains cached and subsequent call to the same 'ioctl()' for the same inode issues the BUG() in 'ocfs2_set_new_buffer_uptodate()' (trying to cache the same buffer head of that inode). Fix this by uncaching the buffer head with 'ocfs2_remove_from_cache()' on error path in 'ocfs2_group_add()'.
5.5
Medium
CVE-2024-53110 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: vp_vdpa: fix id_table array not null terminated error Allocate one extra virtio_device_id as null terminator, otherwise vdpa_mgmtdev_get_classes() may iterate multiple times and visit undefined memory.
5.5
Medium
CVE-2024-53109 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: nommu: pass NULL argument to vma_iter_prealloc() When deleting a vma entry from a maple tree, it has to pass NULL to vma_iter_prealloc() in order to calculate internal state of the tree, but it passed a wrong argument. As a result, nommu kernels crashed upon accessing a vma iterator, such as acct_collect() reading the size of vma entries after do_munmap(). This commit fixes this issue by passing a right argument to the preallocation call.
5.5
Medium
CVE-2024-53108 2024-12-02 13h44 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adjust VSDB parser for replay feature At some point, the IEEE ID identification for the replay check in the AMD EDID was added. However, this check causes the following out-of-bounds issues when using KASAN: [ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu] [ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383 ... [ 27.821207] Memory state around the buggy address: [ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821243] ^ [ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821268] ================================================================== This is caused because the ID extraction happens outside of the range of the edid lenght. This commit addresses this issue by considering the amd_vsdb_block size. (cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8)
7.1
High
CVE-2024-53104 2024-12-02 07h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Skip parsing frames of type UVC_VS_UNDEFINED in uvc_parse_format This can lead to out of bounds writes since frames of this type were not taken into account when calculating the size of the frames buffer in uvc_parse_streaming.
7.8
High
CVE-2024-53103 2024-12-02 07h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: hv_sock: Initializing vsk->trans to NULL to prevent a dangling pointer When hvs is released, there is a possibility that vsk->trans may not be initialized to NULL, which could lead to a dangling pointer. This issue is resolved by initializing vsk->trans to NULL.
7.8
High
CVE-2024-53101 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs: Fix uninitialized value issue in from_kuid and from_kgid ocfs2_setattr() uses attr->ia_mode, attr->ia_uid and attr->ia_gid in a trace point even though ATTR_MODE, ATTR_UID and ATTR_GID aren't set. Initialize all fields of newattrs to avoid uninitialized variables, by checking if ATTR_MODE, ATTR_UID, ATTR_GID are initialized, otherwise 0.
5.5
Medium
CVE-2024-53100 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme: tcp: avoid race between queue_lock lock and destroy Commit 76d54bf20cdc ("nvme-tcp: don't access released socket during error recovery") added a mutex_lock() call for the queue->queue_lock in nvme_tcp_get_address(). However, the mutex_lock() races with mutex_destroy() in nvme_tcp_free_queue(), and causes the WARN below. DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 3 PID: 34077 at kernel/locking/mutex.c:587 __mutex_lock+0xcf0/0x1220 Modules linked in: nvmet_tcp nvmet nvme_tcp nvme_fabrics iw_cm ib_cm ib_core pktcdvd nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables qrtr sunrpc ppdev 9pnet_virtio 9pnet pcspkr netfs parport_pc parport e1000 i2c_piix4 i2c_smbus loop fuse nfnetlink zram bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper xfs drm sym53c8xx floppy nvme scsi_transport_spi nvme_core nvme_auth serio_raw ata_generic pata_acpi dm_multipath qemu_fw_cfg [last unloaded: ib_uverbs] CPU: 3 UID: 0 PID: 34077 Comm: udisksd Not tainted 6.11.0-rc7 #319 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:__mutex_lock+0xcf0/0x1220 Code: 08 84 d2 0f 85 c8 04 00 00 8b 15 ef b6 c8 01 85 d2 0f 85 78 f4 ff ff 48 c7 c6 20 93 ee af 48 c7 c7 60 91 ee af e8 f0 a7 6d fd <0f> 0b e9 5e f4 ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 f2 48 c1 RSP: 0018:ffff88811305f760 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff88812c652058 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000001 RBP: ffff88811305f8b0 R08: 0000000000000001 R09: ffffed1075c36341 R10: ffff8883ae1b1a0b R11: 0000000000010498 R12: 0000000000000000 R13: 0000000000000000 R14: dffffc0000000000 R15: ffff88812c652058 FS: 00007f9713ae4980(0000) GS:ffff8883ae180000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcd78483c7c CR3: 0000000122c38000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn.cold+0x5b/0x1af ? __mutex_lock+0xcf0/0x1220 ? report_bug+0x1ec/0x390 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x13/0x40 ? asm_exc_invalid_op+0x16/0x20 ? __mutex_lock+0xcf0/0x1220 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx___mutex_lock+0x10/0x10 ? __lock_acquire+0xd6a/0x59e0 ? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp] ? __pfx_nvme_tcp_get_address+0x10/0x10 [nvme_tcp] nvme_sysfs_show_address+0x81/0xc0 [nvme_core] dev_attr_show+0x42/0x80 ? __asan_memset+0x1f/0x40 sysfs_kf_seq_show+0x1f0/0x370 seq_read_iter+0x2cb/0x1130 ? rw_verify_area+0x3b1/0x590 ? __mutex_lock+0x433/0x1220 vfs_read+0x6a6/0xa20 ? lockdep_hardirqs_on+0x78/0x100 ? __pfx_vfs_read+0x10/0x10 ksys_read+0xf7/0x1d0 ? __pfx_ksys_read+0x10/0x10 ? __x64_sys_openat+0x105/0x1d0 do_syscall_64+0x93/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? __pfx_ksys_read+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on_prepare+0x16d/0x400 ? do_syscall_64+0x9f/0x180 ? lockdep_hardirqs_on+0x78/0x100 ? do_syscall_64+0x9f/0x180 ? do_syscall_64+0x9f/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f9713f55cfa Code: 55 48 89 e5 48 83 ec 20 48 89 55 e8 48 89 75 f0 89 7d f8 e8 e8 74 f8 ff 48 8b 55 e8 48 8b 75 f0 4 ---truncated---
4.7
Medium
CVE-2024-53099 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Check validity of link->type in bpf_link_show_fdinfo() If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing bpf_link_type_strs[link->type] may result in an out-of-bounds access. To spot such missed invocations early in the future, checking the validity of link->type in bpf_link_show_fdinfo() and emitting a warning when such invocations are missed.
7.1
High
CVE-2024-53098 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/ufence: Prefetch ufence addr to catch bogus address access_ok() only checks for addr overflow so also try to read the addr to catch invalid addr sent from userspace. (cherry picked from commit 9408c4508483ffc60811e910a93d6425b8e63928)
7.8
High
CVE-2024-53097 2024-11-25 21h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: krealloc: Fix MTE false alarm in __do_krealloc This patch addresses an issue introduced by commit 1a83a716ec233 ("mm: krealloc: consider spare memory for __GFP_ZERO") which causes MTE (Memory Tagging Extension) to falsely report a slab-out-of-bounds error. The problem occurs when zeroing out spare memory in __do_krealloc. The original code only considered software-based KASAN and did not account for MTE. It does not reset the KASAN tag before calling memset, leading to a mismatch between the pointer tag and the memory tag, resulting in a false positive. Example of the error: ================================================================== swapper/0: BUG: KASAN: slab-out-of-bounds in __memset+0x84/0x188 swapper/0: Write at addr f4ffff8005f0fdf0 by task swapper/0/1 swapper/0: Pointer tag: [f4], memory tag: [fe] swapper/0: swapper/0: CPU: 4 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12. swapper/0: Hardware name: MT6991(ENG) (DT) swapper/0: Call trace: swapper/0: dump_backtrace+0xfc/0x17c swapper/0: show_stack+0x18/0x28 swapper/0: dump_stack_lvl+0x40/0xa0 swapper/0: print_report+0x1b8/0x71c swapper/0: kasan_report+0xec/0x14c swapper/0: __do_kernel_fault+0x60/0x29c swapper/0: do_bad_area+0x30/0xdc swapper/0: do_tag_check_fault+0x20/0x34 swapper/0: do_mem_abort+0x58/0x104 swapper/0: el1_abort+0x3c/0x5c swapper/0: el1h_64_sync_handler+0x80/0xcc swapper/0: el1h_64_sync+0x68/0x6c swapper/0: __memset+0x84/0x188 swapper/0: btf_populate_kfunc_set+0x280/0x3d8 swapper/0: __register_btf_kfunc_id_set+0x43c/0x468 swapper/0: register_btf_kfunc_id_set+0x48/0x60 swapper/0: register_nf_nat_bpf+0x1c/0x40 swapper/0: nf_nat_init+0xc0/0x128 swapper/0: do_one_initcall+0x184/0x464 swapper/0: do_initcall_level+0xdc/0x1b0 swapper/0: do_initcalls+0x70/0xc0 swapper/0: do_basic_setup+0x1c/0x28 swapper/0: kernel_init_freeable+0x144/0x1b8 swapper/0: kernel_init+0x20/0x1a8 swapper/0: ret_from_fork+0x10/0x20 ==================================================================
5.5
Medium
CVE-2024-53096 2024-11-25 21h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm: resolve faulty mmap_region() error path behaviour The mmap_region() function is somewhat terrifying, with spaghetti-like control flow and numerous means by which issues can arise and incomplete state, memory leaks and other unpleasantness can occur. A large amount of the complexity arises from trying to handle errors late in the process of mapping a VMA, which forms the basis of recently observed issues with resource leaks and observable inconsistent state. Taking advantage of previous patches in this series we move a number of checks earlier in the code, simplifying things by moving the core of the logic into a static internal function __mmap_region(). Doing this allows us to perform a number of checks up front before we do any real work, and allows us to unwind the writable unmap check unconditionally as required and to perform a CONFIG_DEBUG_VM_MAPLE_TREE validation unconditionally also. We move a number of things here: 1. We preallocate memory for the iterator before we call the file-backed memory hook, allowing us to exit early and avoid having to perform complicated and error-prone close/free logic. We carefully free iterator state on both success and error paths. 2. The enclosing mmap_region() function handles the mapping_map_writable() logic early. Previously the logic had the mapping_map_writable() at the point of mapping a newly allocated file-backed VMA, and a matching mapping_unmap_writable() on success and error paths. We now do this unconditionally if this is a file-backed, shared writable mapping. If a driver changes the flags to eliminate VM_MAYWRITE, however doing so does not invalidate the seal check we just performed, and we in any case always decrement the counter in the wrapper. We perform a debug assert to ensure a driver does not attempt to do the opposite. 3. We also move arch_validate_flags() up into the mmap_region() function. This is only relevant on arm64 and sparc64, and the check is only meaningful for SPARC with ADI enabled. We explicitly add a warning for this arch if a driver invalidates this check, though the code ought eventually to be fixed to eliminate the need for this. With all of these measures in place, we no longer need to explicitly close the VMA on error paths, as we place all checks which might fail prior to a call to any driver mmap hook. This eliminates an entire class of errors, makes the code easier to reason about and more robust.
7.8
High
CVE-2024-53095 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free of network namespace. Recently, we got a customer report that CIFS triggers oops while reconnecting to a server. [0] The workload runs on Kubernetes, and some pods mount CIFS servers in non-root network namespaces. The problem rarely happened, but it was always while the pod was dying. The root cause is wrong reference counting for network namespace. CIFS uses kernel sockets, which do not hold refcnt of the netns that the socket belongs to. That means CIFS must ensure the socket is always freed before its netns; otherwise, use-after-free happens. The repro steps are roughly: 1. mount CIFS in a non-root netns 2. drop packets from the netns 3. destroy the netns 4. unmount CIFS We can reproduce the issue quickly with the script [1] below and see the splat [2] if CONFIG_NET_NS_REFCNT_TRACKER is enabled. When the socket is TCP, it is hard to guarantee the netns lifetime without holding refcnt due to async timers. Let's hold netns refcnt for each socket as done for SMC in commit 9744d2bf1976 ("smc: Fix use-after-free in tcp_write_timer_handler()."). Note that we need to move put_net() from cifs_put_tcp_session() to clean_demultiplex_info(); otherwise, __sock_create() still could touch a freed netns while cifsd tries to reconnect from cifs_demultiplex_thread(). Also, maybe_get_net() cannot be put just before __sock_create() because the code is not under RCU and there is a small chance that the same address happened to be reallocated to another netns. [0]: CIFS: VFS: \\XXXXXXXXXXX has not responded in 15 seconds. Reconnecting... CIFS: Serverclose failed 4 times, giving up Unable to handle kernel paging request at virtual address 14de99e461f84a07 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 [14de99e461f84a07] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP Modules linked in: cls_bpf sch_ingress nls_utf8 cifs cifs_arc4 cifs_md4 dns_resolver tcp_diag inet_diag veth xt_state xt_connmark nf_conntrack_netlink xt_nat xt_statistic xt_MASQUERADE xt_mark xt_addrtype ipt_REJECT nf_reject_ipv4 nft_chain_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_comment nft_compat nf_tables nfnetlink overlay nls_ascii nls_cp437 sunrpc vfat fat aes_ce_blk aes_ce_cipher ghash_ce sm4_ce_cipher sm4 sm3_ce sm3 sha3_ce sha512_ce sha512_arm64 sha1_ce ena button sch_fq_codel loop fuse configfs dmi_sysfs sha2_ce sha256_arm64 dm_mirror dm_region_hash dm_log dm_mod dax efivarfs CPU: 5 PID: 2690970 Comm: cifsd Not tainted 6.1.103-109.184.amzn2023.aarch64 #1 Hardware name: Amazon EC2 r7g.4xlarge/, BIOS 1.0 11/1/2018 pstate: 00400005 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : fib_rules_lookup+0x44/0x238 lr : __fib_lookup+0x64/0xbc sp : ffff8000265db790 x29: ffff8000265db790 x28: 0000000000000000 x27: 000000000000bd01 x26: 0000000000000000 x25: ffff000b4baf8000 x24: ffff00047b5e4580 x23: ffff8000265db7e0 x22: 0000000000000000 x21: ffff00047b5e4500 x20: ffff0010e3f694f8 x19: 14de99e461f849f7 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 3f92800abd010002 x11: 0000000000000001 x10: ffff0010e3f69420 x9 : ffff800008a6f294 x8 : 0000000000000000 x7 : 0000000000000006 x6 : 0000000000000000 x5 : 0000000000000001 x4 : ffff001924354280 x3 : ffff8000265db7e0 x2 : 0000000000000000 x1 : ffff0010e3f694f8 x0 : ffff00047b5e4500 Call trace: fib_rules_lookup+0x44/0x238 __fib_lookup+0x64/0xbc ip_route_output_key_hash_rcu+0x2c4/0x398 ip_route_output_key_hash+0x60/0x8c tcp_v4_connect+0x290/0x488 __inet_stream_connect+0x108/0x3d0 inet_stream_connect+0x50/0x78 kernel_connect+0x6c/0xac generic_ip_conne ---truncated---
7.8
High
CVE-2024-53094 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Add sendpage_ok() check to disable MSG_SPLICE_PAGES While running ISER over SIW, the initiator machine encounters a warning from skb_splice_from_iter() indicating that a slab page is being used in send_page. To address this, it is better to add a sendpage_ok() check within the driver itself, and if it returns 0, then MSG_SPLICE_PAGES flag should be disabled before entering the network stack. A similar issue has been discussed for NVMe in this thread: https://lore.kernel.org/all/[email protected]/ WARNING: CPU: 0 PID: 5342 at net/core/skbuff.c:7140 skb_splice_from_iter+0x173/0x320 Call Trace: tcp_sendmsg_locked+0x368/0xe40 siw_tx_hdt+0x695/0xa40 [siw] siw_qp_sq_process+0x102/0xb00 [siw] siw_sq_resume+0x39/0x110 [siw] siw_run_sq+0x74/0x160 [siw] kthread+0xd2/0x100 ret_from_fork+0x34/0x40 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53093 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: defer partition scanning We need to suppress the partition scan from occuring within the controller's scan_work context. If a path error occurs here, the IO will wait until a path becomes available or all paths are torn down, but that action also occurs within scan_work, so it would deadlock. Defer the partion scan to a different context that does not block scan_work.
5.5
Medium
CVE-2024-53091 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx As the introduction of the support for vsock and unix sockets in sockmap, tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK. vsock and af_unix sockets have vsock_sock and unix_sock instead of inet_connection_sock. For these sockets, tls_get_ctx may return an invalid pointer and cause page fault in function tls_sw_ctx_rx. BUG: unable to handle page fault for address: 0000000000040030 Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:sk_psock_strp_data_ready+0x23/0x60 Call Trace: ? __die+0x81/0xc3 ? no_context+0x194/0x350 ? do_page_fault+0x30/0x110 ? async_page_fault+0x3e/0x50 ? sk_psock_strp_data_ready+0x23/0x60 virtio_transport_recv_pkt+0x750/0x800 ? update_load_avg+0x7e/0x620 vsock_loopback_work+0xd0/0x100 process_one_work+0x1a7/0x360 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? __kthread_cancel_work+0x40/0x40 ret_from_fork+0x1f/0x40 v2: - Add IS_ICSK check v3: - Update the commits in Fixes
5.5
Medium
CVE-2024-53090 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: afs: Fix lock recursion afs_wake_up_async_call() can incur lock recursion. The problem is that it is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to take a ref on the afs_call struct in order to pass it to a work queue - but if the afs_call is already queued, we then have an extraneous ref that must be put... calling afs_put_call() may call back down into AF_RXRPC through rxrpc_kernel_shutdown_call(), however, which might try taking the ->notify_lock again. This case isn't very common, however, so defer it to a workqueue. The oops looks something like: BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646 lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0 CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Call Trace: dump_stack_lvl+0x47/0x70 do_raw_spin_lock+0x3c/0x90 rxrpc_kernel_shutdown_call+0x83/0xb0 afs_put_call+0xd7/0x180 rxrpc_notify_socket+0xa0/0x190 rxrpc_input_split_jumbo+0x198/0x1d0 rxrpc_input_data+0x14b/0x1e0 ? rxrpc_input_call_packet+0xc2/0x1f0 rxrpc_input_call_event+0xad/0x6b0 rxrpc_input_packet_on_conn+0x1e1/0x210 rxrpc_input_packet+0x3f2/0x4d0 rxrpc_io_thread+0x243/0x410 ? __pfx_rxrpc_io_thread+0x10/0x10 kthread+0xcf/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x24/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30
5.5
Medium
CVE-2024-53089 2024-11-21 18h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Mark hrtimer to expire in hard interrupt context Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft interrupt expiry mode by default. Then the timers are canceled from an preempt-notifier which is invoked with disabled preemption which is not allowed on PREEMPT_RT. The timer callback is short so in could be invoked in hard-IRQ context. So let the timer expire on hard-IRQ context even on -RT. This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels: BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002 Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774 Tainted: [W]=WARN Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000 90000001167475a0 0000000000000000 90000001167475a8 9000000005644830 90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001 0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140 00000000000003fe 0000000000000001 000000000000000d 0000000000000003 0000000000000030 00000000000003f3 000000000790c000 9000000116747830 90000000057ef000 0000000000000000 9000000005644830 0000000000000004 0000000000000000 90000000057f4b58 0000000000000001 9000000116747868 900000000451b600 9000000005644830 9000000003a13998 0000000010000020 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003a13998>] show_stack+0x38/0x180 [<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0 [<9000000003a71708>] __schedule_bug+0x48/0x60 [<9000000004e45734>] __schedule+0x1114/0x1660 [<9000000004e46040>] schedule_rtlock+0x20/0x60 [<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0 [<9000000004e4f038>] rt_spin_lock+0x58/0x80 [<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0 [<9000000003b02e30>] hrtimer_cancel+0x70/0x80 [] kvm_restore_timer+0x50/0x1a0 [kvm] [] kvm_arch_vcpu_load+0x68/0x2a0 [kvm] [] kvm_sched_in+0x34/0x60 [kvm] [<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0 [<9000000004e44a70>] __schedule+0x450/0x1660 [<9000000004e45cb0>] schedule+0x30/0x180 [] kvm_vcpu_block+0x70/0x120 [kvm] [] kvm_vcpu_halt+0x60/0x3e0 [kvm] [] kvm_handle_gspr+0x3f4/0x4e0 [kvm] [] kvm_handle_exit+0x1c8/0x260 [kvm]
5.5
Medium
CVE-2024-53088 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: i40e: fix race condition by adding filter's intermediate sync state Fix a race condition in the i40e driver that leads to MAC/VLAN filters becoming corrupted and leaking. Address the issue that occurs under heavy load when multiple threads are concurrently modifying MAC/VLAN filters by setting mac and port VLAN. 1. Thread T0 allocates a filter in i40e_add_filter() within i40e_ndo_set_vf_port_vlan(). 2. Thread T1 concurrently frees the filter in __i40e_del_filter() within i40e_ndo_set_vf_mac(). 3. Subsequently, i40e_service_task() calls i40e_sync_vsi_filters(), which refers to the already freed filter memory, causing corruption. Reproduction steps: 1. Spawn multiple VFs. 2. Apply a concurrent heavy load by running parallel operations to change MAC addresses on the VFs and change port VLANs on the host. 3. Observe errors in dmesg: "Error I40E_AQ_RC_ENOSPC adding RX filters on VF XX, please set promiscuous on manually for VF XX". Exact code for stable reproduction Intel can't open-source now. The fix involves implementing a new intermediate filter state, I40E_FILTER_NEW_SYNC, for the time when a filter is on a tmp_add_list. These filters cannot be deleted from the hash list directly but must be removed using the full process.
4.7
Medium
CVE-2024-53085 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: tpm: Lock TPM chip in tpm_pm_suspend() first Setting TPM_CHIP_FLAG_SUSPENDED in the end of tpm_pm_suspend() can be racy according, as this leaves window for tpm_hwrng_read() to be called while the operation is in progress. The recent bug report gives also evidence of this behaviour. Aadress this by locking the TPM chip before checking any chip->flags both in tpm_pm_suspend() and tpm_hwrng_read(). Move TPM_CHIP_FLAG_SUSPENDED check inside tpm_get_random() so that it will be always checked only when the lock is reserved.
5.5
Medium
CVE-2024-53084 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Break an object reference loop When remaining resources are being cleaned up on driver close, outstanding VM mappings may result in resources being leaked, due to an object reference loop, as shown below, with each object (or set of objects) referencing the object below it: PVR GEM Object GPU scheduler "finished" fence GPU scheduler “scheduled” fence PVR driver “done” fence PVR Context PVR VM Context PVR VM Mappings PVR GEM Object The reference that the PVR VM Context has on the VM mappings is a soft one, in the sense that the freeing of outstanding VM mappings is done as part of VM context destruction; no reference counts are involved, as is the case for all the other references in the loop. To break the reference loop during cleanup, free the outstanding VM mappings before destroying the PVR Context associated with the VM context.
5.5
Medium
CVE-2024-53083 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: qcom-pmic: init value of hdr_len/txbuf_len earlier If the read of USB_PDPHY_RX_ACKNOWLEDGE_REG failed, then hdr_len and txbuf_len are uninitialized. This commit stops to print uninitialized value and misleading/false data.
5.5
Medium
CVE-2024-53082 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio_net: Add hash_key_length check Add hash_key_length check in virtnet_probe() to avoid possible out of bound errors when setting/reading the hash key.
7.1
High
CVE-2024-53081 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: ar0521: don't overflow when checking PLL values The PLL checks are comparing 64 bit integers with 32 bit ones, as reported by Coverity. Depending on the values of the variables, this may underflow. Fix it ensuring that both sides of the expression are u64.
5.5
Medium
CVE-2024-53079 2024-11-19 17h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm/thp: fix deferred split unqueue naming and locking Recent changes are putting more pressure on THP deferred split queues: under load revealing long-standing races, causing list_del corruptions, "Bad page state"s and worse (I keep BUGs in both of those, so usually don't get to see how badly they end up without). The relevant recent changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin, improved swap allocation, and underused THP splitting. Before fixing locking: rename misleading folio_undo_large_rmappable(), which does not undo large_rmappable, to folio_unqueue_deferred_split(), which is what it does. But that and its out-of-line __callee are mm internals of very limited usability: add comment and WARN_ON_ONCEs to check usage; and return a bool to say if a deferred split was unqueued, which can then be used in WARN_ON_ONCEs around safety checks (sparing callers the arcane conditionals in __folio_unqueue_deferred_split()). Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all of whose callers now call it beforehand (and if any forget then bad_page() will tell) - except for its caller put_pages_list(), which itself no longer has any callers (and will be deleted separately). Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0 without checking and unqueueing a THP folio from deferred split list; which is unfortunate, since the split_queue_lock depends on the memcg (when memcg is enabled); so swapout has been unqueueing such THPs later, when freeing the folio, using the pgdat's lock instead: potentially corrupting the memcg's list. __remove_mapping() has frozen refcount to 0 here, so no problem with calling folio_unqueue_deferred_split() before resetting memcg_data. That goes back to 5.4 commit 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware"): which included a check on swapcache before adding to deferred queue, but no check on deferred queue before adding THP to swapcache. That worked fine with the usual sequence of events in reclaim (though there were a couple of rare ways in which a THP on deferred queue could have been swapped out), but 6.12 commit dafff3f4c850 ("mm: split underused THPs") avoids splitting underused THPs in reclaim, which makes swapcache THPs on deferred queue commonplace. Keep the check on swapcache before adding to deferred queue? Yes: it is no longer essential, but preserves the existing behaviour, and is likely to be a worthwhile optimization (vmstat showed much more traffic on the queue under swapping load if the check was removed); update its comment. Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing folio->memcg_data without checking and unqueueing a THP folio from the deferred list, sometimes corrupting "from" memcg's list, like swapout. Refcount is non-zero here, so folio_unqueue_deferred_split() can only be used in a WARN_ON_ONCE to validate the fix, which must be done earlier: mem_cgroup_move_charge_pte_range() first try to split the THP (splitting of course unqueues), or skip it if that fails. Not ideal, but moving charge has been requested, and khugepaged should repair the THP later: nobody wants new custom unqueueing code just for this deprecated case. The 87eaceb3faa5 commit did have the code to move from one deferred list to another (but was not conscious of its unsafety while refcount non-0); but that was removed by 5.6 commit fac0516b5534 ("mm: thp: don't need care deferred split queue in memcg charge move path"), which argued that the existence of a PMD mapping guarantees that the THP cannot be on a deferred list. As above, false in rare cases, and now commonly false. Backport to 6.11 should be straightforward. Earlier backports must take care that other _deferred_list fixes and dependencies are included. There is not a strong case for backports, but they can fix cornercases.
5.5
Medium
CVE-2024-53072 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd/pmc: Detect when STB is not available Loading the amd_pmc module as: amd_pmc enable_stb=1 ...can result in the following messages in the kernel ring buffer: amd_pmc AMDI0009:00: SMU cmd failed. err: 0xff ioremap on RAM at 0x0000000000000000 - 0x0000000000ffffff WARNING: CPU: 10 PID: 2151 at arch/x86/mm/ioremap.c:217 __ioremap_caller+0x2cd/0x340 Further debugging reveals that this occurs when the requests for S2D_PHYS_ADDR_LOW and S2D_PHYS_ADDR_HIGH return a value of 0, indicating that the STB is inaccessible. To prevent the ioremap warning and provide clarity to the user, handle the invalid address and display an error message.
5.5
Medium
CVE-2024-53070 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: fix fault at system suspend if device was already runtime suspended If the device was already runtime suspended then during system suspend we cannot access the device registers else it will crash. Also we cannot access any registers after dwc3_core_exit() on some platforms so move the dwc3_enable_susphy() call to the top.
5.5
Medium
CVE-2024-53068 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix slab-use-after-free in scmi_bus_notifier() The scmi_dev->name is released prematurely in __scmi_device_destroy(), which causes slab-use-after-free when accessing scmi_dev->name in scmi_bus_notifier(). So move the release of scmi_dev->name to scmi_device_release() to avoid slab-use-after-free. | BUG: KASAN: slab-use-after-free in strncmp+0xe4/0xec | Read of size 1 at addr ffffff80a482bcc0 by task swapper/0/1 | | CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.6.38-debug #1 | Hardware name: Qualcomm Technologies, Inc. SA8775P Ride (DT) | Call trace: | dump_backtrace+0x94/0x114 | show_stack+0x18/0x24 | dump_stack_lvl+0x48/0x60 | print_report+0xf4/0x5b0 | kasan_report+0xa4/0xec | __asan_report_load1_noabort+0x20/0x2c | strncmp+0xe4/0xec | scmi_bus_notifier+0x5c/0x54c | notifier_call_chain+0xb4/0x31c | blocking_notifier_call_chain+0x68/0x9c | bus_notify+0x54/0x78 | device_del+0x1bc/0x840 | device_unregister+0x20/0xb4 | __scmi_device_destroy+0xac/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Allocated by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_alloc_info+0x24/0x34 | __kasan_kmalloc+0xa0/0xb8 | __kmalloc_node_track_caller+0x6c/0x104 | kstrdup+0x48/0x84 | kstrdup_const+0x34/0x40 | __scmi_device_create.part.0+0x8c/0x408 | scmi_device_create+0x104/0x370 | scmi_chan_setup+0x2a0/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Freed by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_free_info+0x38/0x5c | __kasan_slab_free+0xe8/0x164 | __kmem_cache_free+0x11c/0x230 | kfree+0x70/0x130 | kfree_const+0x20/0x40 | __scmi_device_destroy+0x70/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20
7.8
High
CVE-2024-53066 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfs: Fix KMSAN warning in decode_getfattr_attrs() Fix the following KMSAN warning: CPU: 1 UID: 0 PID: 7651 Comm: cp Tainted: G B Tainted: [B]=BAD_PAGE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009) ===================================================== ===================================================== BUG: KMSAN: uninit-value in decode_getfattr_attrs+0x2d6d/0x2f90 decode_getfattr_attrs+0x2d6d/0x2f90 decode_getfattr_generic+0x806/0xb00 nfs4_xdr_dec_getattr+0x1de/0x240 rpcauth_unwrap_resp_decode+0xab/0x100 rpcauth_unwrap_resp+0x95/0xc0 call_decode+0x4ff/0xb50 __rpc_execute+0x57b/0x19d0 rpc_execute+0x368/0x5e0 rpc_run_task+0xcfe/0xee0 nfs4_proc_getattr+0x5b5/0x990 __nfs_revalidate_inode+0x477/0xd00 nfs_access_get_cached+0x1021/0x1cc0 nfs_do_access+0x9f/0xae0 nfs_permission+0x1e4/0x8c0 inode_permission+0x356/0x6c0 link_path_walk+0x958/0x1330 path_lookupat+0xce/0x6b0 filename_lookup+0x23e/0x770 vfs_statx+0xe7/0x970 vfs_fstatat+0x1f2/0x2c0 __se_sys_newfstatat+0x67/0x880 __x64_sys_newfstatat+0xbd/0x120 x64_sys_call+0x1826/0x3cf0 do_syscall_64+0xd0/0x1b0 entry_SYSCALL_64_after_hwframe+0x77/0x7f The KMSAN warning is triggered in decode_getfattr_attrs(), when calling decode_attr_mdsthreshold(). It appears that fattr->mdsthreshold is not initialized. Fix the issue by initializing fattr->mdsthreshold to NULL in nfs_fattr_init().
5.5
Medium
CVE-2024-53063 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: dvbdev: prevent the risk of out of memory access The dvbdev contains a static variable used to store dvb minors. The behavior of it depends if CONFIG_DVB_DYNAMIC_MINORS is set or not. When not set, dvb_register_device() won't check for boundaries, as it will rely that a previous call to dvb_register_adapter() would already be enforcing it. On a similar way, dvb_device_open() uses the assumption that the register functions already did the needed checks. This can be fragile if some device ends using different calls. This also generate warnings on static check analysers like Coverity. So, add explicit guards to prevent potential risk of OOM issues.
5.5
Medium
CVE-2024-53061 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: s5p-jpeg: prevent buffer overflows The current logic allows word to be less than 2. If this happens, there will be buffer overflows, as reported by smatch. Add extra checks to prevent it. While here, remove an unused word = 0 assignment.
7.8
High
CVE-2024-53060 2024-11-19 17h22 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: prevent NULL pointer dereference if ATIF is not supported acpi_evaluate_object() may return AE_NOT_FOUND (failure), which would result in dereferencing buffer.pointer (obj) while being NULL. Although this case may be unrealistic for the current code, it is still better to protect against possible bugs. Bail out also when status is AE_NOT_FOUND. This fixes 1 FORWARD_NULL issue reported by Coverity Report: CID 1600951: Null pointer dereferences (FORWARD_NULL) (cherry picked from commit 91c9e221fe2553edf2db71627d8453f083de87a1)
5.5
Medium
CVE-2024-53056 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix potential NULL dereference in mtk_crtc_destroy() In mtk_crtc_create(), if the call to mbox_request_channel() fails then we set the "mtk_crtc->cmdq_client.chan" pointer to NULL. In that situation, we do not call cmdq_pkt_create(). During the cleanup, we need to check if the "mtk_crtc->cmdq_client.chan" is NULL first before calling cmdq_pkt_destroy(). Calling cmdq_pkt_destroy() is unnecessary if we didn't call cmdq_pkt_create() and it will result in a NULL pointer dereference.
5.5
Medium
CVE-2024-53051 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability Sometimes during hotplug scenario or suspend/resume scenario encoder is not always initialized when intel_hdcp_get_capability add a check to avoid kernel null pointer dereference.
5.5
Medium
CVE-2024-53050 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in hdcp2_get_capability Add encoder check in intel_hdcp2_get_capability to avoid null pointer error.
5.5
Medium
CVE-2024-50304 2024-11-19 17h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_find() The per-netns IP tunnel hash table is protected by the RTNL mutex and ip_tunnel_find() is only called from the control path where the mutex is taken. Add a lockdep expression to hlist_for_each_entry_rcu() in ip_tunnel_find() in order to validate that the mutex is held and to silence the suspicious RCU usage warning [1]. [1] WARNING: suspicious RCU usage 6.12.0-rc3-custom-gd95d9a31aceb #139 Not tainted ----------------------------- net/ipv4/ip_tunnel.c:221 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by ip/362: #0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60 stack backtrace: CPU: 12 UID: 0 PID: 362 Comm: ip Not tainted 6.12.0-rc3-custom-gd95d9a31aceb #139 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack_lvl+0xba/0x110 lockdep_rcu_suspicious.cold+0x4f/0xd6 ip_tunnel_find+0x435/0x4d0 ip_tunnel_newlink+0x517/0x7a0 ipgre_newlink+0x14c/0x170 __rtnl_newlink+0x1173/0x19c0 rtnl_newlink+0x6c/0xa0 rtnetlink_rcv_msg+0x3cc/0xf60 netlink_rcv_skb+0x171/0x450 netlink_unicast+0x539/0x7f0 netlink_sendmsg+0x8c1/0xd80 ____sys_sendmsg+0x8f9/0xc20 ___sys_sendmsg+0x197/0x1e0 __sys_sendmsg+0x122/0x1f0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
5.5
Medium
CVE-2024-50302 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: HID: core: zero-initialize the report buffer Since the report buffer is used by all kinds of drivers in various ways, let's zero-initialize it during allocation to make sure that it can't be ever used to leak kernel memory via specially-crafted report.
7.8
High
CVE-2024-50301 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: security/keys: fix slab-out-of-bounds in key_task_permission KASAN reports an out of bounds read: BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36 BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline] BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410 security/keys/permission.c:54 Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362 CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0x107/0x167 lib/dump_stack.c:123 print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 __kuid_val include/linux/uidgid.h:36 [inline] uid_eq include/linux/uidgid.h:63 [inline] key_task_permission+0x394/0x410 security/keys/permission.c:54 search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793 This issue was also reported by syzbot. It can be reproduced by following these steps(more details [1]): 1. Obtain more than 32 inputs that have similar hashes, which ends with the pattern '0xxxxxxxe6'. 2. Reboot and add the keys obtained in step 1. The reproducer demonstrates how this issue happened: 1. In the search_nested_keyrings function, when it iterates through the slots in a node(below tag ascend_to_node), if the slot pointer is meta and node->back_pointer != NULL(it means a root), it will proceed to descend_to_node. However, there is an exception. If node is the root, and one of the slots points to a shortcut, it will be treated as a keyring. 2. Whether the ptr is keyring decided by keyring_ptr_is_keyring function. However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as ASSOC_ARRAY_PTR_SUBTYPE_MASK. 3. When 32 keys with the similar hashes are added to the tree, the ROOT has keys with hashes that are not similar (e.g. slot 0) and it splits NODE A without using a shortcut. When NODE A is filled with keys that all hashes are xxe6, the keys are similar, NODE A will split with a shortcut. Finally, it forms the tree as shown below, where slot 6 points to a shortcut. NODE A +------>+---+ ROOT | | 0 | xxe6 +---+ | +---+ xxxx | 0 | shortcut : : xxe6 +---+ | +---+ xxe6 : : | | | xxe6 +---+ | +---+ | 6 |---+ : : xxe6 +---+ +---+ xxe6 : : | f | xxe6 +---+ +---+ xxe6 | f | +---+ 4. As mentioned above, If a slot(slot 6) of the root points to a shortcut, it may be mistakenly transferred to a key*, leading to a read out-of-bounds read. To fix this issue, one should jump to descend_to_node if the ptr is a shortcut, regardless of whether the node is root or not. [1] https://lore.kernel.org/linux-kernel/[email protected]/ [jarkko: tweaked the commit message a bit to have an appropriate closes tag.]
7.1
High
CVE-2024-50300 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: regulator: rtq2208: Fix uninitialized use of regulator_config Fix rtq2208 driver uninitialized use to cause kernel error.
5.5
Medium
CVE-2024-50299 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: sctp: properly validate chunk size in sctp_sf_ootb() A size validation fix similar to that in Commit 50619dbf8db7 ("sctp: add size validation when walking chunks") is also required in sctp_sf_ootb() to address a crash reported by syzbot: BUG: KMSAN: uninit-value in sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712 sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712 sctp_do_sm+0x181/0x93d0 net/sctp/sm_sideeffect.c:1166 sctp_endpoint_bh_rcv+0xc38/0xf90 net/sctp/endpointola.c:407 sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88 sctp_rcv+0x3831/0x3b20 net/sctp/input.c:243 sctp4_rcv+0x42/0x50 net/sctp/protocol.c:1159 ip_protocol_deliver_rcu+0xb51/0x13d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233
5.5
Medium
CVE-2024-50298 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: enetc: allocate vf_state during PF probes In the previous implementation, vf_state is allocated memory only when VF is enabled. However, net_device_ops::ndo_set_vf_mac() may be called before VF is enabled to configure the MAC address of VF. If this is the case, enetc_pf_set_vf_mac() will access vf_state, resulting in access to a null pointer. The simplified error log is as follows. root@ls1028ardb:~# ip link set eno0 vf 1 mac 00:0c:e7:66:77:89 [ 173.543315] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 [ 173.637254] pc : enetc_pf_set_vf_mac+0x3c/0x80 Message from sy [ 173.641973] lr : do_setlink+0x4a8/0xec8 [ 173.732292] Call trace: [ 173.734740] enetc_pf_set_vf_mac+0x3c/0x80 [ 173.738847] __rtnl_newlink+0x530/0x89c [ 173.742692] rtnl_newlink+0x50/0x7c [ 173.746189] rtnetlink_rcv_msg+0x128/0x390 [ 173.750298] netlink_rcv_skb+0x60/0x130 [ 173.754145] rtnetlink_rcv+0x18/0x24 [ 173.757731] netlink_unicast+0x318/0x380 [ 173.761665] netlink_sendmsg+0x17c/0x3c8
5.5
Medium
CVE-2024-50296 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when uninstalling driver When the driver is uninstalled and the VF is disabled concurrently, a kernel crash occurs. The reason is that the two actions call function pci_disable_sriov(). The num_VFs is checked to determine whether to release the corresponding resources. During the second calling, num_VFs is not 0 and the resource release function is called. However, the corresponding resource has been released during the first invoking. Therefore, the problem occurs: [15277.839633][T50670] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 ... [15278.131557][T50670] Call trace: [15278.134686][T50670] klist_put+0x28/0x12c [15278.138682][T50670] klist_del+0x14/0x20 [15278.142592][T50670] device_del+0xbc/0x3c0 [15278.146676][T50670] pci_remove_bus_device+0x84/0x120 [15278.151714][T50670] pci_stop_and_remove_bus_device+0x6c/0x80 [15278.157447][T50670] pci_iov_remove_virtfn+0xb4/0x12c [15278.162485][T50670] sriov_disable+0x50/0x11c [15278.166829][T50670] pci_disable_sriov+0x24/0x30 [15278.171433][T50670] hnae3_unregister_ae_algo_prepare+0x60/0x90 [hnae3] [15278.178039][T50670] hclge_exit+0x28/0xd0 [hclge] [15278.182730][T50670] __se_sys_delete_module.isra.0+0x164/0x230 [15278.188550][T50670] __arm64_sys_delete_module+0x1c/0x30 [15278.193848][T50670] invoke_syscall+0x50/0x11c [15278.198278][T50670] el0_svc_common.constprop.0+0x158/0x164 [15278.203837][T50670] do_el0_svc+0x34/0xcc [15278.207834][T50670] el0_svc+0x20/0x30 For details, see the following figure. rmmod hclge disable VFs ---------------------------------------------------- hclge_exit() sriov_numvfs_store() ... device_lock() pci_disable_sriov() hns3_pci_sriov_configure() pci_disable_sriov() sriov_disable() sriov_disable() if !num_VFs : if !num_VFs : return; return; sriov_del_vfs() sriov_del_vfs() ... ... klist_put() klist_put() ... ... num_VFs = 0; num_VFs = 0; device_unlock(); In this patch, when driver is removing, we get the device_lock() to protect num_VFs, just like sriov_numvfs_store().
5.5
Medium
CVE-2024-50292 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ASoC: stm32: spdifrx: fix dma channel release in stm32_spdifrx_remove In case of error when requesting ctrl_chan DMA channel, ctrl_chan is not null. So the release of the dma channel leads to the following issue: [ 4.879000] st,stm32-spdifrx 500d0000.audio-controller: dma_request_slave_channel error -19 [ 4.888975] Unable to handle kernel NULL pointer dereference at virtual address 000000000000003d [...] [ 5.096577] Call trace: [ 5.099099] dma_release_channel+0x24/0x100 [ 5.103235] stm32_spdifrx_remove+0x24/0x60 [snd_soc_stm32_spdifrx] [ 5.109494] stm32_spdifrx_probe+0x320/0x4c4 [snd_soc_stm32_spdifrx] To avoid this issue, release channel only if the pointer is valid.
5.5
Medium
CVE-2024-50287 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: media: v4l2-tpg: prevent the risk of a division by zero As reported by Coverity, the logic at tpg_precalculate_line() blindly rescales the buffer even when scaled_witdh is equal to zero. If this ever happens, this will cause a division by zero. Instead, add a WARN_ON_ONCE() to trigger such cases and return without doing any precalculation.
5.5
Medium
CVE-2024-50286 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-use-after-free in ksmbd_smb2_session_create There is a race condition between ksmbd_smb2_session_create and ksmbd_expire_session. This patch add missing sessions_table_lock while adding/deleting session from global session table.
7.8
High
CVE-2024-50285 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: check outstanding simultaneous SMB operations If Client send simultaneous SMB operations to ksmbd, It exhausts too much memory through the "ksmbd_work_cache”. It will cause OOM issue. ksmbd has a credit mechanism but it can't handle this problem. This patch add the check if it exceeds max credits to prevent this problem by assuming that one smb request consumes at least one credit.
5.5
Medium
CVE-2024-50284 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: Fix the missing xa_store error check xa_store() can fail, it return xa_err(-EINVAL) if the entry cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation failed, so check error for xa_store() to fix it.
5.5
Medium
CVE-2024-50283 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-use-after-free in smb3_preauth_hash_rsp ksmbd_user_session_put should be called under smb3_preauth_hash_rsp(). It will avoid freeing session before calling smb3_preauth_hash_rsp().
7.8
High
CVE-2024-50282 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read() Avoid a possible buffer overflow if size is larger than 4K. (cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434)
7.8
High
CVE-2024-50280 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm cache: fix flushing uninitialized delayed_work on cache_ctr error An unexpected WARN_ON from flush_work() may occur when cache creation fails, caused by destroying the uninitialized delayed_work waker in the error path of cache_create(). For example, the warning appears on the superblock checksum error. Reproduce steps: dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/urandom of=/dev/mapper/cmeta bs=4k count=1 oflag=direct dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" Kernel logs: (snip) WARNING: CPU: 0 PID: 84 at kernel/workqueue.c:4178 __flush_work+0x5d4/0x890 Fix by pulling out the cancel_delayed_work_sync() from the constructor's error path. This patch doesn't affect the use-after-free fix for concurrent dm_resume and dm_destroy (commit 6a459d8edbdb ("dm cache: Fix UAF in destroy()")) as cache_dtr is not changed.
7.8
High
CVE-2024-50279 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm cache: fix out-of-bounds access to the dirty bitset when resizing dm-cache checks the dirty bits of the cache blocks to be dropped when shrinking the fast device, but an index bug in bitset iteration causes out-of-bounds access. Reproduce steps: 1. create a cache device of 1024 cache blocks (128 bytes dirty bitset) dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 131072 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" 2. shrink the fast device to 512 cache blocks, triggering out-of-bounds access to the dirty bitset (offset 0x80) dmsetup suspend cache dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192" dmsetup resume cdata dmsetup resume cache KASAN reports: BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0 Read of size 8 at addr ffffc900000f3080 by task dmsetup/131 (...snip...) The buggy address belongs to the virtual mapping at [ffffc900000f3000, ffffc900000f5000) created by: cache_ctr+0x176a/0x35f0 (...snip...) Memory state around the buggy address: ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 Fix by making the index post-incremented.
7.1
High
CVE-2024-50278 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm cache: fix potential out-of-bounds access on the first resume Out-of-bounds access occurs if the fast device is expanded unexpectedly before the first-time resume of the cache table. This happens because expanding the fast device requires reloading the cache table for cache_create to allocate new in-core data structures that fit the new size, and the check in cache_preresume is not performed during the first resume, leading to the issue. Reproduce steps: 1. prepare component devices: dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct 2. load a cache table of 512 cache blocks, and deliberately expand the fast device before resuming the cache, making the in-core data structures inadequate. dmsetup create cache --notable dmsetup reload cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" dmsetup reload cdata --table "0 131072 linear /dev/sdc 8192" dmsetup resume cdata dmsetup resume cache 3. suspend the cache to write out the in-core dirty bitset and hint array, leading to out-of-bounds access to the dirty bitset at offset 0x40: dmsetup suspend cache KASAN reports: BUG: KASAN: vmalloc-out-of-bounds in is_dirty_callback+0x2b/0x80 Read of size 8 at addr ffffc90000085040 by task dmsetup/90 (...snip...) The buggy address belongs to the virtual mapping at [ffffc90000085000, ffffc90000087000) created by: cache_ctr+0x176a/0x35f0 (...snip...) Memory state around the buggy address: ffffc90000084f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90000084f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 >ffffc90000085000: 00 00 00 00 00 00 00 00 f8 f8 f8 f8 f8 f8 f8 f8 ^ ffffc90000085080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90000085100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 Fix by checking the size change on the first resume.
7.1
High
CVE-2024-50277 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm: fix a crash if blk_alloc_disk fails If blk_alloc_disk fails, the variable md->disk is set to an error value. cleanup_mapped_device will see that md->disk is non-NULL and it will attempt to access it, causing a crash on this statement "md->disk->private_data = NULL;".
4.7
Medium
CVE-2024-50276 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: vertexcom: mse102x: Fix possible double free of TX skb The scope of the TX skb is wider than just mse102x_tx_frame_spi(), so in case the TX skb room needs to be expanded, we should free the the temporary skb instead of the original skb. Otherwise the original TX skb pointer would be freed again in mse102x_tx_work(), which leads to crashes: Internal error: Oops: 0000000096000004 [#2] PREEMPT SMP CPU: 0 PID: 712 Comm: kworker/0:1 Tainted: G D 6.6.23 Hardware name: chargebyte Charge SOM DC-ONE (DT) Workqueue: events mse102x_tx_work [mse102x] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : skb_release_data+0xb8/0x1d8 lr : skb_release_data+0x1ac/0x1d8 sp : ffff8000819a3cc0 x29: ffff8000819a3cc0 x28: ffff0000046daa60 x27: ffff0000057f2dc0 x26: ffff000005386c00 x25: 0000000000000002 x24: 00000000ffffffff x23: 0000000000000000 x22: 0000000000000001 x21: ffff0000057f2e50 x20: 0000000000000006 x19: 0000000000000000 x18: ffff00003fdacfcc x17: e69ad452d0c49def x16: 84a005feff870102 x15: 0000000000000000 x14: 000000000000024a x13: 0000000000000002 x12: 0000000000000000 x11: 0000000000000400 x10: 0000000000000930 x9 : ffff00003fd913e8 x8 : fffffc00001bc008 x7 : 0000000000000000 x6 : 0000000000000008 x5 : ffff00003fd91340 x4 : 0000000000000000 x3 : 0000000000000009 x2 : 00000000fffffffe x1 : 0000000000000000 x0 : 0000000000000000 Call trace: skb_release_data+0xb8/0x1d8 kfree_skb_reason+0x48/0xb0 mse102x_tx_work+0x164/0x35c [mse102x] process_one_work+0x138/0x260 worker_thread+0x32c/0x438 kthread+0x118/0x11c ret_from_fork+0x10/0x20 Code: aa1303e0 97fffab6 72001c1f 54000141 (f9400660)
7.8
High
CVE-2024-50275 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: arm64/sve: Discard stale CPU state when handling SVE traps The logic for handling SVE traps manipulates saved FPSIMD/SVE state incorrectly, and a race with preemption can result in a task having TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state is stale (e.g. with SVE traps enabled). This has been observed to result in warnings from do_sve_acc() where SVE traps are not expected while TIF_SVE is set: | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ Warnings of this form have been reported intermittently, e.g. https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/ https://lore.kernel.org/linux-arm-kernel/[email protected]/ The race can occur when the SVE trap handler is preempted before and after manipulating the saved FPSIMD/SVE state, starting and ending on the same CPU, e.g. | void do_sve_acc(unsigned long esr, struct pt_regs *regs) | { | // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled | // task->fpsimd_cpu is 0. | // per_cpu_ptr(&fpsimd_last_state, 0) is task. | | ... | | // Preempted; migrated from CPU 0 to CPU 1. | // TIF_FOREIGN_FPSTATE is set. | | get_cpu_fpsimd_context(); | | if (test_and_set_thread_flag(TIF_SVE)) | WARN_ON(1); /* SVE access shouldn't have trapped */ | | sve_init_regs() { | if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { | ... | } else { | fpsimd_to_sve(current); | current->thread.fp_type = FP_STATE_SVE; | } | } | | put_cpu_fpsimd_context(); | | // Preempted; migrated from CPU 1 to CPU 0. | // task->fpsimd_cpu is still 0 | // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then: | // - Stale HW state is reused (with SVE traps enabled) | // - TIF_FOREIGN_FPSTATE is cleared | // - A return to userspace skips HW state restore | } Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set by calling fpsimd_flush_task_state() to detach from the saved CPU state. This ensures that a subsequent context switch will not reuse the stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the new state to be reloaded from memory prior to a return to userspace.
7
High
CVE-2024-50273 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: reinitialize delayed ref list after deleting it from the list At insert_delayed_ref() if we need to update the action of an existing ref to BTRFS_DROP_DELAYED_REF, we delete the ref from its ref head's ref_add_list using list_del(), which leaves the ref's add_list member not reinitialized, as list_del() sets the next and prev members of the list to LIST_POISON1 and LIST_POISON2, respectively. If later we end up calling drop_delayed_ref() against the ref, which can happen during merging or when destroying delayed refs due to a transaction abort, we can trigger a crash since at drop_delayed_ref() we call list_empty() against the ref's add_list, which returns false since the list was not reinitialized after the list_del() and as a consequence we call list_del() again at drop_delayed_ref(). This results in an invalid list access since the next and prev members are set to poison pointers, resulting in a splat if CONFIG_LIST_HARDENED and CONFIG_DEBUG_LIST are set or invalid poison pointer dereferences otherwise. So fix this by deleting from the list with list_del_init() instead.
5.5
Medium
CVE-2024-50272 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: filemap: Fix bounds checking in filemap_read() If the caller supplies an iocb->ki_pos value that is close to the filesystem upper limit, and an iterator with a count that causes us to overflow that limit, then filemap_read() enters an infinite loop. This behaviour was discovered when testing xfstests generic/525 with the "localio" optimisation for loopback NFS mounts.
5.5
Medium
CVE-2024-50271 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: signal: restore the override_rlimit logic Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of signals. However now it's enforced unconditionally, even if override_rlimit is set. This behavior change caused production issues. For example, if the limit is reached and a process receives a SIGSEGV signal, sigqueue_alloc fails to allocate the necessary resources for the signal delivery, preventing the signal from being delivered with siginfo. This prevents the process from correctly identifying the fault address and handling the error. From the user-space perspective, applications are unaware that the limit has been reached and that the siginfo is effectively 'corrupted'. This can lead to unpredictable behavior and crashes, as we observed with java applications. Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip the comparison to max there if override_rlimit is set. This effectively restores the old behavior.
5.5
Medium
CVE-2024-50269 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: musb: sunxi: Fix accessing an released usb phy Commit 6ed05c68cbca ("usb: musb: sunxi: Explicitly release USB PHY on exit") will cause that usb phy @glue->xceiv is accessed after released. 1) register platform driver @sunxi_musb_driver // get the usb phy @glue->xceiv sunxi_musb_probe() -> devm_usb_get_phy(). 2) register and unregister platform driver @musb_driver musb_probe() -> sunxi_musb_init() use the phy here //the phy is released here musb_remove() -> sunxi_musb_exit() -> devm_usb_put_phy() 3) register @musb_driver again musb_probe() -> sunxi_musb_init() use the phy here but the phy has been released at 2). ... Fixed by reverting the commit, namely, removing devm_usb_put_phy() from sunxi_musb_exit().
7.8
High
CVE-2024-50268 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential out of bounds in ucsi_ccg_update_set_new_cam_cmd() The "*cmd" variable can be controlled by the user via debugfs. That means "new_cam" can be as high as 255 while the size of the uc->updated[] array is UCSI_MAX_ALTMODES (30). The call tree is: ucsi_cmd() // val comes from simple_attr_write_xsigned() -> ucsi_send_command() -> ucsi_send_command_common() -> ucsi_run_command() // calls ucsi->ops->sync_control() -> ucsi_ccg_sync_control()
7.1
High
CVE-2024-50267 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: serial: io_edgeport: fix use after free in debug printk The "dev_dbg(&urb->dev->dev, ..." which happens after usb_free_urb(urb) is a use after free of the "urb" pointer. Store the "dev" pointer at the start of the function to avoid this issue.
7.8
High
CVE-2024-50265 2024-11-19 01h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove() Syzkaller is able to provoke null-ptr-dereference in ocfs2_xa_remove(): [ 57.319872] (a.out,1161,7):ocfs2_xa_remove:2028 ERROR: status = -12 [ 57.320420] (a.out,1161,7):ocfs2_xa_cleanup_value_truncate:1999 ERROR: Partial truncate while removing xattr overlay.upper. Leaking 1 clusters and removing the entry [ 57.321727] BUG: kernel NULL pointer dereference, address: 0000000000000004 [...] [ 57.325727] RIP: 0010:ocfs2_xa_block_wipe_namevalue+0x2a/0xc0 [...] [ 57.331328] Call Trace: [ 57.331477] [...] [ 57.333511] ? do_user_addr_fault+0x3e5/0x740 [ 57.333778] ? exc_page_fault+0x70/0x170 [ 57.334016] ? asm_exc_page_fault+0x2b/0x30 [ 57.334263] ? __pfx_ocfs2_xa_block_wipe_namevalue+0x10/0x10 [ 57.334596] ? ocfs2_xa_block_wipe_namevalue+0x2a/0xc0 [ 57.334913] ocfs2_xa_remove_entry+0x23/0xc0 [ 57.335164] ocfs2_xa_set+0x704/0xcf0 [ 57.335381] ? _raw_spin_unlock+0x1a/0x40 [ 57.335620] ? ocfs2_inode_cache_unlock+0x16/0x20 [ 57.335915] ? trace_preempt_on+0x1e/0x70 [ 57.336153] ? start_this_handle+0x16c/0x500 [ 57.336410] ? preempt_count_sub+0x50/0x80 [ 57.336656] ? _raw_read_unlock+0x20/0x40 [ 57.336906] ? start_this_handle+0x16c/0x500 [ 57.337162] ocfs2_xattr_block_set+0xa6/0x1e0 [ 57.337424] __ocfs2_xattr_set_handle+0x1fd/0x5d0 [ 57.337706] ? ocfs2_start_trans+0x13d/0x290 [ 57.337971] ocfs2_xattr_set+0xb13/0xfb0 [ 57.338207] ? dput+0x46/0x1c0 [ 57.338393] ocfs2_xattr_trusted_set+0x28/0x30 [ 57.338665] ? ocfs2_xattr_trusted_set+0x28/0x30 [ 57.338948] __vfs_removexattr+0x92/0xc0 [ 57.339182] __vfs_removexattr_locked+0xd5/0x190 [ 57.339456] ? preempt_count_sub+0x50/0x80 [ 57.339705] vfs_removexattr+0x5f/0x100 [...] Reproducer uses faultinject facility to fail ocfs2_xa_remove() -> ocfs2_xa_value_truncate() with -ENOMEM. In this case the comment mentions that we can return 0 if ocfs2_xa_cleanup_value_truncate() is going to wipe the entry anyway. But the following 'rc' check is wrong and execution flow do 'ocfs2_xa_remove_entry(loc);' twice: * 1st: in ocfs2_xa_cleanup_value_truncate(); * 2nd: returning back to ocfs2_xa_remove() instead of going to 'out'. Fix this by skipping the 2nd removal of the same entry and making syzkaller repro happy.
5.5
Medium
CVE-2024-50264 2024-11-19 01h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: Initialization of the dangling pointer occurring in vsk->trans During loopback communication, a dangling pointer can be created in vsk->trans, potentially leading to a Use-After-Free condition. This issue is resolved by initializing vsk->trans to NULL.
7.8
High
CVE-2024-50258 2024-11-09 10h15 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: fix crash when config small gso_max_size/gso_ipv4_max_size Config a small gso_max_size/gso_ipv4_max_size will lead to an underflow in sk_dst_gso_max_size(), which may trigger a BUG_ON crash, because sk->sk_gso_max_size would be much bigger than device limits. Call Trace: tcp_write_xmit tso_segs = tcp_init_tso_segs(skb, mss_now); tcp_set_skb_tso_segs tcp_skb_pcount_set // skb->len = 524288, mss_now = 8 // u16 tso_segs = 524288/8 = 65535 -> 0 tso_segs = DIV_ROUND_UP(skb->len, mss_now) BUG_ON(!tso_segs) Add check for the minimum value of gso_max_size and gso_ipv4_max_size.
5.5
Medium
CVE-2024-50225 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix error propagation of split bios The purpose of btrfs_bbio_propagate_error() shall be propagating an error of split bio to its original btrfs_bio, and tell the error to the upper layer. However, it's not working well on some cases. * Case 1. Immediate (or quick) end_bio with an error When btrfs sends btrfs_bio to mirrored devices, btrfs calls btrfs_bio_end_io() when all the mirroring bios are completed. If that btrfs_bio was split, it is from btrfs_clone_bioset and its end_io function is btrfs_orig_write_end_io. For this case, btrfs_bbio_propagate_error() accesses the orig_bbio's bio context to increase the error count. That works well in most cases. However, if the end_io is called enough fast, orig_bbio's (remaining part after split) bio context may not be properly set at that time. Since the bio context is set when the orig_bbio (the last btrfs_bio) is sent to devices, that might be too late for earlier split btrfs_bio's completion. That will result in NULL pointer dereference. That bug is easily reproducible by running btrfs/146 on zoned devices [1] and it shows the following trace. [1] You need raid-stripe-tree feature as it create "-d raid0 -m raid1" FS. BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 13 Comm: kworker/u32:1 Not tainted 6.11.0-rc7-BTRFS-ZNS+ #474 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Workqueue: writeback wb_workfn (flush-btrfs-5) RIP: 0010:btrfs_bio_end_io+0xae/0xc0 [btrfs] BTRFS error (device dm-0): bdev /dev/mapper/error-test errs: wr 2, rd 0, flush 0, corrupt 0, gen 0 RSP: 0018:ffffc9000006f248 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888005a7f080 RCX: ffffc9000006f1dc RDX: 0000000000000000 RSI: 000000000000000a RDI: ffff888005a7f080 RBP: ffff888011dfc540 R08: 0000000000000000 R09: 0000000000000001 R10: ffffffff82e508e0 R11: 0000000000000005 R12: ffff88800ddfbe58 R13: ffff888005a7f080 R14: ffff888005a7f158 R15: ffff888005a7f158 FS: 0000000000000000(0000) GS:ffff88803ea80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000020 CR3: 0000000002e22006 CR4: 0000000000370ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __die_body.cold+0x19/0x26 ? page_fault_oops+0x13e/0x2b0 ? _printk+0x58/0x73 ? do_user_addr_fault+0x5f/0x750 ? exc_page_fault+0x76/0x240 ? asm_exc_page_fault+0x22/0x30 ? btrfs_bio_end_io+0xae/0xc0 [btrfs] ? btrfs_log_dev_io_error+0x7f/0x90 [btrfs] btrfs_orig_write_end_io+0x51/0x90 [btrfs] dm_submit_bio+0x5c2/0xa50 [dm_mod] ? find_held_lock+0x2b/0x80 ? blk_try_enter_queue+0x90/0x1e0 __submit_bio+0xe0/0x130 ? ktime_get+0x10a/0x160 ? lockdep_hardirqs_on+0x74/0x100 submit_bio_noacct_nocheck+0x199/0x410 btrfs_submit_bio+0x7d/0x150 [btrfs] btrfs_submit_chunk+0x1a1/0x6d0 [btrfs] ? lockdep_hardirqs_on+0x74/0x100 ? __folio_start_writeback+0x10/0x2c0 btrfs_submit_bbio+0x1c/0x40 [btrfs] submit_one_bio+0x44/0x60 [btrfs] submit_extent_folio+0x13f/0x330 [btrfs] ? btrfs_set_range_writeback+0xa3/0xd0 [btrfs] extent_writepage_io+0x18b/0x360 [btrfs] extent_write_locked_range+0x17c/0x340 [btrfs] ? __pfx_end_bbio_data_write+0x10/0x10 [btrfs] run_delalloc_cow+0x71/0xd0 [btrfs] btrfs_run_delalloc_range+0x176/0x500 [btrfs] ? find_lock_delalloc_range+0x119/0x260 [btrfs] writepage_delalloc+0x2ab/0x480 [btrfs] extent_write_cache_pages+0x236/0x7d0 [btrfs] btrfs_writepages+0x72/0x130 [btrfs] do_writepages+0xd4/0x240 ? find_held_lock+0x2b/0x80 ? wbc_attach_and_unlock_inode+0x12c/0x290 ? wbc_attach_and_unlock_inode+0x12c/0x29 ---truncated---
5.5
Medium
CVE-2024-50221 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Vangogh: Fix kernel memory out of bounds write KASAN reports that the GPU metrics table allocated in vangogh_tables_init() is not large enough for the memset done in smu_cmn_init_soft_gpu_metrics(). Condensed report follows: [ 33.861314] BUG: KASAN: slab-out-of-bounds in smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu] [ 33.861799] Write of size 168 at addr ffff888129f59500 by task mangoapp/1067 ... [ 33.861808] CPU: 6 UID: 1000 PID: 1067 Comm: mangoapp Tainted: G W 6.12.0-rc4 #356 1a56f59a8b5182eeaf67eb7cb8b13594dd23b544 [ 33.861816] Tainted: [W]=WARN [ 33.861818] Hardware name: Valve Galileo/Galileo, BIOS F7G0107 12/01/2023 [ 33.861822] Call Trace: [ 33.861826] [ 33.861829] dump_stack_lvl+0x66/0x90 [ 33.861838] print_report+0xce/0x620 [ 33.861853] kasan_report+0xda/0x110 [ 33.862794] kasan_check_range+0xfd/0x1a0 [ 33.862799] __asan_memset+0x23/0x40 [ 33.862803] smu_cmn_init_soft_gpu_metrics+0x73/0x200 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.863306] vangogh_get_gpu_metrics_v2_4+0x123/0xad0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.864257] vangogh_common_get_gpu_metrics+0xb0c/0xbc0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.865682] amdgpu_dpm_get_gpu_metrics+0xcc/0x110 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.866160] amdgpu_get_gpu_metrics+0x154/0x2d0 [amdgpu 13b1bc364ec578808f676eba412c20eaab792779] [ 33.867135] dev_attr_show+0x43/0xc0 [ 33.867147] sysfs_kf_seq_show+0x1f1/0x3b0 [ 33.867155] seq_read_iter+0x3f8/0x1140 [ 33.867173] vfs_read+0x76c/0xc50 [ 33.867198] ksys_read+0xfb/0x1d0 [ 33.867214] do_syscall_64+0x90/0x160 ... [ 33.867353] Allocated by task 378 on cpu 7 at 22.794876s: [ 33.867358] kasan_save_stack+0x33/0x50 [ 33.867364] kasan_save_track+0x17/0x60 [ 33.867367] __kasan_kmalloc+0x87/0x90 [ 33.867371] vangogh_init_smc_tables+0x3f9/0x840 [amdgpu] [ 33.867835] smu_sw_init+0xa32/0x1850 [amdgpu] [ 33.868299] amdgpu_device_init+0x467b/0x8d90 [amdgpu] [ 33.868733] amdgpu_driver_load_kms+0x19/0xf0 [amdgpu] [ 33.869167] amdgpu_pci_probe+0x2d6/0xcd0 [amdgpu] [ 33.869608] local_pci_probe+0xda/0x180 [ 33.869614] pci_device_probe+0x43f/0x6b0 Empirically we can confirm that the former allocates 152 bytes for the table, while the latter memsets the 168 large block. Root cause appears that when GPU metrics tables for v2_4 parts were added it was not considered to enlarge the table to fit. The fix in this patch is rather "brute force" and perhaps later should be done in a smarter way, by extracting and consolidating the part version to size logic to a common helper, instead of brute forcing the largest possible allocation. Nevertheless, for now this works and fixes the out of bounds write. v2: * Drop impossible v3_0 case. (Mario) (cherry picked from commit 0880f58f9609f0200483a49429af0f050d281703)
7.8
High
CVE-2024-50217 2024-11-09 10h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids() Mounting btrfs from two images (which have the same one fsid and two different dev_uuids) in certain executing order may trigger an UAF for variable 'device->bdev_file' in __btrfs_free_extra_devids(). And following are the details: 1. Attach image_1 to loop0, attach image_2 to loop1, and scan btrfs devices by ioctl(BTRFS_IOC_SCAN_DEV): / btrfs_device_1 → loop0 fs_device \ btrfs_device_2 → loop1 2. mount /dev/loop0 /mnt btrfs_open_devices btrfs_device_1->bdev_file = btrfs_get_bdev_and_sb(loop0) btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree fail: btrfs_close_devices // -ENOMEM btrfs_close_bdev(btrfs_device_1) fput(btrfs_device_1->bdev_file) // btrfs_device_1->bdev_file is freed btrfs_close_bdev(btrfs_device_2) fput(btrfs_device_2->bdev_file) 3. mount /dev/loop1 /mnt btrfs_open_devices btrfs_get_bdev_and_sb(&bdev_file) // EIO, btrfs_device_1->bdev_file is not assigned, // which points to a freed memory area btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree btrfs_free_extra_devids if (btrfs_device_1->bdev_file) fput(btrfs_device_1->bdev_file) // UAF ! Fix it by setting 'device->bdev_file' as 'NULL' after closing the btrfs_device in btrfs_close_one_device().
7.8
High
CVE-2024-50178 2024-11-08 05h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: loongson3: Use raw_smp_processor_id() in do_service_request() Use raw_smp_processor_id() instead of plain smp_processor_id() in do_service_request(), otherwise we may get some errors with the driver enabled: BUG: using smp_processor_id() in preemptible [00000000] code: (udev-worker)/208 caller is loongson3_cpufreq_probe+0x5c/0x250 [loongson3_cpufreq]
5.5
Medium
CVE-2024-50177 2024-11-08 05h23 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a UBSAN warning in DML2.1 When programming phantom pipe, since cursor_width is explicity set to 0, this causes calculation logic to trigger overflow for an unsigned int triggering the kernel's UBSAN check as below: [ 40.962845] UBSAN: shift-out-of-bounds in /tmp/amd.EfpumTkO/amd/amdgpu/../display/dc/dml2/dml21/src/dml2_core/dml2_core_dcn4_calcs.c:3312:34 [ 40.962849] shift exponent 4294967170 is too large for 32-bit type 'unsigned int' [ 40.962852] CPU: 1 PID: 1670 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 40.962854] Hardware name: Gigabyte Technology Co., Ltd. X670E AORUS PRO X/X670E AORUS PRO X, BIOS F21 01/10/2024 [ 40.962856] Call Trace: [ 40.962857] [ 40.962860] dump_stack_lvl+0x48/0x70 [ 40.962870] dump_stack+0x10/0x20 [ 40.962872] __ubsan_handle_shift_out_of_bounds+0x1ac/0x360 [ 40.962878] calculate_cursor_req_attributes.cold+0x1b/0x28 [amdgpu] [ 40.963099] dml_core_mode_support+0x6b91/0x16bc0 [amdgpu] [ 40.963327] ? srso_alias_return_thunk+0x5/0x7f [ 40.963331] ? CalculateWatermarksMALLUseAndDRAMSpeedChangeSupport+0x18b8/0x2790 [amdgpu] [ 40.963534] ? srso_alias_return_thunk+0x5/0x7f [ 40.963536] ? dml_core_mode_support+0xb3db/0x16bc0 [amdgpu] [ 40.963730] dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.963906] ? srso_alias_return_thunk+0x5/0x7f [ 40.963909] ? dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.964078] core_dcn4_mode_support+0x72/0xbf0 [amdgpu] [ 40.964247] dml2_top_optimization_perform_optimization_phase+0x1d3/0x2a0 [amdgpu] [ 40.964420] dml2_build_mode_programming+0x23d/0x750 [amdgpu] [ 40.964587] dml21_validate+0x274/0x770 [amdgpu] [ 40.964761] ? srso_alias_return_thunk+0x5/0x7f [ 40.964763] ? resource_append_dpp_pipes_for_plane_composition+0x27c/0x3b0 [amdgpu] [ 40.964942] dml2_validate+0x504/0x750 [amdgpu] [ 40.965117] ? dml21_copy+0x95/0xb0 [amdgpu] [ 40.965291] ? srso_alias_return_thunk+0x5/0x7f [ 40.965295] dcn401_validate_bandwidth+0x4e/0x70 [amdgpu] [ 40.965491] update_planes_and_stream_state+0x38d/0x5c0 [amdgpu] [ 40.965672] update_planes_and_stream_v3+0x52/0x1e0 [amdgpu] [ 40.965845] ? srso_alias_return_thunk+0x5/0x7f [ 40.965849] dc_update_planes_and_stream+0x71/0xb0 [amdgpu] Fix this by adding a guard for checking cursor width before triggering the size calculation.
5.5
Medium
CVE-2024-50157 2024-11-07 09h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Avoid CPU lockups due fifo occupancy check loop Driver waits indefinitely for the fifo occupancy to go below a threshold as soon as the pacing interrupt is received. This can cause soft lockup on one of the processors, if the rate of DB is very high. Add a loop count for FPGA and exit the __wait_for_fifo_occupancy_below_th if the loop is taking more time. Pacing will be continuing until the occupancy is below the threshold. This is ensured by the checks in bnxt_re_pacing_timer_exp and further scheduling the work for pacing based on the fifo occupancy.
5.5
Medium
CVE-2024-50146 2024-11-07 09h31 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Don't call cleanup on profile rollback failure When profile rollback fails in mlx5e_netdev_change_profile, the netdev profile var is left set to NULL. Avoid a crash when unloading the driver by not calling profile->cleanup in such a case. This was encountered while testing, with the original trigger that the wq rescuer thread creation got interrupted (presumably due to Ctrl+C-ing modprobe), which gets converted to ENOMEM (-12) by mlx5e_priv_init, the profile rollback also fails for the same reason (signal still active) so the profile is left as NULL, leading to a crash later in _mlx5e_remove. [ 732.473932] mlx5_core 0000:08:00.1: E-Switch: Unload vfs: mode(OFFLOADS), nvfs(2), necvfs(0), active vports(2) [ 734.525513] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR [ 734.557372] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12 [ 734.559187] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: new profile init failed, -12 [ 734.560153] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR [ 734.589378] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12 [ 734.591136] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12 [ 745.537492] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 745.538222] #PF: supervisor read access in kernel mode [ 745.551290] Call Trace: [ 745.551590] [ 745.551866] ? __die+0x20/0x60 [ 745.552218] ? page_fault_oops+0x150/0x400 [ 745.555307] ? exc_page_fault+0x79/0x240 [ 745.555729] ? asm_exc_page_fault+0x22/0x30 [ 745.556166] ? mlx5e_remove+0x6b/0xb0 [mlx5_core] [ 745.556698] auxiliary_bus_remove+0x18/0x30 [ 745.557134] device_release_driver_internal+0x1df/0x240 [ 745.557654] bus_remove_device+0xd7/0x140 [ 745.558075] device_del+0x15b/0x3c0 [ 745.558456] mlx5_rescan_drivers_locked.part.0+0xb1/0x2f0 [mlx5_core] [ 745.559112] mlx5_unregister_device+0x34/0x50 [mlx5_core] [ 745.559686] mlx5_uninit_one+0x46/0xf0 [mlx5_core] [ 745.560203] remove_one+0x4e/0xd0 [mlx5_core] [ 745.560694] pci_device_remove+0x39/0xa0 [ 745.561112] device_release_driver_internal+0x1df/0x240 [ 745.561631] driver_detach+0x47/0x90 [ 745.562022] bus_remove_driver+0x84/0x100 [ 745.562444] pci_unregister_driver+0x3b/0x90 [ 745.562890] mlx5_cleanup+0xc/0x1b [mlx5_core] [ 745.563415] __x64_sys_delete_module+0x14d/0x2f0 [ 745.563886] ? kmem_cache_free+0x1b0/0x460 [ 745.564313] ? lockdep_hardirqs_on_prepare+0xe2/0x190 [ 745.564825] do_syscall_64+0x6d/0x140 [ 745.565223] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [ 745.565725] RIP: 0033:0x7f1579b1288b
5.5
Medium
CVE-2024-50138 2024-11-05 17h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Use raw_spinlock_t in ringbuf The function __bpf_ringbuf_reserve is invoked from a tracepoint, which disables preemption. Using spinlock_t in this context can lead to a "sleep in atomic" warning in the RT variant. This issue is illustrated in the example below: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 556208, name: test_progs preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 INFO: lockdep is turned off. Preemption disabled at: [] migrate_enable+0xc0/0x39c CPU: 7 PID: 556208 Comm: test_progs Tainted: G Hardware name: Qualcomm SA8775P Ride (DT) Call trace: dump_backtrace+0xac/0x130 show_stack+0x1c/0x30 dump_stack_lvl+0xac/0xe8 dump_stack+0x18/0x30 __might_resched+0x3bc/0x4fc rt_spin_lock+0x8c/0x1a4 __bpf_ringbuf_reserve+0xc4/0x254 bpf_ringbuf_reserve_dynptr+0x5c/0xdc bpf_prog_ac3d15160d62622a_test_read_write+0x104/0x238 trace_call_bpf+0x238/0x774 perf_call_bpf_enter.isra.0+0x104/0x194 perf_syscall_enter+0x2f8/0x510 trace_sys_enter+0x39c/0x564 syscall_trace_enter+0x220/0x3c0 do_el0_svc+0x138/0x1dc el0_svc+0x54/0x130 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Switch the spinlock to raw_spinlock_t to avoid this error.
5.5
Medium
CVE-2024-50137 2024-11-05 17h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: reset: starfive: jh71x0: Fix accessing the empty member on JH7110 SoC data->asserted will be NULL on JH7110 SoC since commit 82327b127d41 ("reset: starfive: Add StarFive JH7110 reset driver") was added. Add the judgment condition to avoid errors when calling reset_control_status on JH7110 SoC.
5.5
Medium
CVE-2024-50106 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: fix race between laundromat and free_stateid There is a race between laundromat handling of revoked delegations and a client sending free_stateid operation. Laundromat thread finds that delegation has expired and needs to be revoked so it marks the delegation stid revoked and it puts it on a reaper list but then it unlock the state lock and the actual delegation revocation happens without the lock. Once the stid is marked revoked a racing free_stateid processing thread does the following (1) it calls list_del_init() which removes it from the reaper list and (2) frees the delegation stid structure. The laundromat thread ends up not calling the revoke_delegation() function for this particular delegation but that means it will no release the lock lease that exists on the file. Now, a new open for this file comes in and ends up finding that lease list isn't empty and calls nfsd_breaker_owns_lease() which ends up trying to derefence a freed delegation stateid. Leading to the followint use-after-free KASAN warning: kernel: ================================================================== kernel: BUG: KASAN: slab-use-after-free in nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: Read of size 8 at addr ffff0000e73cd0c8 by task nfsd/6205 kernel: kernel: CPU: 2 UID: 0 PID: 6205 Comm: nfsd Kdump: loaded Not tainted 6.11.0-rc7+ #9 kernel: Hardware name: Apple Inc. Apple Virtualization Generic Platform, BIOS 2069.0.0.0.0 08/03/2024 kernel: Call trace: kernel: dump_backtrace+0x98/0x120 kernel: show_stack+0x1c/0x30 kernel: dump_stack_lvl+0x80/0xe8 kernel: print_address_description.constprop.0+0x84/0x390 kernel: print_report+0xa4/0x268 kernel: kasan_report+0xb4/0xf8 kernel: __asan_report_load8_noabort+0x1c/0x28 kernel: nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: nfsd_file_do_acquire+0xb3c/0x11d0 [nfsd] kernel: nfsd_file_acquire_opened+0x84/0x110 [nfsd] kernel: nfs4_get_vfs_file+0x634/0x958 [nfsd] kernel: nfsd4_process_open2+0xa40/0x1a40 [nfsd] kernel: nfsd4_open+0xa08/0xe80 [nfsd] kernel: nfsd4_proc_compound+0xb8c/0x2130 [nfsd] kernel: nfsd_dispatch+0x22c/0x718 [nfsd] kernel: svc_process_common+0x8e8/0x1960 [sunrpc] kernel: svc_process+0x3d4/0x7e0 [sunrpc] kernel: svc_handle_xprt+0x828/0xe10 [sunrpc] kernel: svc_recv+0x2cc/0x6a8 [sunrpc] kernel: nfsd+0x270/0x400 [nfsd] kernel: kthread+0x288/0x310 kernel: ret_from_fork+0x10/0x20 This patch proposes a fixed that's based on adding 2 new additional stid's sc_status values that help coordinate between the laundromat and other operations (nfsd4_free_stateid() and nfsd4_delegreturn()). First to make sure, that once the stid is marked revoked, it is not removed by the nfsd4_free_stateid(), the laundromat take a reference on the stateid. Then, coordinating whether the stid has been put on the cl_revoked list or we are processing FREE_STATEID and need to make sure to remove it from the list, each check that state and act accordingly. If laundromat has added to the cl_revoke list before the arrival of FREE_STATEID, then nfsd4_free_stateid() knows to remove it from the list. If nfsd4_free_stateid() finds that operations arrived before laundromat has placed it on cl_revoke list, it marks the state freed and then laundromat will no longer add it to the list. Also, for nfsd4_delegreturn() when looking for the specified stid, we need to access stid that are marked removed or freeable, it means the laundromat has started processing it but hasn't finished and this delegreturn needs to return nfserr_deleg_revoked and not nfserr_bad_stateid. The latter will not trigger a FREE_STATEID and the lack of it will leave this stid on the cl_revoked list indefinitely.
7.8
High
CVE-2024-50102 2024-11-05 17h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86: fix user address masking non-canonical speculation issue It turns out that AMD has a "Meltdown Lite(tm)" issue with non-canonical accesses in kernel space. And so using just the high bit to decide whether an access is in user space or kernel space ends up with the good old "leak speculative data" if you have the right gadget using the result: CVE-2020-12965 “Transient Execution of Non-Canonical Accesses“ Now, the kernel surrounds the access with a STAC/CLAC pair, and those instructions end up serializing execution on older Zen architectures, which closes the speculation window. But that was true only up until Zen 5, which renames the AC bit [1]. That improves performance of STAC/CLAC a lot, but also means that the speculation window is now open. Note that this affects not just the new address masking, but also the regular valid_user_address() check used by access_ok(), and the asm version of the sign bit check in the get_user() helpers. It does not affect put_user() or clear_user() variants, since there's no speculative result to be used in a gadget for those operations.
5.5
Medium
CVE-2024-50091 2024-11-05 17h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm vdo: don't refer to dedupe_context after releasing it Clear the dedupe_context pointer in a data_vio whenever ownership of the context is lost, so that vdo can't examine it accidentally.
5.5
Medium
CVE-2024-50090 2024-11-05 17h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix overflow in oa batch buffer By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch buffer, this is not a problem if batch buffer is only used once but oa reuses the batch buffer for the same metric and at each call it appends a MI_BATCH_BUFFER_END, printing the warning below and then overflowing. [ 381.072016] ------------[ cut here ]------------ [ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed! platform: LUNARLAKE subplatform: 1 graphics: Xe2_LPG / Xe2_HPG 20.04 step B0 media: Xe2_LPM / Xe2_HPM 20.00 step B0 tile: 0 VRAM 0 B GT: 0 type 1 So here checking if batch buffer already have MI_BATCH_BUFFER_END if not append it. v2: - simply fix, suggestion from Ashutosh (cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a)
5.5
Medium
CVE-2023-52920 2024-11-05 10h09 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) -------------------------------------- ------------- --------- --------- ------------- ---------- ---------- ------------- test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/[email protected]/
5.5
Medium
CVE-2024-50067 2024-10-28 00h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: uprobe: avoid out-of-bounds memory access of fetching args Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include \#include \#include // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access.
7.8
High
CVE-2024-50028 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal: core: Reference count the zone in thermal_zone_get_by_id() There are places in the thermal netlink code where nothing prevents the thermal zone object from going away while being accessed after it has been returned by thermal_zone_get_by_id(). To address this, make thermal_zone_get_by_id() get a reference on the thermal zone device object to be returned with the help of get_device(), under thermal_list_lock, and adjust all of its callers to this change with the help of the cleanup.h infrastructure.
5.5
Medium
CVE-2024-50027 2024-10-21 19h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: thermal: core: Free tzp copy along with the thermal zone The object pointed to by tz->tzp may still be accessed after being freed in thermal_zone_device_unregister(), so move the freeing of it to the point after the removal completion has been completed at which it cannot be accessed any more.
5.5
Medium
CVE-2024-50017 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: x86/mm/ident_map: Use gbpages only where full GB page should be mapped. When ident_pud_init() uses only GB pages to create identity maps, large ranges of addresses not actually requested can be included in the resulting table; a 4K request will map a full GB. This can include a lot of extra address space past that requested, including areas marked reserved by the BIOS. That allows processor speculation into reserved regions, that on UV systems can cause system halts. Only use GB pages when map creation requests include the full GB page of space. Fall back to using smaller 2M pages when only portions of a GB page are included in the request. No attempt is made to coalesce mapping requests. If a request requires a map entry at the 2M (pmd) level, subsequent mapping requests within the same 1G region will also be at the pmd level, even if adjacent or overlapping such requests could have been combined to map a full GB page. Existing usage starts with larger regions and then adds smaller regions, so this should not have any great consequence.
5.5
Medium
CVE-2024-50014 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: fix access to uninitialised lock in fc replay path The following kernel trace can be triggered with fstest generic/629 when executed against a filesystem with fast-commit feature enabled: INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. CPU: 0 PID: 866 Comm: mount Not tainted 6.10.0+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack_lvl+0x66/0x90 register_lock_class+0x759/0x7d0 __lock_acquire+0x85/0x2630 ? __find_get_block+0xb4/0x380 lock_acquire+0xd1/0x2d0 ? __ext4_journal_get_write_access+0xd5/0x160 _raw_spin_lock+0x33/0x40 ? __ext4_journal_get_write_access+0xd5/0x160 __ext4_journal_get_write_access+0xd5/0x160 ext4_reserve_inode_write+0x61/0xb0 __ext4_mark_inode_dirty+0x79/0x270 ? ext4_ext_replay_set_iblocks+0x2f8/0x450 ext4_ext_replay_set_iblocks+0x330/0x450 ext4_fc_replay+0x14c8/0x1540 ? jread+0x88/0x2e0 ? rcu_is_watching+0x11/0x40 do_one_pass+0x447/0xd00 jbd2_journal_recover+0x139/0x1b0 jbd2_journal_load+0x96/0x390 ext4_load_and_init_journal+0x253/0xd40 ext4_fill_super+0x2cc6/0x3180 ... In the replay path there's an attempt to lock sbi->s_bdev_wb_lock in function ext4_check_bdev_write_error(). Unfortunately, at this point this spinlock has not been initialized yet. Moving it's initialization to an earlier point in __ext4_fill_super() fixes this splat.
5.5
Medium
CVE-2024-50010 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: exec: don't WARN for racy path_noexec check Both i_mode and noexec checks wrapped in WARN_ON stem from an artifact of the previous implementation. They used to legitimately check for the condition, but that got moved up in two commits: 633fb6ac3980 ("exec: move S_ISREG() check earlier") 0fd338b2d2cd ("exec: move path_noexec() check earlier") Instead of being removed said checks are WARN_ON'ed instead, which has some debug value. However, the spurious path_noexec check is racy, resulting in unwarranted warnings should someone race with setting the noexec flag. One can note there is more to perm-checking whether execve is allowed and none of the conditions are guaranteed to still hold after they were tested for. Additionally this does not validate whether the code path did any perm checking to begin with -- it will pass if the inode happens to be regular. Keep the redundant path_noexec() check even though it's mindless nonsense checking for guarantee that isn't given so drop the WARN. Reword the commentary and do small tidy ups while here. [brauner: keep redundant path_noexec() check]
4.7
Medium
CVE-2024-50009 2024-10-21 18h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
5.5
Medium
CVE-2024-50004 2024-10-21 18h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: update DML2 policy EnhancedPrefetchScheduleAccelerationFinal DCN35 [WHY & HOW] Mismatch in DCN35 DML2 cause bw validation failed to acquire unexpected DPP pipe to cause grey screen and system hang. Remove EnhancedPrefetchScheduleAccelerationFinal value override to match HW spec. (cherry picked from commit 9dad21f910fcea2bdcff4af46159101d7f9cd8ba)
5.5
Medium
CVE-2024-49998 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).
4.7
Medium
CVE-2024-49994 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: block: fix integer overflow in BLKSECDISCARD I independently rediscovered commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155 block: fix overflow in blk_ioctl_discard() but for secure erase. Same problem: uint64_t r[2] = {512, 18446744073709551104ULL}; ioctl(fd, BLKSECDISCARD, r); will enter near infinite loop inside blkdev_issue_secure_erase(): a.out: attempt to access beyond end of device loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048 bio_check_eod: 3286214 callbacks suppressed
5.5
Medium
CVE-2024-49990 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/hdcp: Check GSC structure validity Sometimes xe_gsc is not initialized when checked at HDCP capability check. Add gsc structure check to avoid null pointer error.
5.5
Medium
CVE-2024-49974 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: NFSD: Limit the number of concurrent async COPY operations Nothing appears to limit the number of concurrent async COPY operations that clients can start. In addition, AFAICT each async COPY can copy an unlimited number of 4MB chunks, so can run for a long time. Thus IMO async COPY can become a DoS vector. Add a restriction mechanism that bounds the number of concurrent background COPY operations. Start simple and try to be fair -- this patch implements a per-namespace limit. An async COPY request that occurs while this limit is exceeded gets NFS4ERR_DELAY. The requesting client can choose to send the request again after a delay or fall back to a traditional read/write style copy. If there is need to make the mechanism more sophisticated, we can visit that in future patches.
5.5
Medium
CVE-2024-49972 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Deallocate DML memory if allocation fails [Why] When DC state create DML memory allocation fails, memory is not deallocated subsequently, resulting in uninitialized structure that is not NULL. [How] Deallocate memory if DML memory allocation fails.
5.5
Medium
CVE-2024-49971 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Increase array size of dummy_boolean [WHY] dml2_core_shared_mode_support and dml_core_mode_support access the third element of dummy_boolean, i.e. hw_debug5 = &s->dummy_boolean[2], when dummy_boolean has size of 2. Any assignment to hw_debug5 causes an OVERRUN. [HOW] Increase dummy_boolean's array size to 3. This fixes 2 OVERRUN issues reported by Coverity.
5.5
Medium
CVE-2024-49970 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Implement bounds check for stream encoder creation in DCN401 'stream_enc_regs' array is an array of dcn10_stream_enc_registers structures. The array is initialized with four elements, corresponding to the four calls to stream_enc_regs() in the array initializer. This means that valid indices for this array are 0, 1, 2, and 3. The error message 'stream_enc_regs' 4 <= 5 below, is indicating that there is an attempt to access this array with an index of 5, which is out of bounds. This could lead to undefined behavior Here, eng_id is used as an index to access the stream_enc_regs array. If eng_id is 5, this would result in an out-of-bounds access on the stream_enc_regs array. Thus fixing Buffer overflow error in dcn401_stream_encoder_create Found by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn401/dcn401_resource.c:1209 dcn401_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5
5.5
Medium
CVE-2024-49968 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ext4: filesystems without casefold feature cannot be mounted with siphash When mounting the ext4 filesystem, if the default hash version is set to DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting.
5.5
Medium
CVE-2024-49945 2024-10-21 18h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/ncsi: Disable the ncsi work before freeing the associated structure The work function can run after the ncsi device is freed, resulting in use-after-free bugs or kernel panic.
5.5
Medium
CVE-2024-49940 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: l2tp: prevent possible tunnel refcount underflow When a session is created, it sets a backpointer to its tunnel. When the session refcount drops to 0, l2tp_session_free drops the tunnel refcount if session->tunnel is non-NULL. However, session->tunnel is set in l2tp_session_create, before the tunnel refcount is incremented by l2tp_session_register, which leaves a small window where session->tunnel is non-NULL when the tunnel refcount hasn't been bumped. Moving the assignment to l2tp_session_register is trivial but l2tp_session_create calls l2tp_session_set_header_len which uses session->tunnel to get the tunnel's encap. Add an encap arg to l2tp_session_set_header_len to avoid using session->tunnel. If l2tpv3 sessions have colliding IDs, it is possible for l2tp_v3_session_get to race with l2tp_session_register and fetch a session which doesn't yet have session->tunnel set. Add a check for this case.
5.5
Medium
CVE-2024-49934 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/inode: Prevent dump_mapping() accessing invalid dentry.d_name.name It's observed that a crash occurs during hot-remove a memory device, in which user is accessing the hugetlb. See calltrace as following: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 14045 at arch/x86/mm/fault.c:1278 do_user_addr_fault+0x2a0/0x790 Modules linked in: kmem device_dax cxl_mem cxl_pmem cxl_port cxl_pci dax_hmem dax_pmem nd_pmem cxl_acpi nd_btt cxl_core crc32c_intel nvme virtiofs fuse nvme_core nfit libnvdimm dm_multipath scsi_dh_rdac scsi_dh_emc s mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 14045 Comm: daxctl Not tainted 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:do_user_addr_fault+0x2a0/0x790 Code: 48 8b 00 a8 04 0f 84 b5 fe ff ff e9 1c ff ff ff 4c 89 e9 4c 89 e2 be 01 00 00 00 bf 02 00 00 00 e8 b5 ef 24 00 e9 42 fe ff ff <0f> 0b 48 83 c4 08 4c 89 ea 48 89 ee 4c 89 e7 5b 5d 41 5c 41 5d 41 RSP: 0000:ffffc90000a575f0 EFLAGS: 00010046 RAX: ffff88800c303600 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000001000 RSI: ffffffff82504162 RDI: ffffffff824b2c36 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffc90000a57658 R13: 0000000000001000 R14: ffff88800bc2e040 R15: 0000000000000000 FS: 00007f51cb57d880(0000) GS:ffff88807fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001000 CR3: 00000000072e2004 CR4: 00000000001706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? __warn+0x8d/0x190 ? do_user_addr_fault+0x2a0/0x790 ? report_bug+0x1c3/0x1d0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? do_user_addr_fault+0x2a0/0x790 ? exc_page_fault+0x31/0x200 exc_page_fault+0x68/0x200 <...snip...> BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI ---[ end trace 0000000000000000 ]--- BUG: unable to handle page fault for address: 0000000000001000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 800000000ad92067 P4D 800000000ad92067 PUD 7677067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 14045 Comm: daxctl Kdump: loaded Tainted: G W 6.10.0-rc2-lizhijian+ #492 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:dentry_name+0x1f4/0x440 <...snip...> ? dentry_name+0x2fa/0x440 vsnprintf+0x1f3/0x4f0 vprintk_store+0x23a/0x540 vprintk_emit+0x6d/0x330 _printk+0x58/0x80 dump_mapping+0x10b/0x1a0 ? __pfx_free_object_rcu+0x10/0x10 __dump_page+0x26b/0x3e0 ? vprintk_emit+0xe0/0x330 ? _printk+0x58/0x80 ? dump_page+0x17/0x50 dump_page+0x17/0x50 do_migrate_range+0x2f7/0x7f0 ? do_migrate_range+0x42/0x7f0 ? offline_pages+0x2f4/0x8c0 offline_pages+0x60a/0x8c0 memory_subsys_offline+0x9f/0x1c0 ? lockdep_hardirqs_on+0x77/0x100 ? _raw_spin_unlock_irqrestore+0x38/0x60 device_offline+0xe3/0x110 state_store+0x6e/0xc0 kernfs_fop_write_iter+0x143/0x200 vfs_write+0x39f/0x560 ksys_write+0x65/0xf0 do_syscall_64+0x62/0x130 Previously, some sanity check have been done in dump_mapping() before the print facility parsing '%pd' though, it's still possible to run into an invalid dentry.d_name.name. Since dump_mapping() only needs to dump the filename only, retrieve it by itself in a safer way to prevent an unnecessary crash. Note that either retrieving the filename with '%pd' or strncpy_from_kernel_nofault(), the filename could be unreliable.
4.6
Medium
CVE-2024-49932 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel p ---truncated---
5.5
Medium
CVE-2024-49928 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: avoid reading out of bounds when loading TX power FW elements Because the loop-expression will do one more time before getting false from cond-expression, the original code copied one more entry size beyond valid region. Fix it by moving the entry copy to loop-body.
7.1
High
CVE-2024-49926 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb() For kernels built with CONFIG_FORCE_NR_CPUS=y, the nr_cpu_ids is defined as NR_CPUS instead of the number of possible cpus, this will cause the following system panic: smpboot: Allowing 4 CPUs, 0 hotplug CPUs ... setup_percpu: NR_CPUS:512 nr_cpumask_bits:512 nr_cpu_ids:512 nr_node_ids:1 ... BUG: unable to handle page fault for address: ffffffff9911c8c8 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 15 Comm: rcu_tasks_trace Tainted: G W 6.6.21 #1 5dc7acf91a5e8e9ac9dcfc35bee0245691283ea6 RIP: 0010:rcu_tasks_need_gpcb+0x25d/0x2c0 RSP: 0018:ffffa371c00a3e60 EFLAGS: 00010082 CR2: ffffffff9911c8c8 CR3: 000000040fa20005 CR4: 00000000001706f0 Call Trace: ? __die+0x23/0x80 ? page_fault_oops+0xa4/0x180 ? exc_page_fault+0x152/0x180 ? asm_exc_page_fault+0x26/0x40 ? rcu_tasks_need_gpcb+0x25d/0x2c0 ? __pfx_rcu_tasks_kthread+0x40/0x40 rcu_tasks_one_gp+0x69/0x180 rcu_tasks_kthread+0x94/0xc0 kthread+0xe8/0x140 ? __pfx_kthread+0x40/0x40 ret_from_fork+0x34/0x80 ? __pfx_kthread+0x40/0x40 ret_from_fork_asm+0x1b/0x80 Considering that there may be holes in the CPU numbers, use the maximum possible cpu number, instead of nr_cpu_ids, for configuring enqueue and dequeue limits. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ]
5.5
Medium
CVE-2024-49923 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Pass non-null to dcn20_validate_apply_pipe_split_flags [WHAT & HOW] "dcn20_validate_apply_pipe_split_flags" dereferences merge, and thus it cannot be a null pointer. Let's pass a valid pointer to avoid null dereference. This fixes 2 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49922 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before using them [WHAT & HOW] These pointers are null checked previously in the same function, indicating they might be null as reported by Coverity. As a result, they need to be checked when used again. This fixes 3 FORWARD_NULL issue reported by Coverity.
5.5
Medium
CVE-2024-49921 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before used [WHAT & HOW] Poniters, such as dc->clk_mgr, are null checked previously in the same function, so Coverity warns "implies that "dc->clk_mgr" might be null". As a result, these pointers need to be checked when used again. This fixes 10 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49920 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before multiple uses [WHAT & HOW] Poniters, such as stream_enc and dc->bw_vbios, are null checked previously in the same function, so Coverity warns "implies that stream_enc and dc->bw_vbios might be null". They are used multiple times in the subsequent code and need to be checked. This fixes 10 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49919 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn201_acquire_free_pipe_for_layer This commit addresses a potential null pointer dereference issue in the `dcn201_acquire_free_pipe_for_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn201/dcn201_resource.c:1016 dcn201_acquire_free_pipe_for_layer() error: we previously assumed 'head_pipe' could be null (see line 1010)
5.5
Medium
CVE-2024-49918 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn32_acquire_idle_pipe_for_head_pipe_in_layer This commit addresses a potential null pointer dereference issue in the `dcn32_acquire_idle_pipe_for_head_pipe_in_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn32/dcn32_resource.c:2690 dcn32_acquire_idle_pipe_for_head_pipe_in_layer() error: we previously assumed 'head_pipe' could be null (see line 2681)
5.5
Medium
CVE-2024-49917 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn30_init_hw This commit addresses a potential null pointer dereference issue in the `dcn30_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:789 dcn30_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 628)
5.5
Medium
CVE-2024-49916 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn401_init_hw This commit addresses a potential null pointer dereference issue in the `dcn401_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn401/dcn401_hwseq.c:416 dcn401_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 225)
5.5
Medium
CVE-2024-49915 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr in dcn32_init_hw This commit addresses a potential null pointer dereference issue in the `dcn32_init_hw` function. The issue could occur when `dc->clk_mgr` is null. The fix adds a check to ensure `dc->clk_mgr` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn32/dcn32_hwseq.c:961 dcn32_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 782)
5.5
Medium
CVE-2024-49914 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for pipe_ctx->plane_state in dcn20_program_pipe This commit addresses a null pointer dereference issue in the `dcn20_program_pipe` function. The issue could occur when `pipe_ctx->plane_state` is null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null before accessing. This prevents a null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn20/dcn20_hwseq.c:1925 dcn20_program_pipe() error: we previously assumed 'pipe_ctx->plane_state' could be null (see line 1877)
5.5
Medium
CVE-2024-49911 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn20_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn20_set_output_transfer_func function. Previously, set_output_gamma was being checked for null at line 1030, but then it was being dereferenced without any null check at line 1048. This could potentially lead to a null pointer dereference error if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma at line 1048.
5.5
Medium
CVE-2024-49910 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn401_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn401_set_output_transfer_func function. Previously, set_output_gamma was being checked for null, but then it was being dereferenced without any null check. This could lead to a null pointer dereference if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma.
5.5
Medium
CVE-2024-49909 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn32_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn32_set_output_transfer_func function. Previously, set_output_gamma was being checked for null, but then it was being dereferenced without any null check. This could lead to a null pointer dereference if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma.
5.5
Medium
CVE-2024-49908 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for 'afb' in amdgpu_dm_update_cursor (v2) This commit adds a null check for the 'afb' variable in the amdgpu_dm_update_cursor function. Previously, 'afb' was assumed to be null at line 8388, but was used later in the code without a null check. This could potentially lead to a null pointer dereference. Changes since v1: - Moved the null check for 'afb' to the line where 'afb' is used. (Alex) Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm.c:8433 amdgpu_dm_update_cursor() error: we previously assumed 'afb' could be null (see line 8388)
5.5
Medium
CVE-2024-49906 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before try to access it [why & how] Change the order of the pipe_ctx->plane_state check to ensure that plane_state is not null before accessing it.
5.5
Medium
CVE-2024-49904 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add list empty check to avoid null pointer issue Add list empty check to avoid null pointer issues in some corner cases. - list_for_each_entry_safe()
5.5
Medium
CVE-2024-49899 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize denominators' default to 1 [WHAT & HOW] Variables used as denominators and maybe not assigned to other values, should not be 0. Change their default to 1 so they are never 0. This fixes 10 DIVIDE_BY_ZERO issues reported by Coverity.
5.5
Medium
CVE-2024-49898 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null-initialized variables [WHAT & HOW] drr_timing and subvp_pipe are initialized to null and they are not always assigned new values. It is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity.
5.5
Medium
CVE-2024-49897 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check phantom_stream before it is used dcn32_enable_phantom_stream can return null, so returned value must be checked before used. This fixes 1 NULL_RETURNS issue reported by Coverity.
5.5
Medium
CVE-2024-49893 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check stream_status before it is used [WHAT & HOW] dc_state_get_stream_status can return null, and therefore null must be checked before stream_status is used. This fixes 1 NULL_RETURNS issue reported by Coverity.
5.5
Medium
CVE-2024-49891 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Validate hdwq pointers before dereferencing in reset/errata paths When the HBA is undergoing a reset or is handling an errata event, NULL ptr dereference crashes may occur in routines such as lpfc_sli_flush_io_rings(), lpfc_dev_loss_tmo_callbk(), or lpfc_abort_handler(). Add NULL ptr checks before dereferencing hdwq pointers that may have been freed due to operations colliding with a reset or errata event handler.
5.5
Medium
CVE-2024-49888 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a sdiv overflow issue Zac Ecob reported a problem where a bpf program may cause kernel crash due to the following error: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI The failure is due to the below signed divide: LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808. LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808, but it is impossible since for 64-bit system, the maximum positive number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is LLONG_MIN. Further investigation found all the following sdiv/smod cases may trigger an exception when bpf program is running on x86_64 platform: - LLONG_MIN/-1 for 64bit operation - INT_MIN/-1 for 32bit operation - LLONG_MIN%-1 for 64bit operation - INT_MIN%-1 for 32bit operation where -1 can be an immediate or in a register. On arm64, there are no exceptions: - LLONG_MIN/-1 = LLONG_MIN - INT_MIN/-1 = INT_MIN - LLONG_MIN%-1 = 0 - INT_MIN%-1 = 0 where -1 can be an immediate or in a register. Insn patching is needed to handle the above cases and the patched codes produced results aligned with above arm64 result. The below are pseudo codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0 and the divisor is stored in a register. sdiv: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L2 if tmp == 0 goto L1 rY = 0 L1: rY = -rY; goto L3 L2: rY /= rX L3: smod: tmp = rX tmp += 1 /* [-1, 0] -> [0, 1] if tmp >(unsigned) 1 goto L1 if tmp == 1 (is64 ? goto L2 : goto L3) rY = 0; goto L2 L1: rY %= rX L2: goto L4 // only when !is64 L3: wY = wY // only when !is64 L4: [1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/
5.5
Medium
CVE-2024-49885 2024-10-21 18h01 +00:00 In the Linux kernel, the following vulnerability has been resolved: mm, slub: avoid zeroing kmalloc redzone Since commit 946fa0dbf2d8 ("mm/slub: extend redzone check to extra allocated kmalloc space than requested"), setting orig_size treats the wasted space (object_size - orig_size) as a redzone. However with init_on_free=1 we clear the full object->size, including the redzone. Additionally we clear the object metadata, including the stored orig_size, making it zero, which makes check_object() treat the whole object as a redzone. These issues lead to the following BUG report with "slub_debug=FUZ init_on_free=1": [ 0.000000] ============================================================================= [ 0.000000] BUG kmalloc-8 (Not tainted): kmalloc Redzone overwritten [ 0.000000] ----------------------------------------------------------------------------- [ 0.000000] [ 0.000000] 0xffff000010032858-0xffff00001003285f @offset=2136. First byte 0x0 instead of 0xcc [ 0.000000] FIX kmalloc-8: Restoring kmalloc Redzone 0xffff000010032858-0xffff00001003285f=0xcc [ 0.000000] Slab 0xfffffdffc0400c80 objects=36 used=23 fp=0xffff000010032a18 flags=0x3fffe0000000200(workingset|node=0|zone=0|lastcpupid=0x1ffff) [ 0.000000] Object 0xffff000010032858 @offset=2136 fp=0xffff0000100328c8 [ 0.000000] [ 0.000000] Redzone ffff000010032850: cc cc cc cc cc cc cc cc ........ [ 0.000000] Object ffff000010032858: cc cc cc cc cc cc cc cc ........ [ 0.000000] Redzone ffff000010032860: cc cc cc cc cc cc cc cc ........ [ 0.000000] Padding ffff0000100328b4: 00 00 00 00 00 00 00 00 00 00 00 00 ............ [ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.11.0-rc3-next-20240814-00004-g61844c55c3f4 #144 [ 0.000000] Hardware name: NXP i.MX95 19X19 board (DT) [ 0.000000] Call trace: [ 0.000000] dump_backtrace+0x90/0xe8 [ 0.000000] show_stack+0x18/0x24 [ 0.000000] dump_stack_lvl+0x74/0x8c [ 0.000000] dump_stack+0x18/0x24 [ 0.000000] print_trailer+0x150/0x218 [ 0.000000] check_object+0xe4/0x454 [ 0.000000] free_to_partial_list+0x2f8/0x5ec To address the issue, use orig_size to clear the used area. And restore the value of orig_size after clear the remaining area. When CONFIG_SLUB_DEBUG not defined, (get_orig_size()' directly returns s->object_size. So when using memset to init the area, the size can simply be orig_size, as orig_size returns object_size when CONFIG_SLUB_DEBUG not enabled. And orig_size can never be bigger than object_size.
5.5
Medium
CVE-2024-47736 2024-10-21 12h14 +00:00 In the Linux kernel, the following vulnerability has been resolved: erofs: handle overlapped pclusters out of crafted images properly syzbot reported a task hang issue due to a deadlock case where it is waiting for the folio lock of a cached folio that will be used for cache I/Os. After looking into the crafted fuzzed image, I found it's formed with several overlapped big pclusters as below: Ext: logical offset | length : physical offset | length 0: 0.. 16384 | 16384 : 151552.. 167936 | 16384 1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384 2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384 ... Here, extent 0/1 are physically overlapped although it's entirely _impossible_ for normal filesystem images generated by mkfs. First, managed folios containing compressed data will be marked as up-to-date and then unlocked immediately (unlike in-place folios) when compressed I/Os are complete. If physical blocks are not submitted in the incremental order, there should be separate BIOs to avoid dependency issues. However, the current code mis-arranges z_erofs_fill_bio_vec() and BIO submission which causes unexpected BIO waits. Second, managed folios will be connected to their own pclusters for efficient inter-queries. However, this is somewhat hard to implement easily if overlapped big pclusters exist. Again, these only appear in fuzzed images so let's simply fall back to temporary short-lived pages for correctness. Additionally, it justifies that referenced managed folios cannot be truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy up `struct z_erofs_bvec`") for simplicity although it shouldn't be any difference.
5.5
Medium
CVE-2024-47726 2024-10-21 12h13 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode.
6.5
Medium
CVE-2024-47703 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned.
5.5
Medium
CVE-2024-47702 2024-10-21 11h53 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fail verification for sign-extension of packet data/data_end/data_meta syzbot reported a kernel crash due to commit 1f1e864b6555 ("bpf: Handle sign-extenstin ctx member accesses"). The reason is due to sign-extension of 32-bit load for packet data/data_end/data_meta uapi field. The original code looks like: r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */ r3 = *(u32 *)(r1 + 80) /* load __sk_buff->data_end */ r0 = r2 r0 += 8 if r3 > r0 goto +1 ... Note that __sk_buff->data load has 32-bit sign extension. After verification and convert_ctx_accesses(), the final asm code looks like: r2 = *(u64 *)(r1 +208) r2 = (s32)r2 r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 ... Note that 'r2 = (s32)r2' may make the kernel __sk_buff->data address invalid which may cause runtime failure. Currently, in C code, typically we have void *data = (void *)(long)skb->data; void *data_end = (void *)(long)skb->data_end; ... and it will generate r2 = *(u64 *)(r1 +208) r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 If we allow sign-extension, void *data = (void *)(long)(int)skb->data; void *data_end = (void *)(long)skb->data_end; ... the generated code looks like r2 = *(u64 *)(r1 +208) r2 <<= 32 r2 s>>= 32 r3 = *(u64 *)(r1 +80) r0 = r2 r0 += 8 if r3 > r0 goto pc+1 and this will cause verification failure since "r2 <<= 32" is not allowed as "r2" is a packet pointer. To fix this issue for case r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */ this patch added additional checking in is_valid_access() callback function for packet data/data_end/data_meta access. If those accesses are with sign-extenstion, the verification will fail. [1] https://lore.kernel.org/bpf/[email protected]/
5.5
Medium
CVE-2024-47662 2024-10-09 14h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Remove register from DCN35 DMCUB diagnostic collection [Why] These registers should not be read from driver and triggering the security violation when DMCUB work times out and diagnostics are collected blocks Z8 entry. [How] Remove the register read from DCN35.
5.5
Medium
CVE-2024-47661 2024-10-09 14h05 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow from uint32_t to uint8_t [WHAT & HOW] dmub_rb_cmd's ramping_boundary has size of uint8_t and it is assigned 0xFFFF. Fix it by changing it to uint8_t with value of 0xFF. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity.
5.5
Medium
CVE-2024-46870 2024-10-09 14h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable DMCUB timeout for DCN35 [Why] DMCUB can intermittently take longer than expected to process commands. Old ASIC policy was to continue while logging a diagnostic error - which works fine for ASIC without IPS, but with IPS this could lead to a race condition where we attempt to access DCN state while it's inaccessible, leading to a system hang when the NIU port is not disabled or register accesses that timeout and the display configuration in an undefined state. [How] We need to investigate why these accesses take longer than expected, but for now we should disable the timeout on DCN35 to avoid this race condition. Since the waits happen only at lower interrupt levels the risk of taking too long at higher IRQ and causing a system watchdog timeout are minimal.
4.7
Medium
CVE-2024-46842 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Handle mailbox timeouts in lpfc_get_sfp_info The MBX_TIMEOUT return code is not handled in lpfc_get_sfp_info and the routine unconditionally frees submitted mailbox commands regardless of return status. The issue is that for MBX_TIMEOUT cases, when firmware returns SFP information at a later time, that same mailbox memory region references previously freed memory in its cmpl routine. Fix by adding checks for the MBX_TIMEOUT return code. During mailbox resource cleanup, check the mbox flag to make sure that the wait did not timeout. If the MBOX_WAKE flag is not set, then do not free the resources because it will be freed when firmware completes the mailbox at a later time in its cmpl routine. Also, increase the timeout from 30 to 60 seconds to accommodate boot scripts requiring longer timeouts.
5.5
Medium
CVE-2024-46841 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON on ENOMEM from btrfs_lookup_extent_info() in walk_down_proc() We handle errors here properly, ENOMEM isn't fatal, return the error.
5.5
Medium
CVE-2024-46834 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: ethtool: fail closed if we can't get max channel used in indirection tables Commit 0d1b7d6c9274 ("bnxt: fix crashes when reducing ring count with active RSS contexts") proves that allowing indirection table to contain channels with out of bounds IDs may lead to crashes. Currently the max channel check in the core gets skipped if driver can't fetch the indirection table or when we can't allocate memory. Both of those conditions should be extremely rare but if they do happen we should try to be safe and fail the channel change.
5.5
Medium
CVE-2024-46833 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: hns3: void array out of bound when loop tnl_num When query reg inf of SSU, it loops tnl_num times. However, tnl_num comes from hardware and the length of array is a fixed value. To void array out of bound, make sure the loop time is not greater than the length of array
7.8
High
CVE-2024-46823 2024-09-27 12h39 +00:00 In the Linux kernel, the following vulnerability has been resolved: kunit/overflow: Fix UB in overflow_allocation_test The 'device_name' array doesn't exist out of the 'overflow_allocation_test' function scope. However, it is being used as a driver name when calling 'kunit_driver_create' from 'kunit_device_register'. It produces the kernel panic with KASAN enabled. Since this variable is used in one place only, remove it and pass the device name into kunit_device_register directly as an ascii string.
5.5
Medium
CVE-2024-46813 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_index before accessing dc->links[] [WHY & HOW] dc->links[] has max size of MAX_LINKS and NULL is return when trying to access with out-of-bound index. This fixes 3 OVERRUN and 1 RESOURCE_LEAK issues reported by Coverity.
7.8
High
CVE-2024-46808 2024-09-27 12h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add missing NULL pointer check within dpcd_extend_address_range [Why & How] ASSERT if return NULL from kcalloc.
5.5
Medium
CVE-2024-46778 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check UnboundedRequestEnabled's value CalculateSwathAndDETConfiguration_params_st's UnboundedRequestEnabled is a pointer (i.e. dml_bool_t *UnboundedRequestEnabled), and thus if (p->UnboundedRequestEnabled) checks its address, not bool value. This fixes 1 REVERSE_INULL issue reported by Coverity.
5.5
Medium
CVE-2024-46775 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Validate function returns [WHAT & HOW] Function return values must be checked before data can be used in subsequent functions. This fixes 4 CHECKED_RETURN issues reported by Coverity.
5.5
Medium
CVE-2024-46774 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas() Smatch warns: arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential spectre issue 'args.args' [r] (local cap) The 'nargs' and 'nret' locals come directly from a user-supplied buffer and are used as indexes into a small stack-based array and as inputs to copy_to_user() after they are subject to bounds checks. Use array_index_nospec() after the bounds checks to clamp these values for speculative execution.
7.1
High
CVE-2024-46772 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator crb_pipes before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 2 DIVIDE_BY_ZERO issues reported by Coverity.
5.5
Medium
CVE-2024-46751 2024-09-18 07h12 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON() when 0 reference count at btrfs_lookup_extent_info() Instead of doing a BUG_ON() handle the error by returning -EUCLEAN, aborting the transaction and logging an error message.
5.5
Medium
CVE-2024-46730 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Ensure array index tg_inst won't be -1 [WHY & HOW] tg_inst will be a negative if timing_generator_count equals 0, which should be checked before used. This fixes 2 OVERRUN issues reported by Coverity.
5.5
Medium
CVE-2024-46727 2024-09-18 06h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add otg_master NULL check within resource_log_pipe_topology_update [Why] Coverity reports NULL_RETURN warning. [How] Add otg_master NULL check.
5.5
Medium
CVE-2024-46710 2024-09-13 06h33 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Prevent unmapping active read buffers The kms paths keep a persistent map active to read and compare the cursor buffer. These maps can race with each other in simple scenario where: a) buffer "a" mapped for update b) buffer "a" mapped for compare c) do the compare d) unmap "a" for compare e) update the cursor f) unmap "a" for update At step "e" the buffer has been unmapped and the read contents is bogus. Prevent unmapping of active read buffers by simply keeping a count of how many paths have currently active maps and unmap only when the count reaches 0.
4.7
Medium
CVE-2024-46705 2024-09-13 06h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: reset mmio mappings with devm Set our various mmio mappings to NULL. This should make it easier to catch something rogue trying to mess with mmio after device removal. For example, we might unmap everything and then start hitting some mmio address which has already been unmamped by us and then remapped by something else, causing all kinds of carnage.
5.5
Medium
CVE-2024-46701 2024-09-13 06h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: libfs: fix infinite directory reads for offset dir After we switch tmpfs dir operations from simple_dir_operations to simple_offset_dir_operations, every rename happened will fill new dentry to dest dir's maple tree(&SHMEM_I(inode)->dir_offsets->mt) with a free key starting with octx->newx_offset, and then set newx_offset equals to free key + 1. This will lead to infinite readdir combine with rename happened at the same time, which fail generic/736 in xfstests(detail show as below). 1. create 5000 files(1 2 3...) under one dir 2. call readdir(man 3 readdir) once, and get one entry 3. rename(entry, "TEMPFILE"), then rename("TEMPFILE", entry) 4. loop 2~3, until readdir return nothing or we loop too many times(tmpfs break test with the second condition) We choose the same logic what commit 9b378f6ad48cf ("btrfs: fix infinite directory reads") to fix it, record the last_index when we open dir, and do not emit the entry which index >= last_index. The file->private_data now used in offset dir can use directly to do this, and we also update the last_index when we llseek the dir file. [brauner: only update last_index after seek when offset is zero like Jan suggested]
5.5
Medium
CVE-2024-46700 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/mes: fix mes ring buffer overflow wait memory room until enough before writing mes packets to avoid ring buffer overflow. v2: squash in sched_hw_submission fix (cherry picked from commit 34e087e8920e635c62e2ed6a758b0cd27f836d13)
7.8
High
CVE-2024-46698 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: video/aperture: optionally match the device in sysfb_disable() In aperture_remove_conflicting_pci_devices(), we currently only call sysfb_disable() on vga class devices. This leads to the following problem when the pimary device is not VGA compatible: 1. A PCI device with a non-VGA class is the boot display 2. That device is probed first and it is not a VGA device so sysfb_disable() is not called, but the device resources are freed by aperture_detach_platform_device() 3. Non-primary GPU has a VGA class and it ends up calling sysfb_disable() 4. NULL pointer dereference via sysfb_disable() since the resources have already been freed by aperture_detach_platform_device() when it was called by the other device. Fix this by passing a device pointer to sysfb_disable() and checking the device to determine if we should execute it or not. v2: Fix build when CONFIG_SCREEN_INFO is not set v3: Move device check into the mutex Drop primary variable in aperture_remove_conflicting_pci_devices() Drop __init on pci sysfb_pci_dev_is_enabled()
5.5
Medium
CVE-2024-46681 2024-09-13 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: pktgen: use cpus_read_lock() in pg_net_init() I have seen the WARN_ON(smp_processor_id() != cpu) firing in pktgen_thread_worker() during tests. We must use cpus_read_lock()/cpus_read_unlock() around the for_each_online_cpu(cpu) loop. While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood.
5.5
Medium
CVE-2024-44963 2024-09-04 18h36 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: do not BUG_ON() when freeing tree block after error When freeing a tree block, at btrfs_free_tree_block(), if we fail to create a delayed reference we don't deal with the error and just do a BUG_ON(). The error most likely to happen is -ENOMEM, and we have a comment mentioning that only -ENOMEM can happen, but that is not true, because in case qgroups are enabled any error returned from btrfs_qgroup_trace_extent_post() (can be -EUCLEAN or anything returned from btrfs_search_slot() for example) can be propagated back to btrfs_free_tree_block(). So stop doing a BUG_ON() and return the error to the callers and make them abort the transaction to prevent leaking space. Syzbot was triggering this, likely due to memory allocation failure injection.
5.5
Medium
CVE-2024-44956 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/preempt_fence: enlarge the fence critical section It is really easy to introduce subtle deadlocks in preempt_fence_work_func() since we operate on single global ordered-wq for signalling our preempt fences behind the scenes, so even though we signal a particular fence, everything in the callback should be in the fence critical section, since blocking in the callback will prevent other published fences from signalling. If we enlarge the fence critical section to cover the entire callback, then lockdep should be able to understand this better, and complain if we grab a sensitive lock like vm->lock, which is also held when waiting on preempt fences.
5.5
Medium
CVE-2024-44955 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Don't refer to dc_sink in is_dsc_need_re_compute [Why] When unplug one of monitors connected after mst hub, encounter null pointer dereference. It's due to dc_sink get released immediately in early_unregister() or detect_ctx(). When commit new state which directly referring to info stored in dc_sink will cause null pointer dereference. [how] Remove redundant checking condition. Relevant condition should already be covered by checking if dsc_aux is null or not. Also reset dsc_aux to NULL when the connector is disconnected.
5.5
Medium
CVE-2024-44951 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: fix TX fifo corruption Sometimes, when a packet is received on channel A at almost the same time as a packet is about to be transmitted on channel B, we observe with a logic analyzer that the received packet on channel A is transmitted on channel B. In other words, the Tx buffer data on channel B is corrupted with data from channel A. The problem appeared since commit 4409df5866b7 ("serial: sc16is7xx: change EFR lock to operate on each channels"), which changed the EFR locking to operate on each channel instead of chip-wise. This commit has introduced a regression, because the EFR lock is used not only to protect the EFR registers access, but also, in a very obscure and undocumented way, to protect access to the data buffer, which is shared by the Tx and Rx handlers, but also by each channel of the IC. Fix this regression first by switching to kfifo_out_linear_ptr() in sc16is7xx_handle_tx() to eliminate the need for a shared Rx/Tx buffer. Secondly, replace the chip-wise Rx buffer with a separate Rx buffer for each channel.
7.8
High
CVE-2024-44950 2024-09-04 18h35 +00:00 In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: fix invalid FIFO access with special register set When enabling access to the special register set, Receiver time-out and RHR interrupts can happen. In this case, the IRQ handler will try to read from the FIFO thru the RHR register at address 0x00, but address 0x00 is mapped to DLL register, resulting in erroneous FIFO reading. Call graph example: sc16is7xx_startup(): entry sc16is7xx_ms_proc(): entry sc16is7xx_set_termios(): entry sc16is7xx_set_baud(): DLH/DLL = $009C --> access special register set sc16is7xx_port_irq() entry --> IIR is 0x0C sc16is7xx_handle_rx() entry sc16is7xx_fifo_read(): --> unable to access FIFO (RHR) because it is mapped to DLL (LCR=LCR_CONF_MODE_A) sc16is7xx_set_baud(): exit --> Restore access to general register set Fix the problem by claiming the efr_lock mutex when accessing the Special register set.
5.5
Medium
CVE-2024-43913 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: nvme: apple: fix device reference counting Drivers must call nvme_uninit_ctrl after a successful nvme_init_ctrl. Split the allocation side out to make the error handling boundary easier to navigate. The apple driver had been doing this wrong, leaking the controller device memory on a tagset failure.
5.5
Medium
CVE-2024-43911 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix NULL dereference at band check in starting tx ba session In MLD connection, link_data/link_conf are dynamically allocated. They don't point to vif->bss_conf. So, there will be no chanreq assigned to vif->bss_conf and then the chan will be NULL. Tweak the code to check ht_supported/vht_supported/has_he/has_eht on sta deflink. Crash log (with rtw89 version under MLO development): [ 9890.526087] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 9890.526102] #PF: supervisor read access in kernel mode [ 9890.526105] #PF: error_code(0x0000) - not-present page [ 9890.526109] PGD 0 P4D 0 [ 9890.526114] Oops: 0000 [#1] PREEMPT SMP PTI [ 9890.526119] CPU: 2 PID: 6367 Comm: kworker/u16:2 Kdump: loaded Tainted: G OE 6.9.0 #1 [ 9890.526123] Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB3WW (2.73 ) 11/28/2018 [ 9890.526126] Workqueue: phy2 rtw89_core_ba_work [rtw89_core] [ 9890.526203] RIP: 0010:ieee80211_start_tx_ba_session (net/mac80211/agg-tx.c:618 (discriminator 1)) mac80211 [ 9890.526279] Code: f7 e8 d5 93 3e ea 48 83 c4 28 89 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 49 8b 84 24 e0 f1 ff ff 48 8b 80 90 1b 00 00 <83> 38 03 0f 84 37 fe ff ff bb ea ff ff ff eb cc 49 8b 84 24 10 f3 All code ======== 0: f7 e8 imul %eax 2: d5 (bad) 3: 93 xchg %eax,%ebx 4: 3e ea ds (bad) 6: 48 83 c4 28 add $0x28,%rsp a: 89 d8 mov %ebx,%eax c: 5b pop %rbx d: 41 5c pop %r12 f: 41 5d pop %r13 11: 41 5e pop %r14 13: 41 5f pop %r15 15: 5d pop %rbp 16: c3 retq 17: cc int3 18: cc int3 19: cc int3 1a: cc int3 1b: 49 8b 84 24 e0 f1 ff mov -0xe20(%r12),%rax 22: ff 23: 48 8b 80 90 1b 00 00 mov 0x1b90(%rax),%rax 2a:* 83 38 03 cmpl $0x3,(%rax) <-- trapping instruction 2d: 0f 84 37 fe ff ff je 0xfffffffffffffe6a 33: bb ea ff ff ff mov $0xffffffea,%ebx 38: eb cc jmp 0x6 3a: 49 rex.WB 3b: 8b .byte 0x8b 3c: 84 24 10 test %ah,(%rax,%rdx,1) 3f: f3 repz Code starting with the faulting instruction =========================================== 0: 83 38 03 cmpl $0x3,(%rax) 3: 0f 84 37 fe ff ff je 0xfffffffffffffe40 9: bb ea ff ff ff mov $0xffffffea,%ebx e: eb cc jmp 0xffffffffffffffdc 10: 49 rex.WB 11: 8b .byte 0x8b 12: 84 24 10 test %ah,(%rax,%rdx,1) 15: f3 repz [ 9890.526285] RSP: 0018:ffffb8db09013d68 EFLAGS: 00010246 [ 9890.526291] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9308e0d656c8 [ 9890.526295] RDX: 0000000000000000 RSI: ffffffffab99460b RDI: ffffffffab9a7685 [ 9890.526300] RBP: ffffb8db09013db8 R08: 0000000000000000 R09: 0000000000000873 [ 9890.526304] R10: ffff9308e0d64800 R11: 0000000000000002 R12: ffff9308e5ff6e70 [ 9890.526308] R13: ffff930952500e20 R14: ffff9309192a8c00 R15: 0000000000000000 [ 9890.526313] FS: 0000000000000000(0000) GS:ffff930b4e700000(0000) knlGS:0000000000000000 [ 9890.526316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 9890.526318] CR2: 0000000000000000 CR3: 0000000391c58005 CR4: 00000000001706f0 [ 9890.526321] Call Trace: [ 9890.526324] [ 9890.526327] ? show_regs (arch/x86/kernel/dumpstack.c:479) [ 9890.526335] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434) [ 9890.526340] ? page_fault_oops (arch/x86/mm/fault.c:713) [ 9890.526347] ? search_module_extables (kernel/module/main.c:3256 (discriminator ---truncated---
5.5
Medium
CVE-2024-43904 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null checks for 'stream' and 'plane' before dereferencing This commit adds null checks for the 'stream' and 'plane' variables in the dcn30_apply_idle_power_optimizations function. These variables were previously assumed to be null at line 922, but they were used later in the code without checking if they were null. This could potentially lead to a null pointer dereference, which would cause a crash. The null checks ensure that 'stream' and 'plane' are not null before they are used, preventing potential crashes. Fixes the below static smatch checker: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:938 dcn30_apply_idle_power_optimizations() error: we previously assumed 'stream' could be null (see line 922) drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:940 dcn30_apply_idle_power_optimizations() error: we previously assumed 'plane' could be null (see line 922)
5.5
Medium
CVE-2024-43901 2024-08-26 10h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix NULL pointer dereference for DTN log in DCN401 When users run the command: cat /sys/kernel/debug/dri/0/amdgpu_dm_dtn_log The following NULL pointer dereference happens: [ +0.000003] BUG: kernel NULL pointer dereference, address: NULL [ +0.000005] #PF: supervisor instruction fetch in kernel mode [ +0.000002] #PF: error_code(0x0010) - not-present page [ +0.000002] PGD 0 P4D 0 [ +0.000004] Oops: 0010 [#1] PREEMPT SMP NOPTI [ +0.000003] RIP: 0010:0x0 [ +0.000008] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [...] [ +0.000002] PKRU: 55555554 [ +0.000002] Call Trace: [ +0.000002] [ +0.000003] ? show_regs+0x65/0x70 [ +0.000006] ? __die+0x24/0x70 [ +0.000004] ? page_fault_oops+0x160/0x470 [ +0.000006] ? do_user_addr_fault+0x2b5/0x690 [ +0.000003] ? prb_read_valid+0x1c/0x30 [ +0.000005] ? exc_page_fault+0x8c/0x1a0 [ +0.000005] ? asm_exc_page_fault+0x27/0x30 [ +0.000012] dcn10_log_color_state+0xf9/0x510 [amdgpu] [ +0.000306] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? vsnprintf+0x2fb/0x600 [ +0.000009] dcn10_log_hw_state+0xfd0/0xfe0 [amdgpu] [ +0.000218] ? __mod_memcg_lruvec_state+0xe8/0x170 [ +0.000008] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? debug_smp_processor_id+0x17/0x20 [ +0.000003] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? set_ptes.isra.0+0x2b/0x90 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? _raw_spin_unlock+0x19/0x40 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? do_anonymous_page+0x337/0x700 [ +0.000004] dtn_log_read+0x82/0x120 [amdgpu] [ +0.000207] full_proxy_read+0x66/0x90 [ +0.000007] vfs_read+0xb0/0x340 [ +0.000005] ? __count_memcg_events+0x79/0xe0 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? count_memcg_events.constprop.0+0x1e/0x40 [ +0.000003] ? handle_mm_fault+0xb2/0x370 [ +0.000003] ksys_read+0x6b/0xf0 [ +0.000004] __x64_sys_read+0x19/0x20 [ +0.000003] do_syscall_64+0x60/0x130 [ +0.000004] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ +0.000003] RIP: 0033:0x7fdf32f147e2 [...] This error happens when the color log tries to read the gamut remap information from DCN401 which is not initialized in the dcn401_dpp_funcs which leads to a null pointer dereference. This commit addresses this issue by adding a proper guard to access the gamut_remap callback in case the specific ASIC did not implement this function.
5.5
Medium
CVE-2024-43899 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix null pointer deref in dcn20_resource.c Fixes a hang thats triggered when MPV is run on a DCN401 dGPU: mpv --hwdec=vaapi --vo=gpu --hwdec-codecs=all and then enabling fullscreen playback (double click on the video) The following calltrace will be seen: [ 181.843989] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 181.843997] #PF: supervisor instruction fetch in kernel mode [ 181.844003] #PF: error_code(0x0010) - not-present page [ 181.844009] PGD 0 P4D 0 [ 181.844020] Oops: 0010 [#1] PREEMPT SMP NOPTI [ 181.844028] CPU: 6 PID: 1892 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 181.844038] Hardware name: System manufacturer System Product Name/CROSSHAIR VI HERO, BIOS 6302 10/23/2018 [ 181.844044] RIP: 0010:0x0 [ 181.844079] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [ 181.844084] RSP: 0018:ffffb593c2b8f7b0 EFLAGS: 00010246 [ 181.844093] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000004 [ 181.844099] RDX: ffffb593c2b8f804 RSI: ffffb593c2b8f7e0 RDI: ffff9e3c8e758400 [ 181.844105] RBP: ffffb593c2b8f7b8 R08: ffffb593c2b8f9c8 R09: ffffb593c2b8f96c [ 181.844110] R10: 0000000000000000 R11: 0000000000000000 R12: ffffb593c2b8f9c8 [ 181.844115] R13: 0000000000000001 R14: ffff9e3c88000000 R15: 0000000000000005 [ 181.844121] FS: 00007c6e323bb5c0(0000) GS:ffff9e3f85f80000(0000) knlGS:0000000000000000 [ 181.844128] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 181.844134] CR2: ffffffffffffffd6 CR3: 0000000140fbe000 CR4: 00000000003506e0 [ 181.844141] Call Trace: [ 181.844146] [ 181.844153] ? show_regs+0x6d/0x80 [ 181.844167] ? __die+0x24/0x80 [ 181.844179] ? page_fault_oops+0x99/0x1b0 [ 181.844192] ? do_user_addr_fault+0x31d/0x6b0 [ 181.844204] ? exc_page_fault+0x83/0x1b0 [ 181.844216] ? asm_exc_page_fault+0x27/0x30 [ 181.844237] dcn20_get_dcc_compression_cap+0x23/0x30 [amdgpu] [ 181.845115] amdgpu_dm_plane_validate_dcc.constprop.0+0xe5/0x180 [amdgpu] [ 181.845985] amdgpu_dm_plane_fill_plane_buffer_attributes+0x300/0x580 [amdgpu] [ 181.846848] fill_dc_plane_info_and_addr+0x258/0x350 [amdgpu] [ 181.847734] fill_dc_plane_attributes+0x162/0x350 [amdgpu] [ 181.848748] dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.849791] ? dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.850840] amdgpu_dm_atomic_check+0xdfe/0x1760 [amdgpu]
5.5
Medium
CVE-2024-43886 2024-08-26 10h10 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check in resource_log_pipe_topology_update [WHY] When switching from "Extend" to "Second Display Only" we sometimes call resource_get_otg_master_for_stream on a stream for the eDP, which is disconnected. This leads to a null pointer dereference. [HOW] Added a null check in dc_resource.c/resource_log_pipe_topology_update.
5.5
Medium
CVE-2024-43884 2024-08-26 07h11 +00:00 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Add error handling to pair_device() hci_conn_params_add() never checks for a NULL value and could lead to a NULL pointer dereference causing a crash. Fixed by adding error handling in the function.
5.5
Medium
CVE-2024-43872 2024-08-21 00h06 +00:00 In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup under heavy CEQE load CEQEs are handled in interrupt handler currently. This may cause the CPU core staying in interrupt context too long and lead to soft lockup under heavy load. Handle CEQEs in BH workqueue and set an upper limit for the number of CEQE handled by a single call of work handler.
5.5
Medium
CVE-2024-43857 2024-08-17 09h24 +00:00 In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null reference error when checking end of zone This patch fixes a potentially null pointer being accessed by is_end_zone_blkaddr() that checks the last block of a zone when f2fs is mounted as a single device.
5.5
Medium
CVE-2024-43840 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG When BPF_TRAMP_F_CALL_ORIG is set, the trampoline calls __bpf_tramp_enter() and __bpf_tramp_exit() functions, passing them the struct bpf_tramp_image *im pointer as an argument in R0. The trampoline generation code uses emit_addr_mov_i64() to emit instructions for moving the bpf_tramp_image address into R0, but emit_addr_mov_i64() assumes the address to be in the vmalloc() space and uses only 48 bits. Because bpf_tramp_image is allocated using kzalloc(), its address can use more than 48-bits, in this case the trampoline will pass an invalid address to __bpf_tramp_enter/exit() causing a kernel crash. Fix this by using emit_a64_mov_i64() in place of emit_addr_mov_i64() as it can work with addresses that are greater than 48-bits.
5.5
Medium
CVE-2024-43835 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio_net: Fix napi_skb_cache_put warning After the commit bdacf3e34945 ("net: Use nested-BH locking for napi_alloc_cache.") was merged, the following warning began to appear: WARNING: CPU: 5 PID: 1 at net/core/skbuff.c:1451 napi_skb_cache_put+0x82/0x4b0 __warn+0x12f/0x340 napi_skb_cache_put+0x82/0x4b0 napi_skb_cache_put+0x82/0x4b0 report_bug+0x165/0x370 handle_bug+0x3d/0x80 exc_invalid_op+0x1a/0x50 asm_exc_invalid_op+0x1a/0x20 __free_old_xmit+0x1c8/0x510 napi_skb_cache_put+0x82/0x4b0 __free_old_xmit+0x1c8/0x510 __free_old_xmit+0x1c8/0x510 __pfx___free_old_xmit+0x10/0x10 The issue arises because virtio is assuming it's running in NAPI context even when it's not, such as in the netpoll case. To resolve this, modify virtnet_poll_tx() to only set NAPI when budget is available. Same for virtnet_poll_cleantx(), which always assumed that it was in a NAPI context.
5.5
Medium
CVE-2024-43824 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Make use of cached 'epc_features' in pci_epf_test_core_init() Instead of getting the epc_features from pci_epc_get_features() API, use the cached pci_epf_test::epc_features value to avoid the NULL check. Since the NULL check is already performed in pci_epf_test_bind(), having one more check in pci_epf_test_core_init() is redundant and it is not possible to hit the NULL pointer dereference. Also with commit a01e7214bef9 ("PCI: endpoint: Remove "core_init_notifier" flag"), 'epc_features' got dereferenced without the NULL check, leading to the following false positive Smatch warning: drivers/pci/endpoint/functions/pci-epf-test.c:784 pci_epf_test_core_init() error: we previously assumed 'epc_features' could be null (see line 747) Thus, remove the redundant NULL check and also use the epc_features:: {msix_capable/msi_capable} flags directly to avoid local variables. [kwilczynski: commit log]
5.5
Medium
CVE-2024-43819 2024-08-17 09h21 +00:00 In the Linux kernel, the following vulnerability has been resolved: kvm: s390: Reject memory region operations for ucontrol VMs This change rejects the KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2 ioctls when called on a ucontrol VM. This is necessary since ucontrol VMs have kvm->arch.gmap set to 0 and would thus result in a null pointer dereference further in. Memory management needs to be performed in userspace and using the ioctls KVM_S390_UCAS_MAP and KVM_S390_UCAS_UNMAP. Also improve s390 specific documentation for KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2. [[email protected]: commit message spelling fix, subject prefix fix]
5.5
Medium
CVE-2024-42252 2024-08-08 08h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: closures: Change BUG_ON() to WARN_ON() If a BUG_ON() can be hit in the wild, it shouldn't be a BUG_ON() For reference, this has popped up once in the CI, and we'll need more info to debug it: 03240 ------------[ cut here ]------------ 03240 kernel BUG at lib/closure.c:21! 03240 kernel BUG at lib/closure.c:21! 03240 Internal error: Oops - BUG: 00000000f2000800 [#1] SMP 03240 Modules linked in: 03240 CPU: 15 PID: 40534 Comm: kworker/u80:1 Not tainted 6.10.0-rc4-ktest-ga56da69799bd #25570 03240 Hardware name: linux,dummy-virt (DT) 03240 Workqueue: btree_update btree_interior_update_work 03240 pstate: 00001005 (nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 03240 pc : closure_put+0x224/0x2a0 03240 lr : closure_put+0x24/0x2a0 03240 sp : ffff0000d12071c0 03240 x29: ffff0000d12071c0 x28: dfff800000000000 x27: ffff0000d1207360 03240 x26: 0000000000000040 x25: 0000000000000040 x24: 0000000000000040 03240 x23: ffff0000c1f20180 x22: 0000000000000000 x21: ffff0000c1f20168 03240 x20: 0000000040000000 x19: ffff0000c1f20140 x18: 0000000000000001 03240 x17: 0000000000003aa0 x16: 0000000000003ad0 x15: 1fffe0001c326974 03240 x14: 0000000000000a1e x13: 0000000000000000 x12: 1fffe000183e402d 03240 x11: ffff6000183e402d x10: dfff800000000000 x9 : ffff6000183e402e 03240 x8 : 0000000000000001 x7 : 00009fffe7c1bfd3 x6 : ffff0000c1f2016b 03240 x5 : ffff0000c1f20168 x4 : ffff6000183e402e x3 : ffff800081391954 03240 x2 : 0000000000000001 x1 : 0000000000000000 x0 : 00000000a8000000 03240 Call trace: 03240 closure_put+0x224/0x2a0 03240 bch2_check_for_deadlock+0x910/0x1028 03240 bch2_six_check_for_deadlock+0x1c/0x30 03240 six_lock_slowpath.isra.0+0x29c/0xed0 03240 six_lock_ip_waiter+0xa8/0xf8 03240 __bch2_btree_node_lock_write+0x14c/0x298 03240 bch2_trans_lock_write+0x6d4/0xb10 03240 __bch2_trans_commit+0x135c/0x5520 03240 btree_interior_update_work+0x1248/0x1c10 03240 process_scheduled_works+0x53c/0xd90 03240 worker_thread+0x370/0x8c8 03240 kthread+0x258/0x2e8 03240 ret_from_fork+0x10/0x20 03240 Code: aa1303e0 d63f0020 a94363f7 17ffff8c (d4210000) 03240 ---[ end trace 0000000000000000 ]--- 03240 Kernel panic - not syncing: Oops - BUG: Fatal exception 03240 SMP: stopping secondary CPUs 03241 SMP: failed to stop secondary CPUs 13,15 03241 Kernel Offset: disabled 03241 CPU features: 0x00,00000003,80000008,4240500b 03241 Memory Limit: none 03241 ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception ]--- 03246 ========= FAILED TIMEOUT copygc_torture_no_checksum in 7200s
5.5
Medium
CVE-2024-42227 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix overlapping copy within dml_core_mode_programming [WHY] &mode_lib->mp.Watermark and &locals->Watermark are the same address. memcpy may lead to unexpected behavior. [HOW] memmove should be used.
4.7
Medium
CVE-2024-42162 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: gve: Account for stopped queues when reading NIC stats We now account for the fact that the NIC might send us stats for a subset of queues. Without this change, gve_get_ethtool_stats might make an invalid access on the priv->stats_report->stats array.
7
High
CVE-2024-42158 2024-07-30 07h47 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Use kfree_sensitive() to fix Coccinelle warnings Replace memzero_explicit() and kfree() with kfree_sensitive() to fix warnings reported by Coccinelle: WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1506) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1643) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1770)
4.1
Medium
CVE-2024-42156 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of clear-key structures on failure Wipe all sensitive data from stack for all IOCTLs, which convert a clear-key into a protected- or secure-key.
4.1
Medium
CVE-2024-42155 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of protected- and secure-keys Although the clear-key of neither protected- nor secure-keys is accessible, this key material should only be visible to the calling process. So wipe all copies of protected- or secure-keys from stack, even in case of an error.
1.9
Low
CVE-2024-42151 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: mark bpf_dummy_struct_ops.test_1 parameter as nullable Test case dummy_st_ops/dummy_init_ret_value passes NULL as the first parameter of the test_1() function. Mark this parameter as nullable to make verifier aware of such possibility. Otherwise, NULL check in the test_1() code: SEC("struct_ops/test_1") int BPF_PROG(test_1, struct bpf_dummy_ops_state *state) { if (!state) return ...; ... access state ... } Might be removed by verifier, thus triggering NULL pointer dereference under certain conditions.
5.5
Medium
CVE-2024-42139 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: Fix improper extts handling Extts events are disabled and enabled by the application ts2phc. However, in case where the driver is removed when the application is running, a specific extts event remains enabled and can cause a kernel crash. As a side effect, when the driver is reloaded and application is started again, remaining extts event for the channel from a previous run will keep firing and the message "extts on unexpected channel" might be printed to the user. To avoid that, extts events shall be disabled when PTP is released.
5.5
Medium
CVE-2024-42134 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: virtio-pci: Check if is_avq is NULL [bug] In the virtio_pci_common.c function vp_del_vqs, vp_dev->is_avq is involved to determine whether it is admin virtqueue, but this function vp_dev->is_avq may be empty. For installations, virtio_pci_legacy does not assign a value to vp_dev->is_avq. [fix] Check whether it is vp_dev->is_avq before use. [test] Test with virsh Attach device Before this patch, the following command would crash the guest system After applying the patch, everything seems to be working fine.
5.5
Medium
CVE-2024-42123 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix double free err_addr pointer warnings In amdgpu_umc_bad_page_polling_timeout, the amdgpu_umc_handle_bad_pages will be run many times so that double free err_addr in some special case. So set the err_addr to NULL to avoid the warnings.
4.4
Medium
CVE-2024-42122 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL pointer check for kzalloc [Why & How] Check return pointer of kzalloc before using it.
5.5
Medium
CVE-2024-42107 2024-07-30 07h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: ice: Don't process extts if PTP is disabled The ice_ptp_extts_event() function can race with ice_ptp_release() and result in a NULL pointer dereference which leads to a kernel panic. Panic occurs because the ice_ptp_extts_event() function calls ptp_clock_event() with a NULL pointer. The ice driver has already released the PTP clock by the time the interrupt for the next external timestamp event occurs. To fix this, modify the ice_ptp_extts_event() function to check the PTP state and bail early if PTP is not ready.
4.7
Medium
CVE-2024-42083 2024-07-29 15h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: ionic: fix kernel panic due to multi-buffer handling Currently, the ionic_run_xdp() doesn't handle multi-buffer packets properly for XDP_TX and XDP_REDIRECT. When a jumbo frame is received, the ionic_run_xdp() first makes xdp frame with all necessary pages in the rx descriptor. And if the action is either XDP_TX or XDP_REDIRECT, it should unmap dma-mapping and reset page pointer to NULL for all pages, not only the first page. But it doesn't for SG pages. So, SG pages unexpectedly will be reused. It eventually causes kernel panic. Oops: general protection fault, probably for non-canonical address 0x504f4e4dbebc64ff: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.10.0-rc3+ #25 RIP: 0010:xdp_return_frame+0x42/0x90 Code: 01 75 12 5b 4c 89 e6 5d 31 c9 41 5c 31 d2 41 5d e9 73 fd ff ff 44 8b 6b 20 0f b7 43 0a 49 81 ed 68 01 00 00 49 29 c5 49 01 fd <41> 80 7d0 RSP: 0018:ffff99d00122ce08 EFLAGS: 00010202 RAX: 0000000000005453 RBX: ffff8d325f904000 RCX: 0000000000000001 RDX: 00000000670e1000 RSI: 000000011f90d000 RDI: 504f4e4d4c4b4a49 RBP: ffff99d003907740 R08: 0000000000000000 R09: 0000000000000000 R10: 000000011f90d000 R11: 0000000000000000 R12: ffff8d325f904010 R13: 504f4e4dbebc64fd R14: ffff8d3242b070c8 R15: ffff99d0039077c0 FS: 0000000000000000(0000) GS:ffff8d399f780000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f41f6c85e38 CR3: 000000037ac30000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: ? die_addr+0x33/0x90 ? exc_general_protection+0x251/0x2f0 ? asm_exc_general_protection+0x22/0x30 ? xdp_return_frame+0x42/0x90 ionic_tx_clean+0x211/0x280 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] ionic_tx_cq_service+0xd3/0x210 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] ionic_txrx_napi+0x41/0x1b0 [ionic 15881354510e6a9c655c59c54812b319ed2cd015] __napi_poll.constprop.0+0x29/0x1b0 net_rx_action+0x2c4/0x350 handle_softirqs+0xf4/0x320 irq_exit_rcu+0x78/0xa0 common_interrupt+0x77/0x90
5.5
Medium
CVE-2024-42081 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe/xe_devcoredump: Check NULL before assignments Assign 'xe_devcoredump_snapshot *' and 'xe_device *' only if 'coredump' is not NULL. v2 - Fix commit messages. v3 - Define variables before code.(Ashutosh/Jose) v4 - Drop return check for coredump_to_xe. (Jose/Rodrigo) v5 - Modify misleading commit message. (Matt)
5.5
Medium
CVE-2024-42078 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfsd: initialise nfsd_info.mutex early. nfsd_info.mutex can be dereferenced by svc_pool_stats_start() immediately after the new netns is created. Currently this can trigger an oops. Move the initialisation earlier before it can possibly be dereferenced.
5.5
Medium
CVE-2024-42075 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix remap of arena. The bpf arena logic didn't account for mremap operation. Add a refcnt for multiple mmap events to prevent use-after-free in arena_vm_close.
5.5
Medium
CVE-2024-42072 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: bpf: Fix may_goto with negative offset. Zac's syzbot crafted a bpf prog that exposed two bugs in may_goto. The 1st bug is the way may_goto is patched. When offset is negative it should be patched differently. The 2nd bug is in the verifier: when current state may_goto_depth is equal to visited state may_goto_depth it means there is an actual infinite loop. It's not correct to prune exploration of the program at this point. Note, that this check doesn't limit the program to only one may_goto insn, since 2nd and any further may_goto will increment may_goto_depth only in the queued state pushed for future exploration. The current state will have may_goto_depth == 0 regardless of number of may_goto insns and the verifier has to explore the program until bpf_exit.
7.8
High
CVE-2024-42071 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: ionic: use dev_consume_skb_any outside of napi If we're not in a NAPI softirq context, we need to be careful about how we call napi_consume_skb(), specifically we need to call it with budget==0 to signal to it that we're not in a safe context. This was found while running some configuration stress testing of traffic and a change queue config loop running, and this curious note popped out: [ 4371.402645] BUG: using smp_processor_id() in preemptible [00000000] code: ethtool/20545 [ 4371.402897] caller is napi_skb_cache_put+0x16/0x80 [ 4371.403120] CPU: 25 PID: 20545 Comm: ethtool Kdump: loaded Tainted: G OE 6.10.0-rc3-netnext+ #8 [ 4371.403302] Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 01/23/2021 [ 4371.403460] Call Trace: [ 4371.403613] [ 4371.403758] dump_stack_lvl+0x4f/0x70 [ 4371.403904] check_preemption_disabled+0xc1/0xe0 [ 4371.404051] napi_skb_cache_put+0x16/0x80 [ 4371.404199] ionic_tx_clean+0x18a/0x240 [ionic] [ 4371.404354] ionic_tx_cq_service+0xc4/0x200 [ionic] [ 4371.404505] ionic_tx_flush+0x15/0x70 [ionic] [ 4371.404653] ? ionic_lif_qcq_deinit.isra.23+0x5b/0x70 [ionic] [ 4371.404805] ionic_txrx_deinit+0x71/0x190 [ionic] [ 4371.404956] ionic_reconfigure_queues+0x5f5/0xff0 [ionic] [ 4371.405111] ionic_set_ringparam+0x2e8/0x3e0 [ionic] [ 4371.405265] ethnl_set_rings+0x1f1/0x300 [ 4371.405418] ethnl_default_set_doit+0xbb/0x160 [ 4371.405571] genl_family_rcv_msg_doit+0xff/0x130 [...] I found that ionic_tx_clean() calls napi_consume_skb() which calls napi_skb_cache_put(), but before that last call is the note /* Zero budget indicate non-NAPI context called us, like netpoll */ and DEBUG_NET_WARN_ON_ONCE(!in_softirq()); Those are pretty big hints that we're doing it wrong. We can pass a context hint down through the calls to let ionic_tx_clean() know what we're doing so it can call napi_consume_skb() correctly.
5.5
Medium
CVE-2024-42066 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix potential integer overflow in page size calculation Explicitly cast tbo->page_alignment to u64 before bit-shifting to prevent overflow when assigning to min_page_size.
5.5
Medium
CVE-2024-42065 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/xe: Add a NULL check in xe_ttm_stolen_mgr_init Add an explicit check to ensure that the mgr is not NULL.
5.5
Medium
CVE-2024-42064 2024-07-29 15h52 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip pipe if the pipe idx not set properly [why] Driver crashes when pipe idx not set properly [how] Add code to skip the pipe that idx not set properly
5.5
Medium
CVE-2024-41085 2024-07-29 15h48 +00:00 In the Linux kernel, the following vulnerability has been resolved: cxl/mem: Fix no cxl_nvd during pmem region auto-assembling When CXL subsystem is auto-assembling a pmem region during cxl endpoint port probing, always hit below calltrace. BUG: kernel NULL pointer dereference, address: 0000000000000078 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page RIP: 0010:cxl_pmem_region_probe+0x22e/0x360 [cxl_pmem] Call Trace: ? __die+0x24/0x70 ? page_fault_oops+0x82/0x160 ? do_user_addr_fault+0x65/0x6b0 ? exc_page_fault+0x7d/0x170 ? asm_exc_page_fault+0x26/0x30 ? cxl_pmem_region_probe+0x22e/0x360 [cxl_pmem] ? cxl_pmem_region_probe+0x1ac/0x360 [cxl_pmem] cxl_bus_probe+0x1b/0x60 [cxl_core] really_probe+0x173/0x410 ? __pfx___device_attach_driver+0x10/0x10 __driver_probe_device+0x80/0x170 driver_probe_device+0x1e/0x90 __device_attach_driver+0x90/0x120 bus_for_each_drv+0x84/0xe0 __device_attach+0xbc/0x1f0 bus_probe_device+0x90/0xa0 device_add+0x51c/0x710 devm_cxl_add_pmem_region+0x1b5/0x380 [cxl_core] cxl_bus_probe+0x1b/0x60 [cxl_core] The cxl_nvd of the memdev needs to be available during the pmem region probe. Currently the cxl_nvd is registered after the endpoint port probe. The endpoint probe, in the case of autoassembly of regions, can cause a pmem region probe requiring the not yet available cxl_nvd. Adjust the sequence so this dependency is met. This requires adding a port parameter to cxl_find_nvdimm_bridge() that can be used to query the ancestor root port. The endpoint port is not yet available, but will share a common ancestor with its parent, so start the query from there instead.
5.5
Medium
CVE-2024-41080 2024-07-29 15h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: io_uring: fix possible deadlock in io_register_iowq_max_workers() The io_register_iowq_max_workers() function calls io_put_sq_data(), which acquires the sqd->lock without releasing the uring_lock. Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock before acquiring sqd->lock"), this can lead to a potential deadlock situation. To resolve this issue, the uring_lock is released before calling io_put_sq_data(), and then it is re-acquired after the function call. This change ensures that the locks are acquired in the correct order, preventing the possibility of a deadlock.
5.5
Medium
CVE-2024-41061 2024-07-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access.
7.8
High
CVE-2024-40965 2024-07-12 12h32 +00:00 In the Linux kernel, the following vulnerability has been resolved: i2c: lpi2c: Avoid calling clk_get_rate during transfer Instead of repeatedly calling clk_get_rate for each transfer, lock the clock rate and cache the value. A deadlock has been observed while adding tlv320aic32x4 audio codec to the system. When this clock provider adds its clock, the clk mutex is locked already, it needs to access i2c, which in return needs the mutex for clk_get_rate as well.
5.5
Medium
CVE-2024-39472 2024-07-05 06h42 +00:00 In the Linux kernel, the following vulnerability has been resolved: xfs: fix log recovery buffer allocation for the legacy h_size fixup Commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs") added a fixup for incorrect h_size values used for the initial umount record in old xfsprogs versions. Later commit 0c771b99d6c9 ("xfs: clean up calculation of LR header blocks") cleaned up the log reover buffer calculation, but stoped using the fixed up h_size value to size the log recovery buffer, which can lead to an out of bounds access when the incorrect h_size does not come from the old mkfs tool, but a fuzzer. Fix this by open coding xlog_logrec_hblks and taking the fixed h_size into account for this calculation.
5.5
Medium
CVE-2024-36288 2024-06-21 11h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix loop termination condition in gss_free_in_token_pages() The in_token->pages[] array is not NULL terminated. This results in the following KASAN splat: KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f]
5.5
Medium
CVE-2024-38381 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_rx_work syzbot reported the following uninit-value access issue [1] nci_rx_work() parses received packet from ndev->rx_q. It should be validated header size, payload size and total packet size before processing the packet. If an invalid packet is detected, it should be silently discarded.
7.1
High
CVE-2024-36478 2024-06-21 10h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: null_blk: fix null-ptr-dereference while configuring 'power' and 'submit_queues' Writing 'power' and 'submit_queues' concurrently will trigger kernel panic: Test script: modprobe null_blk nr_devices=0 mkdir -p /sys/kernel/config/nullb/nullb0 while true; do echo 1 > submit_queues; echo 4 > submit_queues; done & while true; do echo 1 > power; echo 0 > power; done Test result: BUG: kernel NULL pointer dereference, address: 0000000000000148 Oops: 0000 [#1] PREEMPT SMP RIP: 0010:__lock_acquire+0x41d/0x28f0 Call Trace: lock_acquire+0x121/0x450 down_write+0x5f/0x1d0 simple_recursive_removal+0x12f/0x5c0 blk_mq_debugfs_unregister_hctxs+0x7c/0x100 blk_mq_update_nr_hw_queues+0x4a3/0x720 nullb_update_nr_hw_queues+0x71/0xf0 [null_blk] nullb_device_submit_queues_store+0x79/0xf0 [null_blk] configfs_write_iter+0x119/0x1e0 vfs_write+0x326/0x730 ksys_write+0x74/0x150 This is because del_gendisk() can concurrent with blk_mq_update_nr_hw_queues(): nullb_device_power_store nullb_apply_submit_queues null_del_dev del_gendisk nullb_update_nr_hw_queues if (!dev->nullb) // still set while gendisk is deleted return 0 blk_mq_update_nr_hw_queues dev->nullb = NULL Fix this problem by resuing the global mutex to protect nullb_device_power_store() and nullb_update_nr_hw_queues() from configfs.
5.5
Medium
CVE-2024-38608 2024-06-19 13h56 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]---
5.5
Medium
CVE-2024-36923 2024-05-30 15h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/9p: fix uninitialized values during inode evict If an iget fails due to not being able to retrieve information from the server then the inode structure is only partially initialized. When the inode gets evicted, references to uninitialized structures (like fscache cookies) were being made. This patch checks for a bad_inode before doing anything other than clearing the inode from the cache. Since the inode is bad, it shouldn't have any state associated with it that needs to be written back (and there really isn't a way to complete those anyways).
5.5
Medium
CVE-2024-35968 2024-05-20 09h41 +00:00 In the Linux kernel, the following vulnerability has been resolved: pds_core: Fix pdsc_check_pci_health function to use work thread When the driver notices fw_status == 0xff it tries to perform a PCI reset on itself via pci_reset_function() in the context of the driver's health thread. However, pdsc_reset_prepare calls pdsc_stop_health_thread(), which attempts to stop/flush the health thread. This results in a deadlock because the stop/flush will never complete since the driver called pci_reset_function() from the health thread context. Fix by changing the pdsc_check_pci_health_function() to queue a newly introduced pdsc_pci_reset_thread() on the pdsc's work queue. Unloading the driver in the fw_down/dead state uncovered another issue, which can be seen in the following trace: WARNING: CPU: 51 PID: 6914 at kernel/workqueue.c:1450 __queue_work+0x358/0x440 [...] RIP: 0010:__queue_work+0x358/0x440 [...] Call Trace: ? __warn+0x85/0x140 ? __queue_work+0x358/0x440 ? report_bug+0xfc/0x1e0 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? __queue_work+0x358/0x440 queue_work_on+0x28/0x30 pdsc_devcmd_locked+0x96/0xe0 [pds_core] pdsc_devcmd_reset+0x71/0xb0 [pds_core] pdsc_teardown+0x51/0xe0 [pds_core] pdsc_remove+0x106/0x200 [pds_core] pci_device_remove+0x37/0xc0 device_release_driver_internal+0xae/0x140 driver_detach+0x48/0x90 bus_remove_driver+0x6d/0xf0 pci_unregister_driver+0x2e/0xa0 pdsc_cleanup_module+0x10/0x780 [pds_core] __x64_sys_delete_module+0x142/0x2b0 ? syscall_trace_enter.isra.18+0x126/0x1a0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7fbd9d03a14b [...] Fix this by preventing the devcmd reset if the FW is not running.
5.5
Medium
CVE-2024-27079 2024-05-01 13h04 +00:00 In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix NULL domain on device release In the kdump kernel, the IOMMU operates in deferred_attach mode. In this mode, info->domain may not yet be assigned by the time the release_device function is called. It leads to the following crash in the crash kernel: BUG: kernel NULL pointer dereference, address: 000000000000003c ... RIP: 0010:do_raw_spin_lock+0xa/0xa0 ... _raw_spin_lock_irqsave+0x1b/0x30 intel_iommu_release_device+0x96/0x170 iommu_deinit_device+0x39/0xf0 __iommu_group_remove_device+0xa0/0xd0 iommu_bus_notifier+0x55/0xb0 notifier_call_chain+0x5a/0xd0 blocking_notifier_call_chain+0x41/0x60 bus_notify+0x34/0x50 device_del+0x269/0x3d0 pci_remove_bus_device+0x77/0x100 p2sb_bar+0xae/0x1d0 ... i801_probe+0x423/0x740 Use the release_domain mechanism to fix it. The scalable mode context entry which is not part of release domain should be cleared in release_device().
5.5
Medium
CVE-2024-27059 2024-05-01 13h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values in the ATA ID information to calculate cylinder and head values when creating a CDB for READ or WRITE commands. The calculation involves division and modulus operations, which will cause a crash if either of these values is 0. While this never happens with a genuine device, it could happen with a flawed or subversive emulation, as reported by the syzbot fuzzer. Protect against this possibility by refusing to bind to the device if either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID information is 0. This requires isd200_Initialization() to return a negative error code when initialization fails; currently it always returns 0 (even when there is an error).
5.5
Medium
CVE-2024-27017 2024-05-01 05h30 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: walk over current view on netlink dump The generation mask can be updated while netlink dump is in progress. The pipapo set backend walk iterator cannot rely on it to infer what view of the datastructure is to be used. Add notation to specify if user wants to read/update the set. Based on patch from Florian Westphal.
5.5
Medium
CVE-2024-27012 2024-05-01 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: restore set elements when delete set fails From abort path, nft_mapelem_activate() needs to restore refcounters to the original state. Currently, it uses the set->ops->walk() to iterate over these set elements. The existing set iterator skips inactive elements in the next generation, this does not work from the abort path to restore the original state since it has to skip active elements instead (not inactive ones). This patch moves the check for inactive elements to the set iterator callback, then it reverses the logic for the .activate case which needs to skip active elements. Toggle next generation bit for elements when delete set command is invoked and call nft_clear() from .activate (abort) path to restore the next generation bit. The splat below shows an object in mappings memleak: [43929.457523] ------------[ cut here ]------------ [43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [...] [43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 [43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246 [43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000 [43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550 [43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f [43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0 [43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002 [43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0 [43929.458114] Call Trace: [43929.458118] [43929.458121] ? __warn+0x9f/0x1a0 [43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458188] ? report_bug+0x1b1/0x1e0 [43929.458196] ? handle_bug+0x3c/0x70 [43929.458200] ? exc_invalid_op+0x17/0x40 [43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables] [43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables] [43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables] [43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables] [43929.458512] ? rb_insert_color+0x2e/0x280 [43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables] [43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables] [43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables] [43929.458701] ? __rcu_read_unlock+0x46/0x70 [43929.458709] nft_delset+0xff/0x110 [nf_tables] [43929.458769] nft_flush_table+0x16f/0x460 [nf_tables] [43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables]
5.5
Medium
CVE-2024-27011 2024-05-01 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak in map from abort path The delete set command does not rely on the transaction object for element removal, therefore, a combination of delete element + delete set from the abort path could result in restoring twice the refcount of the mapping. Check for inactive element in the next generation for the delete element command in the abort path, skip restoring state if next generation bit has been already cleared. This is similar to the activate logic using the set walk iterator. [ 6170.286929] ------------[ cut here ]------------ [ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287071] Modules linked in: [...] [ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365 [ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f [ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202 [ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000 [ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750 [ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55 [ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10 [ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100 [ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000 [ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0 [ 6170.287962] Call Trace: [ 6170.287967] [ 6170.287973] ? __warn+0x9f/0x1a0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.288104] ? handle_bug+0x3c/0x70 [ 6170.288112] ? exc_invalid_op+0x17/0x40 [ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20 [ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables]
5.5
Medium
CVE-2024-27010 2024-05-01 05h29 +00:00 In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix mirred deadlock on device recursion When the mirred action is used on a classful egress qdisc and a packet is mirrored or redirected to self we hit a qdisc lock deadlock. See trace below. [..... other info removed for brevity....] [ 82.890906] [ 82.890906] ============================================ [ 82.890906] WARNING: possible recursive locking detected [ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W [ 82.890906] -------------------------------------------- [ 82.890906] ping/418 is trying to acquire lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] but task is already holding lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] other info that might help us debug this: [ 82.890906] Possible unsafe locking scenario: [ 82.890906] [ 82.890906] CPU0 [ 82.890906] ---- [ 82.890906] lock(&sch->q.lock); [ 82.890906] lock(&sch->q.lock); [ 82.890906] [ 82.890906] *** DEADLOCK *** [ 82.890906] [..... other info removed for brevity....] Example setup (eth0->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 Another example(eth0->eth1->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth1 tc qdisc add dev eth1 root handle 1: htb default 30 tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 We fix this by adding an owner field (CPU id) to struct Qdisc set after root qdisc is entered. When the softirq enters it a second time, if the qdisc owner is the same CPU, the packet is dropped to break the loop.
5.5
Medium
CVE-2024-26962 2024-05-01 05h19 +00:00 In the Linux kernel, the following vulnerability has been resolved: dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape For raid456, if reshape is still in progress, then IO across reshape position will wait for reshape to make progress. However, for dm-raid, in following cases reshape will never make progress hence IO will hang: 1) the array is read-only; 2) MD_RECOVERY_WAIT is set; 3) MD_RECOVERY_FROZEN is set; After commit c467e97f079f ("md/raid6: use valid sector values to determine if an I/O should wait on the reshape") fix the problem that IO across reshape position doesn't wait for reshape, the dm-raid test shell/lvconvert-raid-reshape.sh start to hang: [root@fedora ~]# cat /proc/979/stack [<0>] wait_woken+0x7d/0x90 [<0>] raid5_make_request+0x929/0x1d70 [raid456] [<0>] md_handle_request+0xc2/0x3b0 [md_mod] [<0>] raid_map+0x2c/0x50 [dm_raid] [<0>] __map_bio+0x251/0x380 [dm_mod] [<0>] dm_submit_bio+0x1f0/0x760 [dm_mod] [<0>] __submit_bio+0xc2/0x1c0 [<0>] submit_bio_noacct_nocheck+0x17f/0x450 [<0>] submit_bio_noacct+0x2bc/0x780 [<0>] submit_bio+0x70/0xc0 [<0>] mpage_readahead+0x169/0x1f0 [<0>] blkdev_readahead+0x18/0x30 [<0>] read_pages+0x7c/0x3b0 [<0>] page_cache_ra_unbounded+0x1ab/0x280 [<0>] force_page_cache_ra+0x9e/0x130 [<0>] page_cache_sync_ra+0x3b/0x110 [<0>] filemap_get_pages+0x143/0xa30 [<0>] filemap_read+0xdc/0x4b0 [<0>] blkdev_read_iter+0x75/0x200 [<0>] vfs_read+0x272/0x460 [<0>] ksys_read+0x7a/0x170 [<0>] __x64_sys_read+0x1c/0x30 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 This is because reshape can't make progress. For md/raid, the problem doesn't exist because register new sync_thread doesn't rely on the IO to be done any more: 1) If array is read-only, it can switch to read-write by ioctl/sysfs; 2) md/raid never set MD_RECOVERY_WAIT; 3) If MD_RECOVERY_FROZEN is set, mddev_suspend() doesn't hold 'reconfig_mutex', hence it can be cleared and reshape can continue by sysfs api 'sync_action'. However, I'm not sure yet how to avoid the problem in dm-raid yet. This patch on the one hand make sure raid_message() can't change sync_thread() through raid_message() after presuspend(), on the other hand detect the above 3 cases before wait for IO do be done in dm_suspend(), and let dm-raid requeue those IO.
5.5
Medium
CVE-2024-26952 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length.
8.1
High
CVE-2024-26949 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/pm: Fix NULL pointer dereference when get power limit Because powerplay_table initialization is skipped under sriov case, We check and set default lower and upper OD value if powerplay_table is NULL.
5.5
Medium
CVE-2024-26945 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: crypto: iaa - Fix nr_cpus < nr_iaa case If nr_cpus < nr_iaa, the calculated cpus_per_iaa will be 0, which causes a divide-by-0 in rebalance_wq_table(). Make sure cpus_per_iaa is 1 in that case, and also in the nr_iaa == 0 case, even though cpus_per_iaa is never used if nr_iaa == 0, for paranoia.
8.4
High
CVE-2024-26944 2024-05-01 05h18 +00:00 In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free in do_zone_finish() Shinichiro reported the following use-after-free triggered by the device replace operation in fstests btrfs/070. BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0 ================================================================== BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs] Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007 CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Call Trace: dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0x200/0x3e0 kasan_report+0xd8/0x110 ? do_zone_finish+0x91a/0xb90 [btrfs] ? do_zone_finish+0x91a/0xb90 [btrfs] do_zone_finish+0x91a/0xb90 [btrfs] btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs] ? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs] ? btrfs_put_root+0x2d/0x220 [btrfs] ? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs] cleaner_kthread+0x21e/0x380 [btrfs] ? __pfx_cleaner_kthread+0x10/0x10 [btrfs] kthread+0x2e3/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 Allocated by task 3493983: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_alloc_device+0xb3/0x4e0 [btrfs] device_list_add.constprop.0+0x993/0x1630 [btrfs] btrfs_scan_one_device+0x219/0x3d0 [btrfs] btrfs_control_ioctl+0x26e/0x310 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 3494056: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3f/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x32/0x70 kfree+0x11b/0x320 btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs] btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs] btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs] btrfs_ioctl+0xb27/0x57d0 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 The buggy address belongs to the object at ffff8881543c8000 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 96 bytes inside of freed 1024-byte region [ffff8881543c8000, ffff8881543c8400) The buggy address belongs to the physical page: page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8 head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb This UAF happens because we're accessing stale zone information of a already removed btrfs_device in do_zone_finish(). The sequence of events is as follows: btrfs_dev_replace_start btrfs_scrub_dev btrfs_dev_replace_finishing btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced btrfs_rm_dev_replace_free_srcdev btrfs_free_device <-- device freed cleaner_kthread btrfs_delete_unused_bgs btrfs_zone_finish do_zone_finish <-- refers the freed device The reason for this is that we're using a ---truncated---
7.8
High
CVE-2024-26913 2024-04-17 15h59 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix dcn35 8k30 Underflow/Corruption Issue [why] odm calculation is missing for pipe split policy determination and cause Underflow/Corruption issue. [how] Add the odm calculation.
7.8
High
CVE-2024-26900 2024-04-17 10h27 +00:00 In the Linux kernel, the following vulnerability has been resolved: md: fix kmemleak of rdev->serial If kobject_add() is fail in bind_rdev_to_array(), 'rdev->serial' will be alloc not be freed, and kmemleak occurs. unreferenced object 0xffff88815a350000 (size 49152): comm "mdadm", pid 789, jiffies 4294716910 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc f773277a): [<0000000058b0a453>] kmemleak_alloc+0x61/0xe0 [<00000000366adf14>] __kmalloc_large_node+0x15e/0x270 [<000000002e82961b>] __kmalloc_node.cold+0x11/0x7f [<00000000f206d60a>] kvmalloc_node+0x74/0x150 [<0000000034bf3363>] rdev_init_serial+0x67/0x170 [<0000000010e08fe9>] mddev_create_serial_pool+0x62/0x220 [<00000000c3837bf0>] bind_rdev_to_array+0x2af/0x630 [<0000000073c28560>] md_add_new_disk+0x400/0x9f0 [<00000000770e30ff>] md_ioctl+0x15bf/0x1c10 [<000000006cfab718>] blkdev_ioctl+0x191/0x3f0 [<0000000085086a11>] vfs_ioctl+0x22/0x60 [<0000000018b656fe>] __x64_sys_ioctl+0xba/0xe0 [<00000000e54e675e>] do_syscall_64+0x71/0x150 [<000000008b0ad622>] entry_SYSCALL_64_after_hwframe+0x6c/0x74
5.5
Medium
CVE-2024-26811 2024-04-08 10h02 +00:00 In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate payload size in ipc response If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc response to ksmbd kernel server. ksmbd should validate payload size of ipc response from ksmbd.mountd to avoid memory overrun or slab-out-of-bounds. This patch validate 3 ipc response that has payload.
5.5
Medium
CVE-2024-26756 2024-04-03 17h00 +00:00 In the Linux kernel, the following vulnerability has been resolved: md: Don't register sync_thread for reshape directly Currently, if reshape is interrupted, then reassemble the array will register sync_thread directly from pers->run(), in this case 'MD_RECOVERY_RUNNING' is set directly, however, there is no guarantee that md_do_sync() will be executed, hence stop_sync_thread() will hang because 'MD_RECOVERY_RUNNING' can't be cleared. Last patch make sure that md_do_sync() will set MD_RECOVERY_DONE, however, following hang can still be triggered by dm-raid test shell/lvconvert-raid-reshape.sh occasionally: [root@fedora ~]# cat /proc/1982/stack [<0>] stop_sync_thread+0x1ab/0x270 [md_mod] [<0>] md_frozen_sync_thread+0x5c/0xa0 [md_mod] [<0>] raid_presuspend+0x1e/0x70 [dm_raid] [<0>] dm_table_presuspend_targets+0x40/0xb0 [dm_mod] [<0>] __dm_destroy+0x2a5/0x310 [dm_mod] [<0>] dm_destroy+0x16/0x30 [dm_mod] [<0>] dev_remove+0x165/0x290 [dm_mod] [<0>] ctl_ioctl+0x4bb/0x7b0 [dm_mod] [<0>] dm_ctl_ioctl+0x11/0x20 [dm_mod] [<0>] vfs_ioctl+0x21/0x60 [<0>] __x64_sys_ioctl+0xb9/0xe0 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 Meanwhile mddev->recovery is: MD_RECOVERY_RUNNING | MD_RECOVERY_INTR | MD_RECOVERY_RESHAPE | MD_RECOVERY_FROZEN Fix this problem by remove the code to register sync_thread directly from raid10 and raid5. And let md_check_recovery() to register sync_thread.
5.5
Medium
CVE-2024-26699 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dcn35_clkmgr [Why] There is a potential memory access violation while iterating through array of dcn35 clks. [How] Limit iteration per array size.
7.8
High
CVE-2024-26686 2024-04-03 14h54 +00:00 In the Linux kernel, the following vulnerability has been resolved: fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call do_task_stat() at the same time and the process has NR_THREADS, it will spin with irqs disabled O(NR_CPUS * NR_THREADS) time. Change do_task_stat() to use sig->stats_lock to gather the statistics outside of ->siglock protected section, in the likely case this code will run lockless.
5.5
Medium
CVE-2024-26671 2024-04-02 06h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix IO hang from sbitmap wakeup race In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered with the following blk_mq_get_driver_tag() in case of getting driver tag failure. Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime blk_mq_mark_tag_wait() can't get driver tag successfully. This issue can be reproduced by running the following test in loop, and fio hang can be observed in < 30min when running it on my test VM in laptop. modprobe -r scsi_debug modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4 dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename` fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \ --runtime=100 --numjobs=40 --time_based --name=test \ --ioengine=libaio Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which is just fine in case of running out of tag.
4.7
Medium
CVE-2023-52634 2024-04-02 06h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix disable_otg_wa logic [Why] When switching to another HDMI mode, we are unnecesarilly disabling/enabling FIFO causing both HPO and DIG registers to be set at the same time when only HPO is supposed to be set. This can lead to a system hang the next time we change refresh rates as there are cases when we don't disable OTG/FIFO but FIFO is enabled when it isn't supposed to be. [How] Removing the enable/disable FIFO entirely.
5.5
Medium
CVE-2024-26656 2024-04-02 06h08 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung . For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
5.5
Medium
CVE-2023-52625 2024-03-26 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Refactor DMCUB enter/exit idle interface [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] We need to exit out of the idle state prior to sending a command, but the process that performs the exit also invokes a command itself. Fixing this issue involves the following: 1. Using a software state to track whether or not we need to start the process to exit idle or notify idle. It's possible for the hardware to have exited an idle state without driver knowledge, but entering one is always restricted to a driver allow - which makes the SW state vs HW state mismatch issue purely one of optimization, which should seldomly be hit, if at all. 2. Refactor any instances of exit/notify idle to use a single wrapper that maintains this SW state. This works simialr to dc_allow_idle_optimizations, but works at the DMCUB level and makes sure the state is marked prior to any notify/exit idle so we don't enter an infinite loop. 3. Make sure we exit out of idle prior to sending any commands or waiting for DMCUB idle. This patch takes care of 1/2. A future patch will take care of wrapping DMCUB command submission with calls to this new interface.
5.5
Medium
CVE-2023-52624 2024-03-26 17h49 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before executing GPINT commands [Why] DMCUB can be in idle when we attempt to interface with the HW through the GPINT mailbox resulting in a system hang. [How] Add dc_wake_and_execute_gpint() to wrap the wake, execute, sleep sequence. If the GPINT executes successfully then DMCUB will be put back into sleep after the optional response is returned. It functions similar to the inbox command interface.
7.8
High
CVE-2024-26645 2024-03-26 15h17 +00:00 In the Linux kernel, the following vulnerability has been resolved: tracing: Ensure visibility when inserting an element into tracing_map Running the following two commands in parallel on a multi-processor AArch64 machine can sporadically produce an unexpected warning about duplicate histogram entries: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist sleep 0.001 done $ stress-ng --sysbadaddr $(nproc) The warning looks as follows: [ 2911.172474] ------------[ cut here ]------------ [ 2911.173111] Duplicates detected: 1 [ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408 [ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E) [ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1 [ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01 [ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018 [ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408 [ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408 [ 2911.185310] sp : ffff8000a1513900 [ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001 [ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008 [ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180 [ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff [ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8 [ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731 [ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c [ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8 [ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000 [ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480 [ 2911.194259] Call trace: [ 2911.194626] tracing_map_sort_entries+0x3e0/0x408 [ 2911.195220] hist_show+0x124/0x800 [ 2911.195692] seq_read_iter+0x1d4/0x4e8 [ 2911.196193] seq_read+0xe8/0x138 [ 2911.196638] vfs_read+0xc8/0x300 [ 2911.197078] ksys_read+0x70/0x108 [ 2911.197534] __arm64_sys_read+0x24/0x38 [ 2911.198046] invoke_syscall+0x78/0x108 [ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8 [ 2911.199157] do_el0_svc+0x28/0x40 [ 2911.199613] el0_svc+0x40/0x178 [ 2911.200048] el0t_64_sync_handler+0x13c/0x158 [ 2911.200621] el0t_64_sync+0x1a8/0x1b0 [ 2911.201115] ---[ end trace 0000000000000000 ]--- The problem appears to be caused by CPU reordering of writes issued from __tracing_map_insert(). The check for the presence of an element with a given key in this function is: val = READ_ONCE(entry->val); if (val && keys_match(key, val->key, map->key_size)) ... The write of a new entry is: elt = get_free_elt(map); memcpy(elt->key, key, map->key_size); entry->val = elt; The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;" stores may become visible in the reversed order on another CPU. This second CPU might then incorrectly determine that a new key doesn't match an already present val->key and subse ---truncated---
5.5
Medium
CVE-2023-52590 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: ocfs2: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change ocfs2 rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
5.5
Medium
CVE-2023-52586 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add mutex lock in control vblank irq Add a mutex lock to control vblank irq to synchronize vblank enable/disable operations happening from different threads to prevent race conditions while registering/unregistering the vblank irq callback. v4: -Removed vblank_ctl_lock from dpu_encoder_virt, so it is only a parameter of dpu_encoder_phys. -Switch from atomic refcnt to a simple int counter as mutex has now been added v3: Mistakenly did not change wording in last version. It is done now. v2: Slightly changed wording of commit message Patchwork: https://patchwork.freedesktop.org/patch/571854/
7
High
CVE-2023-52585 2024-03-06 06h45 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix possible NULL dereference in amdgpu_ras_query_error_status_helper() Return invalid error code -EINVAL for invalid block id. Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c:1183 amdgpu_ras_query_error_status_helper() error: we previously assumed 'info' could be null (see line 1176)
5.5
Medium
CVE-2023-52485 2024-02-29 14h57 +00:00 In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before sending a command [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] For functions that execute within a DC context or DC lock we can wrap the direct calls to dm_execute_dmub_cmd/list with code that exits idle power optimizations and reallows once we're done with the command submission on success. For DM direct submissions the DM will need to manage the enter/exit sequencing manually. We cannot invoke a DMCUB command directly within the DM execution helper or we can deadlock.
5.5
Medium
CVE-2024-26596 2024-02-23 14h46 +00:00 In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix netdev_priv() dereference before check on non-DSA netdevice events After the blamed commit, we started doing this dereference for every NETDEV_CHANGEUPPER and NETDEV_PRECHANGEUPPER event in the system. static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } Which is obviously bogus, because not all net_devices have a netdev_priv() of type struct dsa_user_priv. But struct dsa_user_priv is fairly small, and p->dp means dereferencing 8 bytes starting with offset 16. Most drivers allocate that much private memory anyway, making our access not fault, and we discard the bogus data quickly afterwards, so this wasn't caught. But the dummy interface is somewhat special in that it calls alloc_netdev() with a priv size of 0. So every netdev_priv() dereference is invalid, and we get this when we emit a NETDEV_PRECHANGEUPPER event with a VLAN as its new upper: $ ip link add dummy1 type dummy $ ip link add link dummy1 name dummy1.100 type vlan id 100 [ 43.309174] ================================================================== [ 43.316456] BUG: KASAN: slab-out-of-bounds in dsa_user_prechangeupper+0x30/0xe8 [ 43.323835] Read of size 8 at addr ffff3f86481d2990 by task ip/374 [ 43.330058] [ 43.342436] Call trace: [ 43.366542] dsa_user_prechangeupper+0x30/0xe8 [ 43.371024] dsa_user_netdevice_event+0xb38/0xee8 [ 43.375768] notifier_call_chain+0xa4/0x210 [ 43.379985] raw_notifier_call_chain+0x24/0x38 [ 43.384464] __netdev_upper_dev_link+0x3ec/0x5d8 [ 43.389120] netdev_upper_dev_link+0x70/0xa8 [ 43.393424] register_vlan_dev+0x1bc/0x310 [ 43.397554] vlan_newlink+0x210/0x248 [ 43.401247] rtnl_newlink+0x9fc/0xe30 [ 43.404942] rtnetlink_rcv_msg+0x378/0x580 Avoid the kernel oops by dereferencing after the type check, as customary.
5.5
Medium
CVE-2024-25739 2024-02-12 00h00 +00:00 create_empty_lvol in drivers/mtd/ubi/vtbl.c in the Linux kernel through 6.7.4 can attempt to allocate zero bytes, and crash, because of a missing check for ubi->leb_size.
5.5
Medium
CVE-2024-25741 2024-02-12 00h00 +00:00 printer_write in drivers/usb/gadget/function/f_printer.c in the Linux kernel through 6.7.4 does not properly call usb_ep_queue, which might allow attackers to cause a denial of service or have unspecified other impact.
5.5
Medium
CVE-2024-25740 2024-02-11 23h00 +00:00 A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released.
5.5
Medium
CVE-2024-1151 2024-02-11 14h29 +00:00 A vulnerability was reported in the Open vSwitch sub-component in the Linux Kernel. The flaw occurs when a recursive operation of code push recursively calls into the code block. The OVS module does not validate the stack depth, pushing too many frames and causing a stack overflow. As a result, this can lead to a crash or other related issues.
5.5
Medium
CVE-2024-24864 2024-02-05 07h36 +00:00 A race condition was found in the Linux kernel's media/dvb-core in dvbdmx_write() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
5.3
Medium
CVE-2024-24857 2024-02-05 07h31 +00:00 A race condition was found in the Linux kernel's net/bluetooth device driver in conn_info_{min,max}_age_set() function. This can result in integrity overflow issue, possibly leading to bluetooth connection abnormality or denial of service.
6.8
Medium
CVE-2024-24858 2024-02-05 07h30 +00:00 A race condition was found in the Linux kernel's net/bluetooth in {conn,adv}_{min,max}_interval_set() function. This can result in I2cap connection or broadcast abnormality issue, possibly leading to denial of service.
5.3
Medium
CVE-2024-24859 2024-02-05 07h28 +00:00 A race condition was found in the Linux kernel's net/bluetooth in sniff_{min,max}_interval_set() function. This can result in a bluetooth sniffing exception issue, possibly leading denial of service.
4.8
Medium
CVE-2024-24860 2024-02-05 07h27 +00:00 A race condition was found in the Linux kernel's bluetooth device driver in {min,max}_key_size_set() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
5.3
Medium
CVE-2024-24861 2024-02-05 07h26 +00:00 A race condition was found in the Linux kernel's media/xc4000 device driver in xc4000 xc4000_get_frequency() function. This can result in return value overflow issue, possibly leading to malfunction or denial of service issue.
6.3
Medium
CVE-2024-21803 2024-01-30 07h15 +00:00 Use After Free vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (bluetooth modules) allows Local Execution of Code. This vulnerability is associated with program files https://gitee.Com/anolis/cloud-kernel/blob/devel-5.10/net/bluetooth/af_bluetooth.C. This issue affects Linux kernel: from v2.6.12-rc2 before v6.8-rc1.
7.8
High
CVE-2023-6200 2024-01-28 12h19 +00:00 A race condition was found in the Linux Kernel. Under certain conditions, an unauthenticated attacker from an adjacent network could send an ICMPv6 router advertisement packet, causing arbitrary code execution.
7.5
High
CVE-2024-23848 2024-01-22 23h00 +00:00 In the Linux kernel through 6.7.1, there is a use-after-free in cec_queue_msg_fh, related to drivers/media/cec/core/cec-adap.c and drivers/media/cec/core/cec-api.c.
5.5
Medium
CVE-2024-23849 2024-01-22 23h00 +00:00 In rds_recv_track_latency in net/rds/af_rds.c in the Linux kernel through 6.7.1, there is an off-by-one error for an RDS_MSG_RX_DGRAM_TRACE_MAX comparison, resulting in out-of-bounds access.
5.5
Medium
CVE-2024-23850 2024-01-22 23h00 +00:00 In btrfs_get_root_ref in fs/btrfs/disk-io.c in the Linux kernel through 6.7.1, there can be an assertion failure and crash because a subvolume can be read out too soon after its root item is inserted upon subvolume creation.
5.5
Medium
CVE-2024-23851 2024-01-22 23h00 +00:00 copy_params in drivers/md/dm-ioctl.c in the Linux kernel through 6.7.1 can attempt to allocate more than INT_MAX bytes, and crash, because of a missing param_kernel->data_size check. This is related to ctl_ioctl.
5.5
Medium
CVE-2023-6531 2024-01-21 10h01 +00:00 A use-after-free flaw was found in the Linux Kernel due to a race problem in the unix garbage collector's deletion of SKB races with unix_stream_read_generic() on the socket that the SKB is queued on.
7
High
CVE-2024-0607 2024-01-18 15h41 +00:00 A flaw was found in the Netfilter subsystem in the Linux kernel. The issue is in the nft_byteorder_eval() function, where the code iterates through a loop and writes to the `dst` array. On each iteration, 8 bytes are written, but `dst` is an array of u32, so each element only has space for 4 bytes. That means every iteration overwrites part of the previous element corrupting this array of u32. This flaw allows a local user to cause a denial of service or potentially break NetFilter functionality.
6.6
Medium
CVE-2024-0565 2024-01-15 20h02 +00:00 An out-of-bounds memory read flaw was found in receive_encrypted_standard in fs/smb/client/smb2ops.c in the SMB Client sub-component in the Linux Kernel. This issue occurs due to integer underflow on the memcpy length, leading to a denial of service.
7.4
High
CVE-2023-6915 2024-01-15 09h32 +00:00 A Null pointer dereference problem was found in ida_free in lib/idr.c in the Linux Kernel. This issue may allow an attacker using this library to cause a denial of service problem due to a missing check at a function return.
6.2
Medium
CVE-2023-6932 2023-12-19 14h09 +00:00 A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation. A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread. We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1.
7.8
High
CVE-2023-6931 2023-12-19 14h09 +00:00 A heap out-of-bounds write vulnerability in the Linux kernel's Performance Events system component can be exploited to achieve local privilege escalation. A perf_event's read_size can overflow, leading to an heap out-of-bounds increment or write in perf_read_group(). We recommend upgrading past commit 382c27f4ed28f803b1f1473ac2d8db0afc795a1b.
7.8
High
CVE-2023-6606 2023-12-08 16h58 +00:00 An out-of-bounds read vulnerability was found in smbCalcSize in fs/smb/client/netmisc.c in the Linux Kernel. This issue could allow a local attacker to crash the system or leak internal kernel information.
7.1
High
CVE-2022-4543 2023-01-10 23h00 +00:00 A flaw named "EntryBleed" was found in the Linux Kernel Page Table Isolation (KPTI). This issue could allow a local attacker to leak KASLR base via prefetch side-channels based on TLB timing for Intel systems.
5.5
Medium
CVE-2022-2785 2022-09-23 11h10 +00:00 There exists an arbitrary memory read within the Linux Kernel BPF - Constants provided to fill pointers in structs passed in to bpf_sys_bpf are not verified and can point anywhere, including memory not owned by BPF. An attacker with CAP_BPF can arbitrarily read memory from anywhere on the system. We recommend upgrading past commit 86f44fcec22c
6.7
Medium
CVE-2022-38096 2022-09-09 14h39 +00:00 A NULL pointer dereference vulnerability was found in vmwgfx driver in drivers/gpu/vmxgfx/vmxgfx_execbuf.c in GPU component of Linux kernel with device file '/dev/dri/renderD128 (or Dxxx)'. This flaw allows a local attacker with a user account on the system to gain privilege, causing a denial of service(DoS).
6.3
Medium
CVE-2021-3669 2022-08-26 13h25 +00:00 A flaw was found in the Linux kernel. Measuring usage of the shared memory does not scale with large shared memory segment counts which could lead to resource exhaustion and DoS.
5.5
Medium
CVE-2021-3564 2021-06-08 09h59 +00:00 A flaw double-free memory corruption in the Linux kernel HCI device initialization subsystem was found in the way user attach malicious HCI TTY Bluetooth device. A local user could use this flaw to crash the system. This flaw affects all the Linux kernel versions starting from 3.13.
5.5
Medium
CVE-2020-27815 2021-05-26 10h18 +00:00 A flaw was found in the JFS filesystem code in the Linux Kernel which allows a local attacker with the ability to set extended attributes to panic the system, causing memory corruption or escalating privileges. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability.
7.8
High
CVE-2020-25672 2021-05-25 17h38 +00:00 A memory leak vulnerability was found in Linux kernel in llcp_sock_connect
7.5
High
CVE-2021-20194 2021-02-23 21h33 +00:00 There is a vulnerability in the linux kernel versions higher than 5.2 (if kernel compiled with config params CONFIG_BPF_SYSCALL=y , CONFIG_BPF=y , CONFIG_CGROUPS=y , CONFIG_CGROUP_BPF=y , CONFIG_HARDENED_USERCOPY not set, and BPF hook to getsockopt is registered). As result of BPF execution, the local user can trigger bug in __cgroup_bpf_run_filter_getsockopt() function that can lead to heap overflow (because of non-hardened usercopy). The impact of attack could be deny of service or possibly privileges escalation.
7.8
High
CVE-2019-3016 2020-01-31 18h50 +00:00 In a Linux KVM guest that has PV TLB enabled, a process in the guest kernel may be able to read memory locations from another process in the same guest. This problem is limit to the host running linux kernel 4.10 with a guest running linux kernel 4.16 or later. The problem mainly affects AMD processors but Intel CPUs cannot be ruled out.
6.2
Medium
CVE-2019-3887 2019-04-08 22h00 +00:00 A flaw was found in the way KVM hypervisor handled x2APIC Machine Specific Rregister (MSR) access with nested(=1) virtualization enabled. In that, L1 guest could access L0's APIC register values via L2 guest, when 'virtualize x2APIC mode' is enabled. A guest could use this flaw to potentially crash the host kernel resulting in DoS issue. Kernel versions from 4.16 and newer are vulnerable to this issue.
5.6
Medium
CVE-2019-3819 2019-01-25 17h00 +00:00 A flaw was found in the Linux kernel in the function hid_debug_events_read() in drivers/hid/hid-debug.c file which may enter an infinite loop with certain parameters passed from a userspace. A local privileged user ("root") can cause a system lock up and a denial of service. Versions from v4.18 and newer are vulnerable.
4.4
Medium
CVE-2018-1781 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to obtain root access by exploiting a symbolic link attack to read/write/corrupt a file that they originally did not have permission to access. IBM X-Force ID: 148804.
8.4
High
CVE-2018-1799 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local unprivileged user to overwrite files on the system which could cause damage to the database. IBM X-Force ID: 149429.
6.2
Medium
CVE-2018-1802 2018-11-09 00h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 binaries load shared libraries from an untrusted path potentially giving low privilege user full access to the DB2 instance account by loading a malicious shared library. IBM X-Force ID: 149640.
8.4
High
CVE-2018-1458 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10,1, 10.5 and 11.1 could allow a local user to execute arbitrary code and conduct DLL hijacking attacks. IBM X-Force ID: 140209.
7.8
High
CVE-2018-1487 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5 and 11.1 binaries load shared libraries from an untrusted path potentially giving low privilege users full access to the DB2 instance account by loading a malicious shared library. IBM X-Force ID: 140972.
8.4
High
CVE-2018-1566 2018-07-10 16h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to execute arbitrary code due to a format string error. IBM X-Force ID: 143023.
8.4
High
CVE-2017-7836 2018-06-11 19h00 +00:00 The "pingsender" executable used by the Firefox Health Report dynamically loads a system copy of libcurl, which an attacker could replace. This allows for privilege escalation as the replaced libcurl code will run with Firefox's privileges. Note: This attack requires an attacker have local system access and only affects OS X and Linux. Windows systems are not affected. This vulnerability affects Firefox < 57.
7.8
High
CVE-2018-1449 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140044.
5.5
Medium
CVE-2018-1450 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140045.
5.5
Medium
CVE-2018-1451 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140046.
5.5
Medium
CVE-2018-1452 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 contains a vulnerability that could allow a local user to overwrite arbitrary files owned by the DB2 instance owner. IBM X-Force ID: 140047.
5.5
Medium
CVE-2018-1459 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 is vulnerable to stack based buffer overflow, caused by improper bounds checking which could lead an attacker to execute arbitrary code. IBM X-Force ID: 140210.
7.8
High
CVE-2018-1488 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1 is vulnerable to a buffer overflow, which could allow an authenticated local attacker to execute arbitrary code on the system as root. IBM X-Force ID: 140973.
8.4
High
CVE-2018-1515 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 10.5 and 11.1, under specific or unusual conditions, could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 141624.
7.4
High
CVE-2018-1544 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 142648.
8.4
High
CVE-2018-1565 2018-05-25 14h00 +00:00 IBM DB2 for Linux, UNIX and Windows (includes DB2 Connect Server) 9.7, 10.1, 10.5, and 11.1 could allow a local user to overflow a buffer which may result in a privilege escalation to the DB2 instance owner. IBM X-Force ID: 143022.
8.4
High
CVE-2018-1426 2018-03-22 12h00 +00:00 IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) duplicates the PRNG state across fork() system calls when multiple ICC instances are loaded which could result in duplicate Session IDs and a risk of duplicate key material. IBM X-Force ID: 139071.
9.1
Critical
CVE-2018-1427 2018-03-22 12h00 +00:00 IBM GSKit (IBM DB2 for Linux, UNIX and Windows 9.7, 10.1, 10.5, and 11.1) contains several environment variables that a local attacker could overflow and cause a denial of service. IBM X-Force ID: 139072.
6.2
Medium
CVE-2015-5191 2017-07-28 21h00 +00:00 VMware Tools prior to 10.0.9 contains multiple file system races in libDeployPkg, related to the use of hard-coded paths under /tmp. Successful exploitation of this issue may result in a local privilege escalation. CVSS:3.0/AV:L/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H
6.7
Medium
CVE-2017-8290 2017-07-06 14h00 +00:00 A potential Buffer Overflow Vulnerability (from a BB Code handling issue) has been identified in TeamSpeak Server version 3.0.13.6 (08/11/2016 09:48:33), it enables the users to Crash any WINDOWS Client that clicked into a Vulnerable Channel of a TeamSpeak Server.
7.5
High
CVE-2017-8391 2017-05-05 22h00 +00:00 The OS Installation Management component in CA Client Automation r12.9, r14.0, and r14.0 SP1 places an encrypted password into a readable local file during operating system installation, which allows local users to obtain sensitive information by reading this file after operating system installation.
5.5
Medium
CVE-2016-6110 2017-02-01 21h00 +00:00 IBM Tivoli Storage Manager discloses unencrypted login credentials to Vmware vCenter that could be obtained by a local user.
6.5
Medium
CVE-2016-8963 2017-02-01 21h00 +00:00 IBM BigFix Inventory v9 stores potentially sensitive information in log files that could be read by a local user.
5.5
Medium
CVE-2016-8977 2017-02-01 21h00 +00:00 IBM BigFix Inventory v9 could disclose sensitive information to an unauthorized user using HTTP GET requests. This information could be used to mount further attacks against the system.
5.3
Medium
CVE-2016-8967 2017-02-01 20h00 +00:00 IBM BigFix Inventory v9 9.2 stores user credentials in plain in clear text which can be read by a local user.
5.5
Medium
CVE-2016-8961 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 could allow a remote attacker to conduct phishing attacks, using an open redirect attack. By persuading a victim to visit a specially-crafted Web site, a remote attacker could exploit this vulnerability to spoof the URL displayed to redirect a user to a malicious Web site that would appear to be trusted. This could allow the attacker to obtain highly sensitive information or conduct further attacks against the victim.
6.1
Medium
CVE-2016-8966 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques.
5.9
Medium
CVE-2016-8980 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 is vulnerable to a denial of service, caused by an XML External Entity Injection (XXE) error when processing XML data. A remote attacker could exploit this vulnerability to expose highly sensitive information or consume all available memory resources.
8.1
High
CVE-2016-8981 2017-02-01 19h00 +00:00 IBM BigFix Inventory v9 allows web pages to be stored locally which can be read by another user on the system.
5.5
Medium
CVE-2016-9795 2017-01-27 21h01 +00:00 The casrvc program in CA Common Services, as used in CA Client Automation 12.8, 12.9, and 14.0; CA SystemEDGE 5.8.2 and 5.9; CA Systems Performance for Infrastructure Managers 12.8 and 12.9; CA Universal Job Management Agent 11.2; CA Virtual Assurance for Infrastructure Managers 12.8 and 12.9; CA Workload Automation AE 11, 11.3, 11.3.5, and 11.3.6 on AIX, HP-UX, Linux, and Solaris allows local users to modify arbitrary files and consequently gain root privileges via vectors related to insufficient validation.
7.8
High
CVE-2016-10086 2017-01-18 21h00 +00:00 RESTful web services in CA Service Desk Manager 12.9 and CA Service Desk Management 14.1 might allow remote authenticated users to read or modify task information by leveraging incorrect permissions applied to a RESTful request.
8.1
High
CVE-2016-7389 2016-11-08 19h37 +00:00 For the NVIDIA Quadro, NVS, GeForce, and Tesla products, NVIDIA GPU Display Driver on Linux R304 before 304.132, R340 before 340.98, R367 before 367.55, R361_93 before 361.93.03, and R370 before 370.28 contains a vulnerability in the kernel mode layer (nvidia.ko) handler for mmap() where improper input validation may allow users to gain access to arbitrary physical memory, leading to an escalation of privileges.
7.8
High
CVE-2016-5995 2016-09-30 23h00 +00:00 Untrusted search path vulnerability in IBM DB2 9.7 through FP11, 10.1 through FP5, 10.5 before FP8, and 11.1 GA on Linux, AIX, and HP-UX allows local users to gain privileges via a Trojan horse library that is accessed by a setuid or setgid program.
7.3
High
CVE-2016-2839 2016-08-04 23h00 +00:00 Mozilla Firefox before 48.0 and Firefox ESR 45.x before 45.3 on Linux make cairo _cairo_surface_get_extents calls that do not properly interact with libav header allocation in FFmpeg 0.10, which allows remote attackers to cause a denial of service (application crash) via a crafted video.
6.5
Medium
CVE-2016-4171 2016-06-16 14h00 +00:00 Unspecified vulnerability in Adobe Flash Player 21.0.0.242 and earlier allows remote attackers to execute arbitrary code via unknown vectors, as exploited in the wild in June 2016.
9.8
Critical
CVE-2015-2344 2016-03-16 09h00 +00:00 Cross-site scripting (XSS) vulnerability in VMware vRealize Automation 6.x before 6.2.4 on Linux allows remote authenticated users to inject arbitrary web script or HTML via unspecified vectors.
5.4
Medium
CVE-2016-2075 2016-03-16 09h00 +00:00 Cross-site scripting (XSS) vulnerability in VMware vRealize Business Advanced and Enterprise 8.x before 8.2.5 on Linux allows remote authenticated users to inject arbitrary web script or HTML via unspecified vectors.
5.4
Medium
CVE-2016-1956 2016-03-13 17h00 +00:00 Mozilla Firefox before 45.0 on Linux, when an Intel video driver is used, allows remote attackers to cause a denial of service (memory consumption or stack memory corruption) by triggering use of a WebGL shader.
6.5
Medium
CVE-2016-0955 2016-02-10 19h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Experience Manager (AEM) 6.1.0 allows remote authenticated users to inject arbitrary web script or HTML via a folder title field that is mishandled in the Deletion popup dialog.
6.1
Medium
CVE-2016-0956 2016-02-10 19h00 +00:00 The Servlets Post component 2.3.6 in Apache Sling, as used in Adobe Experience Manager 5.6.1, 6.0.0, and 6.1.0, allows remote attackers to obtain sensitive information via unspecified vectors.
7.5
High
CVE-2016-0958 2016-02-10 19h00 +00:00 Adobe Experience Manager 5.6.1, 6.0.0, and 6.1.0 might allow remote attackers to have an unspecified impact via a crafted serialized Java object.
7.5
High
CVE-2015-8651 2015-12-28 23h00 +00:00 Integer overflow in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors.
8.8
High
CVE-2015-8459 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8460, CVE-2015-8636, and CVE-2015-8645.
10
Critical
CVE-2015-8460 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8636, and CVE-2015-8645.
8.8
High
CVE-2015-8634 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8635 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8636 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8460, and CVE-2015-8645.
8.8
High
CVE-2015-8638 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8639 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8640 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8641 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8642 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8643 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8644 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion."
8.8
High
CVE-2015-8645 2015-12-28 22h00 +00:00 Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8459, CVE-2015-8460, and CVE-2015-8636.
8.8
High
CVE-2015-8646 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8647, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8647 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8648, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8648 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8649, and CVE-2015-8650.
8.8
High
CVE-2015-8649 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, and CVE-2015-8650.
8.8
High
CVE-2015-8650 2015-12-28 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8634, CVE-2015-8635, CVE-2015-8638, CVE-2015-8639, CVE-2015-8640, CVE-2015-8641, CVE-2015-8642, CVE-2015-8643, CVE-2015-8646, CVE-2015-8647, CVE-2015-8648, and CVE-2015-8649.
8.8
High
CVE-2015-8045 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8047 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8048 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8049 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the TextField object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted autoSize property value, a different vulnerability than CVE-2015-8048, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8050 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted beginGradientFill call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8055 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8056 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8057 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8058 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8059 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8060 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8061 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8062 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8063 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8064 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8065 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8066 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8067 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8068 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8069 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8070 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8071 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8401 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8402 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8403 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8404 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8405 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8406 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8407 2015-12-10 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8457.
10
CVE-2015-8408 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8409 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2015-8440 and CVE-2015-8453.
10
CVE-2015-8410 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8411 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8412 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8413 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8414 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8415 2015-12-10 01h00 +00:00 Buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-8416 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8417 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8418 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8419 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8443, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8420 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8421 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8422 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8423 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8424 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8425 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8426 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8427 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8428 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8429 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8430 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8431 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8432 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8433 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8434 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8435 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8436 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the PrintJob object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via crafted addPage arguments, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8437 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the Selection object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted setFocus call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8438 2015-12-10 01h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted XML object that is mishandled during a toString call, a different vulnerability than CVE-2015-8446.
9.3
CVE-2015-8439 2015-12-10 01h00 +00:00 The SharedObject object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code by leveraging an unspecified "type confusion" during a getRemote call, a different vulnerability than CVE-2015-8456.
9.3
CVE-2015-8440 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2015-8409 and CVE-2015-8453.
10
CVE-2015-8441 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
10
CVE-2015-8442 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted filters property value, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8443 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8444, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8444 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8451, and CVE-2015-8455.
10
CVE-2015-8445 2015-12-10 01h00 +00:00 Integer overflow in the Shader filter implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a large BitmapData source object.
9.3
CVE-2015-8446 2015-12-10 01h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via an MP3 file with COMM tags that are mishandled during memory allocation, a different vulnerability than CVE-2015-8438.
9.3
CVE-2015-8447 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the Color object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via crafted setTransform arguments, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8448 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the DisplacementMapFilter object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted mapBitmap property value, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8449, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8449 2015-12-10 01h00 +00:00 Use-after-free vulnerability in the MovieClip object implementation in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted lineTo method call, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8450, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8450 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via a crafted filters property value in a TextField object, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8452, and CVE-2015-8454.
9.3
CVE-2015-8451 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, and CVE-2015-8455.
10
CVE-2015-8452 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, and CVE-2015-8454.
10
CVE-2015-8453 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to bypass the ASLR protection mechanism via JIT data, a different vulnerability than CVE-2015-8409 and CVE-2015-8440.
4.3
CVE-2015-8454 2015-12-10 01h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8048, CVE-2015-8049, CVE-2015-8050, CVE-2015-8055, CVE-2015-8056, CVE-2015-8057, CVE-2015-8058, CVE-2015-8059, CVE-2015-8061, CVE-2015-8062, CVE-2015-8063, CVE-2015-8064, CVE-2015-8065, CVE-2015-8066, CVE-2015-8067, CVE-2015-8068, CVE-2015-8069, CVE-2015-8070, CVE-2015-8071, CVE-2015-8401, CVE-2015-8402, CVE-2015-8403, CVE-2015-8404, CVE-2015-8405, CVE-2015-8406, CVE-2015-8410, CVE-2015-8411, CVE-2015-8412, CVE-2015-8413, CVE-2015-8414, CVE-2015-8420, CVE-2015-8421, CVE-2015-8422, CVE-2015-8423, CVE-2015-8424, CVE-2015-8425, CVE-2015-8426, CVE-2015-8427, CVE-2015-8428, CVE-2015-8429, CVE-2015-8430, CVE-2015-8431, CVE-2015-8432, CVE-2015-8433, CVE-2015-8434, CVE-2015-8435, CVE-2015-8436, CVE-2015-8437, CVE-2015-8441, CVE-2015-8442, CVE-2015-8447, CVE-2015-8448, CVE-2015-8449, CVE-2015-8450, and CVE-2015-8452.
10
CVE-2015-8455 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-8045, CVE-2015-8047, CVE-2015-8060, CVE-2015-8408, CVE-2015-8416, CVE-2015-8417, CVE-2015-8418, CVE-2015-8419, CVE-2015-8443, CVE-2015-8444, and CVE-2015-8451.
10
CVE-2015-8456 2015-12-10 01h00 +00:00 Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2015-8439.
9.3
CVE-2015-8457 2015-12-10 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.268 and 19.x and 20.x before 20.0.0.228 on Windows and OS X and before 11.2.202.554 on Linux, Adobe AIR before 20.0.0.204, Adobe AIR SDK before 20.0.0.204, and Adobe AIR SDK & Compiler before 20.0.0.204 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-8407.
10
CVE-2015-7869 2015-11-24 19h00 +00:00 Multiple integer overflows in the kernel mode driver for the NVIDIA GPU graphics driver R340 before 341.92, R352 before 354.35, and R358 before 358.87 on Windows and R304 before 304.131, R340 before 340.96, R352 before 352.63, and R358 before 358.16 on Linux allow local users to obtain sensitive information, cause a denial of service (crash), or possibly gain privileges via unknown vectors, which trigger uninitialized or out of bounds memory access. NOTE: this identifier has been SPLIT per ADT2 and ADT3 due to different vulnerability type and affected versions. See CVE-2015-8328 for the vulnerability in the NVAPI support layer in NVIDIA drivers for Windows.
6.6
CVE-2015-6306 2015-09-24 23h00 +00:00 Cisco AnyConnect Secure Mobility Client 4.1(8) on OS X and Linux does not verify pathnames before installation actions, which allows local users to obtain root privileges via a crafted installation file, aka Bug ID CSCuv11947.
7.2
CVE-2015-4512 2015-09-23 23h00 +00:00 gfx/2d/DataSurfaceHelpers.cpp in Mozilla Firefox before 41.0 on Linux improperly attempts to use the Cairo library with 32-bit color-depth surface creation followed by 16-bit color-depth surface display, which allows remote attackers to obtain sensitive information from process memory or cause a denial of service (out-of-bounds read) by using a CANVAS element to trigger 2D rendering.
6.4
CVE-2015-5571 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API. NOTE: this issue exists because of an incomplete fix for CVE-2014-4671 and CVE-2014-5333.
4.3
CVE-2015-5574 2015-09-22 08h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-5570, CVE-2015-5581, CVE-2015-5584, and CVE-2015-6682.
10
CVE-2015-5576 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
5
CVE-2015-5579 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to execute arbitrary code or cause a denial of service (stack memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-5567.
10
CVE-2015-5587 2015-09-22 08h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-6679 2015-09-22 08h00 +00:00 Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
5
CVE-2015-4491 2015-08-15 23h00 +00:00 Integer overflow in the make_filter_table function in pixops/pixops.c in gdk-pixbuf before 2.31.5, as used in Mozilla Firefox before 40.0 and Firefox ESR 38.x before 38.2 on Linux, Google Chrome on Linux, and other products, allows remote attackers to execute arbitrary code or cause a denial of service (heap-based buffer overflow and application crash) via crafted bitmap dimensions that are mishandled during scaling.
6.8
CVE-2015-1900 2015-06-29 08h00 +00:00 IBM InfoSphere DataStage 8.1, 8.5, 8.7, 9.1, and 11.3 through 11.3.1.2 on UNIX allows local users to write to executable files, and consequently obtain root privileges, via unspecified vectors.
7.2
CVE-2015-3316 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, allows local users to gain privileges via an unspecified environment variable.
4.6
CVE-2015-3317 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, does not properly perform bounds checking, which allows local users to gain privileges via unspecified vectors.
4.6
CVE-2015-3318 2015-06-17 08h00 +00:00 CA Common Services, as used in CA Client Automation r12.5 SP01, r12.8, and r12.9; CA Network and Systems Management r11.0, r11.1, and r11.2; CA NSM Job Management Option r11.0, r11.1, and r11.2; CA Universal Job Management Agent; CA Virtual Assurance for Infrastructure Managers (aka SystemEDGE) 12.6, 12.7, 12.8, and 12.9; and CA Workload Automation AE r11, r11.3, r11.3.5, and r11.3.6 on UNIX, does not properly validate an unspecified variable, which allows local users to gain privileges via unknown vectors.
4.6
CVE-2015-1233 2015-04-01 19h00 +00:00 Google Chrome before 41.0.2272.118 does not properly handle the interaction of IPC, the Gamepad API, and Google V8, which allows remote attackers to execute arbitrary code via unspecified vectors.
7.5
CVE-2015-1234 2015-04-01 19h00 +00:00 Race condition in gpu/command_buffer/service/gles2_cmd_decoder.cc in Google Chrome before 41.0.2272.118 allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact by manipulating OpenGL ES commands.
6.8
CVE-2015-0813 2015-04-01 08h00 +00:00 Use-after-free vulnerability in the AppendElements function in Mozilla Firefox before 37.0, Firefox ESR 31.x before 31.6, and Thunderbird before 31.6 on Linux, when the Fluendo MP3 plugin for GStreamer is used, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted MP3 file.
5.1
CVE-2015-1483 2015-03-06 01h00 +00:00 Symantec NetBackup OpsCenter 7.6.0.2 through 7.6.1 on Linux and UNIX allows remote attackers to execute arbitrary JavaScript code via unspecified vectors.
7.5
CVE-2014-4813 2015-02-13 01h00 +00:00 Race condition in the client in IBM Tivoli Storage Manager (TSM) 5.4.0.0 through 5.4.3.6, 5.5.0.0 through 5.5.4.3, 6.1.0.0 through 6.1.5.6, 6.2 before 6.2.5.4, 6.3 before 6.3.2.3, 6.4 before 6.4.2.1, and 7.1 before 7.1.1 on UNIX and Linux allows local users to obtain root privileges via unspecified vectors.
6.9
CVE-2014-6154 2015-02-13 01h00 +00:00 Directory traversal vulnerability in IBM Optim Performance Manager for DB2 4.1.0.1 through 4.1.1 on Linux, UNIX, and Windows and IBM InfoSphere Optim Performance Manager for DB2 5.1 through 5.3.1 on Linux, UNIX, and Windows allows remote attackers to access arbitrary files via a .. (dot dot) in a URL.
7.8
CVE-2015-0301 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 do not properly validate files, which has unspecified impact and attack vectors.
10
CVE-2015-0302 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to obtain sensitive keystroke information via unspecified vectors.
5
CVE-2015-0303 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-0306.
10
CVE-2015-0304 2015-01-13 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-0309.
10
CVE-2015-0305 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion."
9.3
CVE-2015-0306 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-0303.
10
CVE-2015-0307 2015-01-13 22h00 +00:00 Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allow remote attackers to obtain sensitive information from process memory or cause a denial of service (out-of-bounds read) via unspecified vectors.
8.5
CVE-2015-0308 2015-01-13 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2015-0309 2015-01-13 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.260 and 14.x through 16.x before 16.0.0.257 on Windows and OS X and before 11.2.202.429 on Linux, Adobe AIR before 16.0.0.245 on Windows and OS X and before 16.0.0.272 on Android, Adobe AIR SDK before 16.0.0.272, and Adobe AIR SDK & Compiler before 16.0.0.272 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2015-0304.
10
CVE-2014-9163 2014-12-10 21h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 13.0.0.259 and 14.x and 15.x before 15.0.0.246 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in December 2014.
9.8
Critical
CVE-2014-0580 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows remote attackers to bypass the Same Origin Policy via unspecified vectors.
10
CVE-2014-0587 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-9164.
10
CVE-2014-8443 2014-12-10 20h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-9162 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to obtain sensitive information via unspecified vectors.
10
CVE-2014-9164 2014-12-10 20h00 +00:00 Adobe Flash Player before 13.0.0.259 and 14.x through 16.x before 16.0.0.235 on Windows and OS X and before 11.2.202.425 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0587.
10
CVE-2014-0573 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0588 and CVE-2014-8438.
10
CVE-2014-0574 2014-11-11 22h00 +00:00 Double free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0576 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0581, CVE-2014-8440, and CVE-2014-8441.
10
CVE-2014-0577 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0584, CVE-2014-0585, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0581 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-8440, and CVE-2014-8441.
10
CVE-2014-0582 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0589.
10
CVE-2014-0583 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to complete a transition from Low Integrity to Medium Integrity via unspecified vectors.
7.5
CVE-2014-0584 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0585, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0585 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0586, and CVE-2014-0590.
10
CVE-2014-0586 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0585, and CVE-2014-0590.
10
CVE-2014-0588 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0573 and CVE-2014-8438.
10
CVE-2014-0589 2014-11-11 22h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0582.
10
CVE-2014-0590 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code by leveraging an unspecified "type confusion," a different vulnerability than CVE-2014-0577, CVE-2014-0584, CVE-2014-0585, and CVE-2014-0586.
10
CVE-2014-8437 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow remote attackers to discover session tokens via unspecified vectors.
5
CVE-2014-8438 2014-11-11 22h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0573 and CVE-2014-0588.
10
CVE-2014-8440 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-0581, and CVE-2014-8441.
10
CVE-2014-8441 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0576, CVE-2014-0581, and CVE-2014-8440.
10
CVE-2014-8442 2014-11-11 22h00 +00:00 Adobe Flash Player before 13.0.0.252 and 14.x and 15.x before 15.0.0.223 on Windows and OS X and before 11.2.202.418 on Linux, Adobe AIR before 15.0.0.356, Adobe AIR SDK before 15.0.0.356, and Adobe AIR SDK & Compiler before 15.0.0.356 allow attackers to complete a transition from Low Integrity to Medium Integrity by leveraging incorrect permissions.
7.5
CVE-2014-0490 2014-11-03 21h00 +00:00 The apt-get download command in APT before 1.0.9 does not properly validate signatures for packages, which allows remote attackers to execute arbitrary code via a crafted package.
7.5
CVE-2014-0558 2014-10-15 08h00 +00:00 Adobe Flash Player before 13.0.0.250 and 14.x and 15.x before 15.0.0.189 on Windows and OS X and before 11.2.202.411 on Linux, Adobe AIR before 15.0.0.293, Adobe AIR SDK before 15.0.0.302, and Adobe AIR SDK & Compiler before 15.0.0.302 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0564.
10
CVE-2014-0554 2014-09-10 08h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to bypass intended access restrictions via unspecified vectors.
10
CVE-2014-0547 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0548 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow remote attackers to bypass the Same Origin Policy via unspecified vectors.
7.5
CVE-2014-0549 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0550, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0550 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0551, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0551 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0552, and CVE-2014-0555.
10
CVE-2014-0552 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, and CVE-2014-0555.
10
CVE-2014-0553 2014-09-09 23h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0555 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2014-0547, CVE-2014-0549, CVE-2014-0550, CVE-2014-0551, and CVE-2014-0552.
10
CVE-2014-0556 2014-09-09 23h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0559.
10
CVE-2014-0557 2014-09-09 23h00 +00:00 Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
10
CVE-2014-0559 2014-09-09 23h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 13.0.0.244 and 14.x and 15.x before 15.0.0.152 on Windows and OS X and before 11.2.202.406 on Linux, Adobe AIR before 15.0.0.249 on Windows and OS X and before 15.0.0.252 on Android, Adobe AIR SDK before 15.0.0.249, and Adobe AIR SDK & Compiler before 15.0.0.249 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2014-0556.
10
CVE-2014-3094 2014-09-04 08h00 +00:00 Stack-based buffer overflow in IBM DB2 9.7 through FP9a, 9.8 through FP5, 10.1 through FP4, and 10.5 before FP4 on Linux, UNIX, and Windows allows remote authenticated users to execute arbitrary code via a crafted ALTER MODULE statement.
8.5
CVE-2014-3095 2014-09-04 08h00 +00:00 The SQL engine in IBM DB2 9.5 through FP10, 9.7 through FP9a, 9.8 through FP5, 10.1 through FP4, and 10.5 before FP4 on Linux, UNIX, and Windows allows remote authenticated users to cause a denial of service (daemon crash) via a crafted UNION clause in a subquery of a SELECT statement.
3.5
CVE-2014-4805 2014-09-04 08h00 +00:00 IBM DB2 10.5 before FP4 on Linux and AIX creates temporary files during CDE table LOAD operations, which allows local users to obtain sensitive information by reading a file while a LOAD is occurring.
2.1
CVE-2013-5467 2014-08-29 08h00 +00:00 Monitoring Agent for UNIX Logs 6.2.0 through FP03, 6.2.1 through FP04, 6.2.2 through FP09, and 6.2.3 through FP04 and Monitoring Server (ms) and Shared Libraries (ax) 6.2.0 through FP03, 6.2.1 through FP04, 6.2.2 through FP08, 6.2.3 through FP01, and 6.3.0 through FP01 in IBM Tivoli Monitoring (ITM) on UNIX allow local users to gain privileges via unspecified vectors.
7.2
CVE-2014-4806 2014-08-29 08h00 +00:00 The installation process in IBM Security AppScan Enterprise 8.x before 8.6.0.2 iFix 003, 8.7.x before 8.7.0.1 iFix 003, 8.8.x before 8.8.0.1 iFix 002, and 9.0.x before 9.0.0.1 iFix 001 on Linux places a cleartext password in a temporary file, which allows local users to obtain sensitive information by reading this file.
5.5
Medium
CVE-2014-5333 2014-08-19 08h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API, in conjunction with a manipulation involving a '$' (dollar sign) or '(' (open parenthesis) character. NOTE: this issue exists because of an incomplete fix for CVE-2014-4671.
4.3
CVE-2014-0538 2014-08-12 20h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0540 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0542, CVE-2014-0543, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0541 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 allow attackers to bypass intended access restrictions via unspecified vectors.
10
CVE-2014-0542 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0543, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0543 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0544, and CVE-2014-0545.
10
CVE-2014-0544 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0543, and CVE-2014-0545.
10
CVE-2014-0545 2014-08-12 20h00 +00:00 Adobe Flash Player before 13.0.0.241 and 14.x before 14.0.0.176 on Windows and OS X and before 11.2.202.400 on Linux, Adobe AIR before 14.0.0.178 on Windows and OS X and before 14.0.0.179 on Android, Adobe AIR SDK before 14.0.0.178, and Adobe AIR SDK & Compiler before 14.0.0.178 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2014-0540, CVE-2014-0542, CVE-2014-0543, and CVE-2014-0544.
10
CVE-2014-3532 2014-07-19 17h00 +00:00 dbus 1.3.0 before 1.6.22 and 1.8.x before 1.8.6, when running on Linux 2.6.37-rc4 or later, allows local users to cause a denial of service (system-bus disconnect of other services or applications) by sending a message containing a file descriptor, then exceeding the maximum recursion depth before the initial message is forwarded.
2.1
CVE-2014-0537 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0539.
7.5
CVE-2014-0539 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0537.
7.5
CVE-2014-4671 2014-07-08 23h00 +00:00 Adobe Flash Player before 13.0.0.231 and 14.x before 14.0.0.145 on Windows and OS X and before 11.2.202.394 on Linux, Adobe AIR before 14.0.0.137 on Android, Adobe AIR SDK before 14.0.0.137, and Adobe AIR SDK & Compiler before 14.0.0.137 do not properly restrict the SWF file format, which allows remote attackers to conduct cross-site request forgery (CSRF) attacks against JSONP endpoints, and obtain sensitive information, via a crafted OBJECT element with SWF content satisfying the character-set requirements of a callback API.
4.3
CVE-2014-2612 2014-06-28 13h00 +00:00 Unspecified vulnerability in HP Release Control 9.x before 9.13 p3 and 9.2x before RC 9.21.0003 p1 on Windows and 9.2x before RC 9.21.0002 p1 on Linux allows remote authenticated users to obtain sensitive information via unknown vectors.
4
CVE-2014-2613 2014-06-28 13h00 +00:00 Unspecified vulnerability in HP Release Control 9.x before 9.13 p3 and 9.2x before RC 9.21.0003 p1 on Windows and 9.2x before RC 9.21.0002 p1 on Linux allows remote authenticated users to gain privileges via unknown vectors.
9
CVE-2014-0531 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0532 and CVE-2014-0533.
4.3
CVE-2014-0532 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0531 and CVE-2014-0533.
4.3
CVE-2014-0533 2014-06-11 08h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, a different vulnerability than CVE-2014-0531 and CVE-2014-0532.
4.3
CVE-2014-0534 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0535.
7.5
CVE-2014-0535 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0534.
7.5
CVE-2014-0536 2014-06-11 08h00 +00:00 Adobe Flash Player before 13.0.0.223 and 14.x before 14.0.0.125 on Windows and OS X and before 11.2.202.378 on Linux, Adobe AIR before 14.0.0.110, Adobe AIR SDK before 14.0.0.110, and Adobe AIR SDK & Compiler before 14.0.0.110 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2014-0516 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow remote attackers to bypass the Same Origin Policy via unspecified vectors.
7.5
CVE-2014-0517 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0518, CVE-2014-0519, and CVE-2014-0520.
7.5
CVE-2014-0518 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0519, and CVE-2014-0520.
7.5
CVE-2014-0519 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0518, and CVE-2014-0520.
7.5
CVE-2014-0520 2014-05-14 08h00 +00:00 Adobe Flash Player before 13.0.0.214 on Windows and OS X and before 11.2.202.359 on Linux, Adobe AIR SDK before 13.0.0.111, and Adobe AIR SDK & Compiler before 13.0.0.111 allow attackers to bypass intended access restrictions via unspecified vectors, a different vulnerability than CVE-2014-0517, CVE-2014-0518, and CVE-2014-0519.
7.5
CVE-2014-0515 2014-04-29 08h00 +00:00 Buffer overflow in Adobe Flash Player before 11.7.700.279 and 11.8.x through 13.0.x before 13.0.0.206 on Windows and OS X, and before 11.2.202.356 on Linux, allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in April 2014.
10
CVE-2014-0892 2014-04-23 17h00 +00:00 IBM Notes and Domino 8.5.x before 8.5.3 FP6 IF3 and 9.x before 9.0.1 FP1 on 32-bit Linux platforms use incorrect gcc options, which makes it easier for remote attackers to execute arbitrary code by leveraging the absence of the NX protection mechanism and placing crafted x86 code on the stack, aka SPR KLYH9GGS9W.
5
CVE-2014-0507 2014-04-08 19h00 +00:00 Buffer overflow in Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allows attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2014-0508 2014-04-08 19h00 +00:00 Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allow attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
5
CVE-2014-0509 2014-04-08 19h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 11.7.700.275 and 11.8.x through 13.0.x before 13.0.0.182 on Windows and OS X and before 11.2.202.350 on Linux, Adobe AIR before 13.0.0.83 on Android, Adobe AIR SDK before 13.0.0.83, and Adobe AIR SDK & Compiler before 13.0.0.83 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
4.3
CVE-2013-6208 2014-03-16 09h00 +00:00 Unspecified vulnerability in HP Smart Update Manager 5.3.5 before build 70 on Linux allows local users to gain privileges via unknown vectors.
7.2
CVE-2014-0503 2014-03-12 00h00 +00:00 Adobe Flash Player before 11.7.700.272 and 11.8.x through 12.0.x before 12.0.0.77 on Windows and OS X, and before 11.2.202.346 on Linux, allows remote attackers to bypass the Same Origin Policy via unspecified vectors.
6.4
CVE-2014-0504 2014-03-12 00h00 +00:00 Adobe Flash Player before 11.7.700.272 and 11.8.x through 12.0.x before 12.0.0.77 on Windows and OS X, and before 11.2.202.346 on Linux, allows attackers to read the clipboard via unspecified vectors.
5
CVE-2014-0498 2014-02-21 01h00 +00:00 Stack-based buffer overflow in Adobe Flash Player before 11.7.700.269 and 11.8.x through 12.0.x before 12.0.0.70 on Windows and Mac OS X and before 11.2.202.341 on Linux, Adobe AIR before 4.0.0.1628 on Android, Adobe AIR SDK before 4.0.0.1628, and Adobe AIR SDK & Compiler before 4.0.0.1628 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2014-0499 2014-02-21 01h00 +00:00 Adobe Flash Player before 11.7.700.269 and 11.8.x through 12.0.x before 12.0.0.70 on Windows and Mac OS X and before 11.2.202.341 on Linux, Adobe AIR before 4.0.0.1628 on Android, Adobe AIR SDK before 4.0.0.1628, and Adobe AIR SDK & Compiler before 4.0.0.1628 do not prevent access to address information, which makes it easier for attackers to bypass the ASLR protection mechanism via unspecified vectors.
7.8
CVE-2014-0497 2014-02-05 01h00 +00:00 Integer underflow in Adobe Flash Player before 11.7.700.261 and 11.8.x through 12.0.x before 12.0.0.44 on Windows and Mac OS X, and before 11.2.202.336 on Linux, allows remote attackers to execute arbitrary code via unspecified vectors.
9.8
Critical
CVE-2014-0491 2014-01-15 01h00 +00:00 Adobe Flash Player before 11.7.700.260 and 11.8.x and 11.9.x before 12.0.0.38 on Windows and Mac OS X and before 11.2.202.335 on Linux, Adobe AIR before 4.0.0.1390, Adobe AIR SDK before 4.0.0.1390, and Adobe AIR SDK & Compiler before 4.0.0.1390 allow attackers to bypass unspecified protection mechanisms via unknown vectors.
10
CVE-2014-0492 2014-01-15 01h00 +00:00 Adobe Flash Player before 11.7.700.260 and 11.8.x and 11.9.x before 12.0.0.38 on Windows and Mac OS X and before 11.2.202.335 on Linux, Adobe AIR before 4.0.0.1390, Adobe AIR SDK before 4.0.0.1390, and Adobe AIR SDK & Compiler before 4.0.0.1390 allow attackers to defeat the ASLR protection mechanism by leveraging an "address leak."
10
CVE-2013-6886 2013-12-28 01h00 +00:00 RealVNC VNC 5.0.6 on Mac OS X, Linux, and UNIX allows local users to gain privileges via a crafted argument to the (1) vncserver, (2) vncserver-x11, or (3) Xvnc helper.
7.2
CVE-2013-6672 2013-12-11 14h00 +00:00 Mozilla Firefox before 26.0 and SeaMonkey before 2.23 on Linux allow user-assisted remote attackers to read clipboard data by leveraging certain middle-click paste operations.
4.3
CVE-2013-4878 2013-07-18 16h00 +00:00 The default configuration of Parallels Plesk Panel 9.0.x and 9.2.x on UNIX, and Small Business Panel 10.x on UNIX, has an improper ScriptAlias directive for phppath, which makes it easier for remote attackers to execute arbitrary code via a crafted request, a different vulnerability than CVE-2012-1823.
7.5
CVE-2013-3344 2013-07-10 08h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-3345 2013-07-10 08h00 +00:00 Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-3347 2013-07-10 08h00 +00:00 Integer overflow in Adobe Flash Player before 11.7.700.232 and 11.8.x before 11.8.800.94 on Windows and Mac OS X, before 11.2.202.297 on Linux, before 11.1.111.64 on Android 2.x and 3.x, and before 11.1.115.69 on Android 4.x allows attackers to execute arbitrary code via PCM data that is not properly handled during resampling.
10
CVE-2013-4669 2013-06-25 14h00 +00:00 FortiClient before 4.3.5.472 on Windows, before 4.0.3.134 on Mac OS X, and before 4.0 on Android; FortiClient Lite before 4.3.4.461 on Windows; FortiClient Lite 2.0 through 2.0.0223 on Android; and FortiClient SSL VPN before 4.0.2258 on Linux proceed with an SSL session after determining that the server's X.509 certificate is invalid, which allows man-in-the-middle attackers to obtain sensitive information by leveraging a password transmission that occurs before the user warning about the certificate problem.
5.4
CVE-2013-2728 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3324 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3325 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3326 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3327 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3328 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3329 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3330 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3331 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3332, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3332 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3333, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3333 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3334, and CVE-2013-3335.
10
CVE-2013-3334 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, and CVE-2013-3335.
10
CVE-2013-3335 2013-05-16 08h00 +00:00 Adobe Flash Player before 10.3.183.86 and 11.x before 11.7.700.202 on Windows and Mac OS X, before 10.3.183.86 and 11.x before 11.2.202.285 on Linux, before 11.1.111.54 on Android 2.x and 3.x, and before 11.1.115.58 on Android 4.x; Adobe AIR before 3.7.0.1860; and Adobe AIR SDK & Compiler before 3.7.0.1860 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-2728, CVE-2013-3324, CVE-2013-3325, CVE-2013-3326, CVE-2013-3327, CVE-2013-3328, CVE-2013-3329, CVE-2013-3330, CVE-2013-3331, CVE-2013-3332, CVE-2013-3333, and CVE-2013-3334.
10
CVE-2013-2977 2013-05-10 08h00 +00:00 Integer overflow in IBM Notes 8.5.x before 8.5.3 FP4 Interim Fix 1 and 9.x before 9.0 Interim Fix 1 on Windows, and 8.5.x before 8.5.3 FP5 and 9.x before 9.0.1 on Linux, allows remote attackers to execute arbitrary code via a malformed PNG image in a previewed e-mail message, aka SPR NPEI96K82Q.
6.8
CVE-2013-1378 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-1380.
10
CVE-2013-1379 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 do not properly initialize pointer arrays, which allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-1380 2013-04-09 23h00 +00:00 Adobe Flash Player before 10.3.183.75 and 11.x before 11.7.700.169 on Windows and Mac OS X, before 10.3.183.75 and 11.x before 11.2.202.280 on Linux, before 11.1.111.50 on Android 2.x and 3.x, and before 11.1.115.54 on Android 4.x; Adobe AIR before 3.7.0.1530; and Adobe AIR SDK & Compiler before 3.7.0.1530 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2013-1378.
10
CVE-2013-0919 2013-03-28 10h00 +00:00 Use-after-free vulnerability in Google Chrome before 26.0.1410.43 on Linux allows remote attackers to cause a denial of service or possibly have unspecified other impact by leveraging the presence of an extension that creates a pop-up window.
7.5
CVE-2013-0646 2013-03-13 09h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-0650 2013-03-13 09h00 +00:00 Use-after-free vulnerability in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-1371 2013-03-13 09h00 +00:00 Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2013-1375 2013-03-13 09h00 +00:00 Heap-based buffer overflow in Adobe Flash Player before 10.3.183.68 and 11.x before 11.6.602.180 on Windows and Mac OS X, before 10.3.183.68 and 11.x before 11.2.202.275 on Linux, before 11.1.111.44 on Android 2.x and 3.x, and before 11.1.115.48 on Android 4.x; Adobe AIR before 3.6.0.6090; Adobe AIR SDK before 3.6.0.6090; and Adobe AIR SDK & Compiler before 3.6.0.6090 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2013-2268 2013-02-23 20h00 +00:00 Unspecified vulnerability in the MathML implementation in WebKit in Google Chrome before 25.0.1364.97 on Windows and Linux, and before 25.0.1364.99 on Mac OS X, has unknown impact and remote attack vectors, related to a "high severity security issue."
7.5
CVE-2012-6392 2013-01-17 15h00 +00:00 Cisco Prime LAN Management Solution (LMS) 4.1 through 4.2.2 on Linux does not properly validate authentication and authorization requests in TCP sessions, which allows remote attackers to execute arbitrary commands via a crafted session, aka Bug ID CSCuc79779.
10
CVE-2013-0838 2013-01-15 20h00 +00:00 Google Chrome before 24.0.1312.52 on Linux uses weak permissions for shared memory segments, which has unspecified impact and attack vectors.
7.5
CVE-2013-0630 2013-01-11 21h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.50 and 11.x before 11.5.502.146 on Windows and Mac OS X, before 10.3.183.50 and 11.x before 11.2.202.261 on Linux, before 11.1.111.31 on Android 2.x and 3.x, and before 11.1.115.36 on Android 4.x; Adobe AIR before 3.5.0.1060; and Adobe AIR SDK before 3.5.0.1060 allows attackers to execute arbitrary code via unspecified vectors.
10
CVE-2012-3329 2012-12-19 10h00 +00:00 IBM Advanced Settings Utility (ASU) through 3.62 and 3.70 through 9.21 and Bootable Media Creator (BoMC) through 2.30 and 3.00 through 9.21 on Linux allow local users to overwrite arbitrary files via a symlink attack on a (1) temporary file or (2) log file.
3.3
CVE-2012-5975 2012-12-04 23h00 +00:00 The SSH USERAUTH CHANGE REQUEST feature in SSH Tectia Server 6.0.4 through 6.0.20, 6.1.0 through 6.1.12, 6.2.0 through 6.2.5, and 6.3.0 through 6.3.2 on UNIX and Linux, when old-style password authentication is enabled, allows remote attackers to bypass authentication via a crafted session involving entry of blank passwords, as demonstrated by a root login session from a modified OpenSSH client with an added input_userauth_passwd_changereq call in sshconnect2.c.
9.3
CVE-2012-5286 2012-11-13 10h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5287 2012-11-13 10h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5128 2012-11-07 10h00 +00:00 Google V8 before 3.13.7.5, as used in Google Chrome before 23.0.1271.64, does not properly perform write operations, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors.
7.5
CVE-2012-3151 2012-10-16 21h00 +00:00 Unspecified vulnerability in the Core RDBMS component in Oracle Database Server 10.2.0.4, 10.2.0.5, 11.1.0.7, 11.2.0.2, and 11.2.0.3, when running on Unix and Linux platforms, allows local users to affect integrity and availability via unknown vectors.
3.3
CVE-2012-5248 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5249 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5250 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5251 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5252 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5253 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5254 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5255 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5256 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5257 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5258 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5259 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5260 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5261 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5262 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5263 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5264 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5265 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5266 2012-10-09 08h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than other Flash Player buffer overflow CVEs listed in APSB12-22.
10
CVE-2012-5267 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5268 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5269 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5270 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5271 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-5272 2012-10-09 08h00 +00:00 Adobe Flash Player before 10.3.183.29 and 11.x before 11.4.402.287 on Windows and Mac OS X, before 10.3.183.29 and 11.x before 11.2.202.243 on Linux, before 11.1.111.19 on Android 2.x and 3.x, and before 11.1.115.20 on Android 4.x; Adobe AIR before 3.4.0.2710; and Adobe AIR SDK before 3.4.0.2710 allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than other Flash Player memory corruption CVEs listed in APSB12-22.
10
CVE-2012-3094 2012-09-16 08h00 +00:00 The VPN downloader in the download_install component in Cisco AnyConnect Secure Mobility Client 3.1.x before 3.1.00495 on Linux accepts arbitrary X.509 server certificates without user interaction, which allows remote attackers to obtain sensitive information via vectors involving an invalid certificate, aka Bug ID CSCua11967.
5
CVE-2012-4171 2012-08-31 17h00 +00:00 Adobe Flash Player before 10.3.183.23 and 11.x before 11.4.402.265 on Windows and Mac OS X, before 10.3.183.23 and 11.x before 11.2.202.238 on Linux, before 11.1.111.16 on Android 2.x and 3.x, and before 11.1.115.17 on Android 4.x; Adobe AIR before 3.4.0.2540; and Adobe AIR SDK before 3.4.0.2540 allow attackers to cause a denial of service (application crash) by leveraging a logic error during handling of Firefox dialogs.
5
CVE-2012-3967 2012-08-29 08h00 +00:00 The WebGL implementation in Mozilla Firefox before 15.0, Firefox ESR 10.x before 10.0.7, Thunderbird before 15.0, Thunderbird ESR 10.x before 10.0.7, and SeaMonkey before 2.12 on Linux, when a large number of sampler uniforms are used, does not properly interact with Mesa drivers, which allows remote attackers to execute arbitrary code or cause a denial of service (stack memory corruption) via a crafted web site.
9.3
CVE-2012-0713 2012-08-24 08h00 +00:00 Unspecified vulnerability in the XML feature in IBM DB2 9.7 before FP6 on Linux, UNIX, and Windows allows remote authenticated users to read arbitrary XML files via unknown vectors.
3.5
CVE-2012-4363 2012-08-21 08h00 +00:00 Multiple unspecified vulnerabilities in Adobe Reader through 10.1.4 allow remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted PDF document, related to "sixteen more crashes affecting Windows, OS X, or both systems."
9.3
CVE-2012-4142 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, ignores some characters in HTML documents in unspecified circumstances, which makes it easier for remote attackers to conduct cross-site scripting (XSS) attacks via a crafted document.
4.3
CVE-2012-4143 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, allows user-assisted remote attackers to trick users into downloading and executing arbitrary files via a small window for the download dialog, a different vulnerability than CVE-2012-1924.
6.8
CVE-2012-4144 2012-08-06 16h00 +00:00 Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, does not properly escape characters in DOM elements, which makes it easier for remote attackers to bypass cross-site scripting (XSS) protection mechanisms via a crafted HTML document.
4.3
CVE-2012-4145 2012-08-06 16h00 +00:00 Unspecified vulnerability in Opera before 12.01 on Windows and UNIX, and before 11.66 and 12.x before 12.01 on Mac OS X, has unknown impact and attack vectors, related to a "low severity issue."
10
CVE-2012-2846 2012-08-06 15h00 +00:00 Google Chrome before 21.0.1180.57 on Linux does not properly isolate renderer processes, which allows remote attackers to cause a denial of service (cross-process interference) via unspecified vectors.
5
CVE-2012-2859 2012-08-06 15h00 +00:00 Google Chrome before 21.0.1180.57 on Linux does not properly handle tabs, which allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via unspecified vectors.
7.5
CVE-2012-2847 2012-08-06 13h00 +00:00 Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not request user confirmation before continuing a large series of downloads, which allows user-assisted remote attackers to cause a denial of service (resource consumption) via a crafted web site.
4.3
CVE-2012-2848 2012-08-06 13h00 +00:00 The drag-and-drop implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows user-assisted remote attackers to bypass intended file access restrictions via a crafted web site.
4.3
CVE-2012-2849 2012-08-06 13h00 +00:00 Off-by-one error in the GIF decoder in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted image.
4.3
CVE-2012-2850 2012-08-06 13h00 +00:00 Multiple unspecified vulnerabilities in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allow remote attackers to have an unknown impact via a crafted document.
6.8
CVE-2012-2851 2012-08-06 13h00 +00:00 Multiple integer overflows in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allow remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2852 2012-08-06 13h00 +00:00 The PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not properly handle object linkage, which allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2853 2012-08-06 13h00 +00:00 The webRequest API in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, does not properly interact with the Chrome Web Store, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted web site.
6.8
CVE-2012-2854 2012-08-06 13h00 +00:00 Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to obtain potentially sensitive information about pointer values by leveraging access to a WebUI renderer process.
5
CVE-2012-2855 2012-08-06 13h00 +00:00 Use-after-free vulnerability in the PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2856 2012-08-06 13h00 +00:00 The PDF functionality in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that trigger out-of-bounds write operations.
7.5
CVE-2012-2857 2012-08-06 13h00 +00:00 Use-after-free vulnerability in the Cascading Style Sheets (CSS) DOM implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted document.
6.8
CVE-2012-2858 2012-08-06 13h00 +00:00 Buffer overflow in the WebP decoder in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted WebP image.
6.8
CVE-2012-2860 2012-08-06 13h00 +00:00 The date-picker implementation in Google Chrome before 21.0.1180.57 on Mac OS X and Linux, and before 21.0.1180.60 on Windows and Chrome Frame, allows user-assisted remote attackers to cause a denial of service or possibly have unspecified other impact via a crafted web site.
6.8
CVE-2012-2012 2012-06-29 22h00 +00:00 HP System Management Homepage (SMH) before 7.1.1 does not have an off autocomplete attribute for unspecified form fields, which makes it easier for remote attackers to obtain access by leveraging an unattended workstation.
10
CVE-2012-2013 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows remote attackers to cause a denial of service, or possibly obtain sensitive information or modify data, via unknown vectors.
7.5
CVE-2012-2014 2012-06-29 22h00 +00:00 HP System Management Homepage (SMH) before 7.1.1 does not properly validate input, which allows remote authenticated users to have an unspecified impact via unknown vectors.
9
CVE-2012-2015 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows remote authenticated users to gain privileges and obtain sensitive information via unknown vectors.
9
CVE-2012-2016 2012-06-29 22h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) before 7.1.1 allows local users to obtain sensitive information via unknown vectors.
4.9
CVE-2012-2493 2012-06-20 20h00 +00:00 The VPN downloader implementation in the WebLaunch feature in Cisco AnyConnect Secure Mobility Client 2.x before 2.5 MR6 on Windows, and 2.x before 2.5 MR6 and 3.x before 3.0 MR8 on Mac OS X and Linux, does not properly validate binaries that are received by the downloader process, which allows remote attackers to execute arbitrary code via vectors involving (1) ActiveX or (2) Java components, aka Bug ID CSCtw47523.
9.3
CVE-2011-3109 2012-05-24 16h00 +00:00 Google Chrome before 19.0.1084.52 on Linux does not properly perform a cast of an unspecified variable, which allows remote attackers to cause a denial of service or possibly have unknown other impact by leveraging an error in the GTK implementation of the UI.
7.5
CVE-2012-0711 2012-03-20 19h00 +00:00 Integer signedness error in the db2dasrrm process in the DB2 Administration Server (DAS) in IBM DB2 9.1 through FP11, 9.5 before FP9, and 9.7 through FP5 on UNIX platforms allows remote attackers to execute arbitrary code via a crafted request that triggers a heap-based buffer overflow.
7.5
CVE-2012-1796 2012-03-20 19h00 +00:00 Unspecified vulnerability in IBM Tivoli Monitoring Agent (ITMA), as used in IBM DB2 9.5 before FP9 on UNIX, allows local users to gain privileges via unknown vectors.
7.2
CVE-2012-0768 2012-03-05 20h00 +00:00 The Matrix3D component in Adobe Flash Player before 10.3.183.16 and 11.x before 11.1.102.63 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.7 on Android 2.x and 3.x; and before 11.1.115.7 on Android 4.x allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
10
CVE-2012-0769 2012-03-05 20h00 +00:00 Adobe Flash Player before 10.3.183.16 and 11.x before 11.1.102.63 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.7 on Android 2.x and 3.x; and before 11.1.115.7 on Android 4.x does not properly handle integers, which allows attackers to obtain sensitive information via unspecified vectors.
5
CVE-2010-4563 2012-02-02 17h00 +00:00 The Linux kernel, when using IPv6, allows remote attackers to determine whether a host is sniffing the network by sending an ICMPv6 Echo Request to a multicast address and determining whether an Echo Reply is sent, as demonstrated by thcping.
5
CVE-2011-4194 2012-02-02 02h00 +00:00 Buffer overflow in Novell iPrint Server in Novell Open Enterprise Server 2 (OES2) through SP3 on Linux allows remote attackers to execute arbitrary code via a crafted attributes-natural-language field.
7.5
CVE-2012-0450 2012-02-01 15h00 +00:00 Mozilla Firefox 4.x through 9.0 and SeaMonkey before 2.7 on Linux and Mac OS X set weak permissions for Firefox Recovery Key.html, which might allow local users to read a Firefox Sync key via standard filesystem operations.
2.1
CVE-2011-4160 2011-11-24 01h00 +00:00 Unspecified vulnerability in HP Operations Agent 11.00 and Performance Agent 4.73 and 5.0 on AIX, HP-UX, Linux, and Solaris allows local users to bypass intended directory-access restrictions via unknown vectors.
3.2
CVE-2011-2426 2011-09-21 23h00 +00:00 Stack-based buffer overflow in the ActionScript Virtual Machine (AVM) component in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2011-2427 2011-09-21 23h00 +00:00 Stack-based buffer overflow in the ActionScript Virtual Machine (AVM) component in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to execute arbitrary code or cause a denial of service via unspecified vectors.
9.3
CVE-2011-2428 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to execute arbitrary code or cause a denial of service (browser crash) via unspecified vectors, related to a "logic error issue."
9.3
CVE-2011-2429 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors, related to a "security control bypass."
5
CVE-2011-2430 2011-09-21 23h00 +00:00 Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to execute arbitrary code via crafted streaming media, related to a "logic error vulnerability."
9.3
CVE-2011-2444 2011-09-21 23h00 +00:00 Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 10.3.183.10 on Windows, Mac OS X, Linux, and Solaris, and before 10.3.186.7 on Android, allows remote attackers to inject arbitrary web script or HTML via a crafted URL, related to a "universal cross-site scripting issue," as exploited in the wild in September 2011.
4.3
CVE-2011-2837 2011-09-17 08h00 +00:00 Google Chrome before 14.0.835.163 on Linux does not use the PIC and PIE compiler options for position-independent code, which has unspecified impact and attack vectors.
7.5
CVE-2011-2424 2011-08-15 19h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted SWF file, as demonstrated by "about 400 unique crash signatures."
9.3
CVE-2011-2729 2011-08-15 19h00 +00:00 native/unix/native/jsvc-unix.c in jsvc in the Daemon component 1.0.3 through 1.0.6 in Apache Commons, as used in Apache Tomcat 5.5.32 through 5.5.33, 6.0.30 through 6.0.32, and 7.0.x before 7.0.20 on Linux, does not drop capabilities, which allows remote attackers to bypass read permissions for files via a request to an application.
5
CVE-2011-2135 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2140, CVE-2011-2417, and CVE-2011-2425.
10
CVE-2011-2136 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2138 and CVE-2011-2416.
10
CVE-2011-2138 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2136 and CVE-2011-2416.
10
CVE-2011-2139 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows remote attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
6.4
CVE-2011-2140 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2417, and CVE-2011-2425.
10
CVE-2011-2414 2011-08-10 20h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2137, and CVE-2011-2415.
10
CVE-2011-2415 2011-08-10 20h00 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2137, and CVE-2011-2414.
10
CVE-2011-2416 2011-08-10 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2136 and CVE-2011-2138.
10
CVE-2011-2417 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2140, and CVE-2011-2425.
10
CVE-2011-2425 2011-08-10 20h00 +00:00 Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-2135, CVE-2011-2140, and CVE-2011-2417.
10
CVE-2011-3123 2011-08-10 20h00 +00:00 IBM InfoSphere Information Server 8.5 and 8.5.0.1 on Unix and Linux, as used in IBM InfoSphere DataStage 8.5 and 8.5.0.1 and other products, uses weak permissions for unspecified files, which allows local users to gain privileges via unknown vectors.
7.2
CVE-2011-3124 2011-08-10 20h00 +00:00 IBM InfoSphere Information Server 8.5 and 8.5.0.1 on Unix and Linux, as used in IBM InfoSphere DataStage 8.5 and 8.5.0.1 and other products, assigns incorrect ownership to unspecified files, which allows local users to gain privileges via unknown vectors.
7.2
CVE-2011-2130 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2134, CVE-2011-2137, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-2134 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2137, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-2137 2011-08-10 19h16 +00:00 Buffer overflow in Adobe Flash Player before 10.3.183.5 on Windows, Mac OS X, Linux, and Solaris and before 10.3.186.3 on Android, and Adobe AIR before 2.7.1 on Windows and Mac OS X and before 2.7.1.1961 on Android, allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2011-2130, CVE-2011-2134, CVE-2011-2414, and CVE-2011-2415.
10
CVE-2011-1412 2011-08-03 23h00 +00:00 sys/sys_unix.c in the ioQuake3 engine on Unix and Linux, as used in World of Padman 1.5.x before 1.5.1.1 and OpenArena 0.8.x-15 and 0.8.x-16, allows remote game servers to execute arbitrary commands via shell metacharacters in a long fs_game variable.
7.5
CVE-2011-2887 2011-07-27 18h00 +00:00 IBM Lotus Symphony 3 before FP3 on Linux allows remote attackers to cause a denial of service (application crash) via a certain sample document.
4.3
CVE-2011-2110 2011-06-16 21h00 +00:00 Adobe Flash Player before 10.3.181.26 on Windows, Mac OS X, Linux, and Solaris, and 10.3.185.23 and earlier on Android, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, as exploited in the wild in June 2011.
10
CVE-2011-2040 2011-06-02 17h00 +00:00 The helper application in Cisco AnyConnect Secure Mobility Client (formerly AnyConnect VPN Client) before 2.5.3041, and 3.0.x before 3.0.629, on Linux and Mac OS X downloads a client executable file (vpndownloader.exe) without verifying its authenticity, which allows remote attackers to execute arbitrary code via the url property to a Java applet, aka Bug ID CSCsy05934.
9.3
CVE-2011-0628 2011-05-31 18h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows remote attackers to execute arbitrary code via ActionScript that improperly handles a long array object.
9.3
CVE-2011-0579 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to obtain sensitive information via unspecified vectors.
5
CVE-2011-0618 2011-05-13 20h00 +00:00 Integer overflow in Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors.
9.3
CVE-2011-0619 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0620, CVE-2011-0621, and CVE-2011-0622.
9.3
CVE-2011-0620 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0621, and CVE-2011-0622.
9.3
CVE-2011-0621 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0622.
9.3
CVE-2011-0622 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2011-0619, CVE-2011-0620, and CVE-2011-0621.
9.3
CVE-2011-0623 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0624, CVE-2011-0625, and CVE-2011-0626.
9.3
CVE-2011-0624 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0625, and CVE-2011-0626.
9.3
CVE-2011-0625 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0624, and CVE-2011-0626.
9.3
CVE-2011-0626 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows attackers to execute arbitrary code via unspecified vectors, related to a "bounds checking" issue, a different vulnerability than CVE-2011-0623, CVE-2011-0624, and CVE-2011-0625.
9.3
CVE-2011-0627 2011-05-13 20h00 +00:00 Adobe Flash Player before 10.3.181.14 on Windows, Mac OS X, Linux, and Solaris and before 10.3.185.21 on Android allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted Flash content, as possibly exploited in the wild in May 2011 by a Microsoft Office document with an embedded .swf file.
9.3
CVE-2010-4785 2011-04-21 10h00 +00:00 The do_extendedOp function in ibmslapd in IBM Tivoli Directory Server (TDS) 6.0 before 6.0.0.62 (aka 6.0.0.8-TIV-ITDS-IF0004) on Linux, Solaris, and Windows allows remote authenticated users to cause a denial of service (ABEND) via a malformed LDAP extended operation that triggers certain comparisons involving the NULL operation OID.
4
CVE-2011-1126 2011-04-01 19h00 +00:00 VMware vmrun, as used in VIX API 1.x before 1.10.3 and VMware Workstation 6.5.x and 7.x before 7.1.4 build 385536 on Linux, might allow local users to gain privileges via a Trojan horse shared library in an unspecified directory.
6.9
CVE-2010-4773 2011-03-23 20h00 +00:00 Unspecified vulnerability in Hitachi EUR Form Client before 05-10 -/D 2010.11.15 and 05-10-CA (* 2) 2010.11.15; Hitachi EUR Form Service before 05-10 -/D 2010.11.15; and uCosminexus EUR Form Service before 07-60 -/D 2010.11.15 on Windows, before 05-10 -/D 2010.11.15 and 07-50 -/D 2010.11.15 on Linux, and before 07-50 -/C 2010.11.15 on AIX; allows remote attackers to execute arbitrary code via unknown attack vectors.
10
CVE-2010-4111 2010-12-22 19h00 +00:00 Cross-site scripting (XSS) vulnerability in HP Insight Diagnostics Online Edition before 8.5.1.3712 allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
4.3
CVE-2010-0121 2010-12-14 14h00 +00:00 The cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 does not properly perform initialization, which has unspecified impact and attack vectors.
10
CVE-2010-2579 2010-12-14 14h00 +00:00 The cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 does not properly initialize the number of channels, which allows attackers to obtain unspecified "memory access" via unknown vectors.
5
CVE-2010-2997 2010-12-14 14h00 +00:00 Use-after-free vulnerability in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.0.1, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted StreamTitle tag in an ICY SHOUTcast stream, related to the SMIL file format.
9.3
CVE-2010-2999 2010-12-14 14h00 +00:00 Integer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.0.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a malformed MLLT atom in an AAC file.
9.3
CVE-2010-4375 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via malformed multi-rate data in an audio stream.
9.3
CVE-2010-4376 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a large Screen Width value in the Screen Descriptor header of a GIF87a file in an RTSP stream.
9.3
CVE-2010-4377 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code by specifying many subbands in cook audio codec information in a Real Audio file.
9.3
CVE-2010-4378 2010-12-14 14h00 +00:00 The drv2.dll (aka RV20 decompression) module in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, RealPlayer Enterprise 2.1.2 and 2.1.3, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted value of an unspecified length field in an RV20 video stream.
9.3
CVE-2010-4379 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via a crafted SIPR file.
9.3
CVE-2010-4382 2010-12-14 14h00 +00:00 Multiple heap-based buffer overflows in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allow remote attackers to have an unspecified impact via a crafted RealMedia file.
9.3
CVE-2010-4383 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 12.0.0.1444, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via a crafted RA5 file.
9.3
CVE-2010-4384 2010-12-14 14h00 +00:00 Array index error in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer Enterprise 2.1.2, Mac RealPlayer 11.0 through 11.1, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via a malformed Media Properties Header (aka MDPR) in a RealMedia file.
9.3
CVE-2010-4385 2010-12-14 14h00 +00:00 Integer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, RealPlayer Enterprise 2.1.2, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to have an unspecified impact via crafted frame dimensions in an SIPR stream.
9.3
CVE-2010-4386 2010-12-14 14h00 +00:00 RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allow remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted RealMedia video file.
9.3
CVE-2010-4387 2010-12-14 14h00 +00:00 The RealAudio codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.4, Mac RealPlayer 11.0 through 12.0.0.1444, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted audio stream in a RealMedia file.
9.3
CVE-2010-4389 2010-12-14 14h00 +00:00 Heap-based buffer overflow in the cook codec in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via unspecified data in the initialization buffer.
9.3
CVE-2010-4390 2010-12-14 14h00 +00:00 Multiple heap-based buffer overflows in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allow remote attackers to have an unspecified impact via a crafted header in an IVR file.
9.3
CVE-2010-4392 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, RealPlayer Enterprise 2.1.2 and 2.1.3, Linux RealPlayer 11.0.2.1744, and possibly HelixPlayer 1.0.6 and other versions, allows remote attackers to execute arbitrary code via crafted ImageMap data in a RealMedia file, related to certain improper integer calculations.
9.3
CVE-2010-4395 2010-12-14 14h00 +00:00 Heap-based buffer overflow in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.5, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a crafted conditional component in AAC frame data.
9.3
CVE-2010-4397 2010-12-14 14h00 +00:00 Integer overflow in the pnen3260.dll module in RealNetworks RealPlayer 11.0 through 11.1, RealPlayer SP 1.0 through 1.1.1, Mac RealPlayer 11.0 through 11.1, and Linux RealPlayer 11.0.2.1744 allows remote attackers to execute arbitrary code via a crafted TIT2 atom in an AAC file.
9.3
CVE-2010-4302 2010-11-22 19h00 +00:00 /opt/rv/Versions/CurrentVersion/Mcu/Config/Mcu.val in Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, uses a weak hashing algorithm for the (1) administrator and (2) operator passwords, which makes it easier for local users to obtain sensitive information by recovering the cleartext values, aka Bug ID CSCti54010.
4.9
CVE-2010-4303 2010-11-22 19h00 +00:00 Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, uses world-readable permissions for the /etc/shadow file, which allows local users to discover encrypted passwords by reading this file, aka Bug ID CSCti54043.
4.9
CVE-2010-3038 2010-11-22 18h00 +00:00 Cisco Unified Videoconferencing (UVC) System 5110 and 5115, when the Linux operating system is used, has a default password for the (1) root, (2) cs, and (3) develop accounts, which makes it easier for remote attackers to obtain access via the (a) FTP or (b) SSH daemon, aka Bug ID CSCti54008.
10
CVE-2010-3654 2010-10-29 16h00 +00:00 Adobe Flash Player before 9.0.289.0 and 10.x before 10.1.102.64 on Windows, Mac OS X, Linux, and Solaris and 10.1.95.1 on Android, and authplay.dll (aka AuthPlayLib.bundle or libauthplay.so.0.0.0) in Adobe Reader and Acrobat 9.x through 9.4, allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption and application crash) via crafted SWF content, as exploited in the wild in October 2010.
9.3
CVE-2010-3416 2010-09-16 18h00 +00:00 Google Chrome before 6.0.472.59 on Linux does not properly implement the Khmer locale, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors.
9.8
Critical
CVE-2010-3009 2010-09-15 17h26 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) for Linux 6.0 and 6.1 allows remote authenticated users to obtain sensitive information and gain root privileges via unknown vectors.
9
CVE-2010-2217 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to execute arbitrary code via unspecified vectors, related to a "JS method vulnerability."
10
CVE-2010-2218 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service via unspecified vectors, related to a "JS method issue."
5
CVE-2010-2219 2010-08-11 18h00 +00:00 Unspecified vulnerability in Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service (memory consumption) via unknown vectors.
5
CVE-2010-2220 2010-08-11 18h00 +00:00 Adobe Flash Media Server (FMS) before 3.0.6, and 3.5.x before 3.5.4, allows attackers to cause a denial of service via unspecified vectors, related to an "input validation issue."
5
CVE-2010-2221 2010-07-08 16h00 +00:00 Multiple buffer overflows in the iSNS implementation in isns.c in (1) Linux SCSI target framework (aka tgt or scsi-target-utils) before 1.0.6, (2) iSCSI Enterprise Target (aka iscsitarget or IET) 1.4.20.1 and earlier, and (3) Generic SCSI Target Subsystem for Linux (aka SCST or iscsi-scst) 1.0.1.1 and earlier allow remote attackers to cause a denial of service (memory corruption and daemon crash) or possibly execute arbitrary code via (a) a long iSCSI Name string in an SCN message or (b) an invalid PDU.
5
CVE-2010-2027 2010-05-24 17h00 +00:00 Mathematica 7, when running on Linux, allows local users to overwrite arbitrary files via a symlink attack on (1) files within /tmp/MathLink/ or (2) /tmp/fonts$$.conf.
1.9
CVE-2010-1034 2010-04-23 12h00 +00:00 Unspecified vulnerability in HP System Management Homepage (SMH) 6.0 before 6.0.0-95 on Linux, and 6.0 before 6.0.0.96 on Windows, allows remote authenticated users to obtain sensitive information, modify data, and cause a denial of service via unknown vectors.
4.6
CVE-2010-1139 2010-04-12 16h00 +00:00 Format string vulnerability in vmrun in VMware VIX API 1.6.x, VMware Workstation 6.5.x before 6.5.4 build 246459, VMware Player 2.5.x before 2.5.4 build 246459, and VMware Server 2.x on Linux, and VMware Fusion 2.x before 2.0.7 build 246742, allows local users to gain privileges via format string specifiers in process metadata.
7.2
CVE-2010-1347 2010-04-12 15h00 +00:00 Director Agent 6.1 before 6.1.2.3 in IBM Systems Director on AIX and Linux uses incorrect permissions for the (1) diruninstall and (2) opt/ibm/director/bin/wcitinst scripts, which allows local users to gain privileges by executing these scripts.
7.2
CVE-2009-4664 2010-03-03 19h00 +00:00 Firewall Builder 3.0.4, 3.0.5, and 3.0.6, when running on Linux, allows local users to gain privileges via a symlink attack on an unspecified temporary file that is created by the iptables script.
3.3
CVE-2010-0148 2010-02-23 19h00 +00:00 Unspecified vulnerability in Cisco Security Agent 5.2 before 5.2.0.285, when running on Linux, allows remote attackers to cause a denial of service (kernel panic) via "a series of TCP packets."
7.8
CVE-2010-0312 2010-01-14 19h00 +00:00 The do_extendedOp function in ibmslapd in IBM Tivoli Directory Server (TDS) 6.2 on Linux allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted SecureWay 3.2 Event Registration Request (aka a 1.3.18.0.2.12.1 request).
5
CVE-2009-3875 2009-11-05 15h00 +00:00 The MessageDigest.isEqual function in Java Runtime Environment (JRE) in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to spoof HMAC-based digital signatures, and possibly bypass authentication, via unspecified vectors related to "timing attack vulnerabilities," aka Bug Id 6863503.
5
CVE-2009-3876 2009-11-05 15h00 +00:00 Unspecified vulnerability in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to cause a denial of service (memory consumption) via crafted DER encoded data, which is not properly decoded by the ASN.1 DER input stream parser, aka Bug Id 6864911.
5
CVE-2009-3877 2009-11-05 15h00 +00:00 Unspecified vulnerability in Sun Java SE in JDK and JRE 5.0 before Update 22, JDK and JRE 6 before Update 17, SDK and JRE 1.3.x before 1.3.1_27, and SDK and JRE 1.4.x before 1.4.2_24 allows remote attackers to cause a denial of service (memory consumption) via crafted HTTP headers, which are not properly parsed by the ASN.1 DER input stream parser, aka Bug Id 6864911.
5
CVE-2009-3088 2009-09-08 18h00 +00:00 Heap-based buffer overflow in ibmdiradm in IBM Tivoli Directory Server (TDS) 6.0 on Linux allows remote attackers to have an unspecified impact via unknown vectors that trigger heap corruption, as demonstrated by a certain module in VulnDisco Pack Professional 8.11. NOTE: as of 20090903, this disclosure has no actionable information. However, because the VulnDisco Pack author is a reliable researcher, the issue is being assigned a CVE identifier for tracking purposes.
7.5
CVE-2009-3090 2009-09-08 18h00 +00:00 Unspecified vulnerability in IBM Tivoli Directory Server (TDS) 6.0 on Linux allows remote attackers to cause a denial of service via unknown vectors, as demonstrated by a certain module in VulnDisco Pack Professional 8.11. NOTE: as of 20090903, this disclosure has no actionable information. However, because the VulnDisco Pack author is a reliable researcher, the issue is being assigned a CVE identifier for tracking purposes.
5
CVE-2009-1792 2009-05-29 16h00 +00:00 The system.openURL function in StoneTrip Ston3D StandalonePlayer (aka S3DPlayer StandAlone) 1.6.2.4 and 1.7.0.1 and WebPlayer (aka S3DPlayer Web) 1.6.0.0 allows remote attackers to execute arbitrary commands via shell metacharacters in the first argument (the sURL argument).
9.3
CVE-2009-1250 2009-04-08 22h00 +00:00 The cache manager in the client in OpenAFS 1.0 through 1.4.8 and 1.5.0 through 1.5.58, and IBM AFS 3.6 before Patch 19, on Linux allows remote attackers to cause a denial of service (system crash) via an RX response with a large error-code value that is interpreted as a pointer and dereferenced, related to use of the ERR_PTR macro.
7.8
CVE-2009-0876 2009-03-12 14h00 +00:00 Sun xVM VirtualBox 2.0.0, 2.0.2, 2.0.4, 2.0.6r39760, 2.1.0, 2.1.2, and 2.1.4r42893 on Linux allows local users to gain privileges via a hardlink attack, which preserves setuid/setgid bits on Linux, related to DT_RPATH:$ORIGIN.
6.9
CVE-2008-5499 2008-12-17 23h00 +00:00 Unspecified vulnerability in Adobe Flash Player for Linux 10.0.12.36, and 9.0.151.0 and earlier, allows remote attackers to execute arbitrary code via a crafted SWF file.
9.3
CVE-2008-3671 2008-08-13 19h00 +00:00 Acronis True Image Echo Server 9.x build 8072 on Linux does not properly encrypt backups to an FTP server, which allows remote attackers to obtain sensitive information. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
5
CVE-2008-3579 2008-08-10 19h00 +00:00 Calacode @Mail 5.41 on Linux does not require administrative authentication for build-plesk-upgrade.php, which allows remote attackers to obtain sensitive information by creating and downloading a backup archive of the entire @Mail directory tree. NOTE: this can be leveraged for remote exploitation of CVE-2008-3395. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
7.8
CVE-2008-3389 2008-08-05 17h20 +00:00 Stack-based buffer overflow in the libbecompat library in Ingres 2.6, Ingres 2006 release 1 (aka 9.0.4), and Ingres 2006 release 2 (aka 9.1.0) on Linux and HP-UX allows local users to gain privileges by setting a long value of an environment variable before running (1) verifydb, (2) iimerge, or (3) csreport.
4.6
CVE-2008-1810 2008-08-01 12h00 +00:00 Untrusted search path vulnerability in dbmsrv in SAP MaxDB 7.6.03.15 on Linux allows local users to gain privileges via a modified PATH environment variable.
4.4
CVE-2008-3395 2008-07-31 14h00 +00:00 Calacode @Mail 5.41 on Linux uses weak world-readable permissions for (1) webmail/libs/Atmail/Config.php and (2) webmail/webadmin/.htpasswd, which allows local users to obtain sensitive information by reading these files. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
5
CVE-2008-1286 2008-03-11 16h00 +00:00 Unspecified vulnerability in Sun Java Web Console 3.0.2, 3.0.3, and 3.0.4 allows remote attackers to bypass intended access restrictions and determine the existence of files or directories via unknown vectors.
7.8
CVE-2008-1213 2008-03-07 23h00 +00:00 Cross-site scripting (XSS) vulnerability in Numara FootPrints for Linux 8.1 allows remote attackers to inject arbitrary web script or HTML via the Title form field when setting an appointment. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
4.3
CVE-2008-1214 2008-03-07 23h00 +00:00 MRcgi/MRProcessIncomingForms.pl in Numara FootPrints 8.1 on Linux allows remote attackers to execute arbitrary code via shell metacharacters in the PROJECTNUM parameter. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
7.5
CVE-2008-0072 2008-03-05 23h00 +00:00 Format string vulnerability in the emf_multipart_encrypted function in mail/em-format.c in Evolution 2.12.3 and earlier allows remote attackers to execute arbitrary code via a crafted encrypted message, as demonstrated using the Version field.
6.8
CVE-2008-0304 2008-02-29 18h00 +00:00 Heap-based buffer overflow in Mozilla Thunderbird before 2.0.0.12 and SeaMonkey before 1.1.8 might allow remote attackers to execute arbitrary code via a crafted external-body MIME type in an e-mail message, related to an incorrect memory allocation during message preview.
7.5
CVE-2008-0212 2008-02-06 19h00 +00:00 ovtopmd in HP OpenView Network Node Manager (OV NNM) 6.41, 7.01, and 7.51 allows remote attackers to cause a denial of service (crash) via a crafted TCP request that triggers an out-of-bounds memory access.
7.8
CVE-2007-4998 2008-01-31 19h00 +00:00 cp, when running with an option to preserve symlinks on multiple OSes, allows local, user-assisted attackers to overwrite arbitrary files via a symlink attack using crafted directories containing multiple source files that are copied to the same destination.
6.9
CVE-2007-6514 2007-12-21 21h00 +00:00 Apache HTTP Server, when running on Linux with a document root on a Windows share mounted using smbfs, allows remote attackers to obtain unprocessed content such as source files for .php programs via a trailing "\" (backslash), which is not handled by the intended AddType directive.
4.3
CVE-2007-6482 2007-12-20 19h00 +00:00 Unspecified vulnerability in the Device Manager daemon (utdevmgrd) in Sun Ray Server Software 2.0, 3.0, 3.1, and 3.1.1 allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors.
7.8
CVE-2007-6246 2007-12-20 00h00 +00:00 Adobe Flash Player 9.x up to 9.0.48.0, 8.x up to 8.0.35.0, and 7.x up to 7.0.70.0, when running on Linux, uses insecure permissions for memory, which might allow local users to gain privileges.
4.4
CVE-2007-6305 2007-12-10 20h00 +00:00 Multiple unspecified vulnerabilities in IBM Hardware Management Console (HMC) 7 R3.2.0 allow attackers to gain privileges via "some HMC commands."
4.6
CVE-2007-6232 2007-12-04 17h00 +00:00 Cross-site scripting (XSS) vulnerability in index.php in FTP Admin 0.1.0 allows remote attackers to inject arbitrary web script or HTML via the error parameter in an error page action.
4.3
CVE-2007-6209 2007-12-03 23h00 +00:00 Util/difflog.pl in zsh 4.3.4 allows local users to overwrite arbitrary files via a symlink attack on temporary files.
4.6
CVE-2007-6045 2007-11-20 19h00 +00:00 Unspecified vulnerability in (1) DB2WATCH and (2) DB2FREEZE in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors.
10
CVE-2007-6046 2007-11-20 19h00 +00:00 Unspecified vulnerability in unspecified setuid programs in IBM DB2 UDB 9.1 before Fixpak 4 allows local users to have an unknown impact.
7.2
CVE-2007-6047 2007-11-20 19h00 +00:00 Unspecified vulnerability in the DB2DART tool in IBM DB2 UDB 9.1 before Fixpak 4 allows attackers to execute arbitrary commands as the DB2 instance owner, related to invocation of TPUT by DB2DART.
10
CVE-2007-6048 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 uses incorrect permissions on ACLs for DB2NODES.CFG, which has unknown impact and attack vectors. NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
10
CVE-2007-6049 2007-11-20 19h00 +00:00 Unspecified vulnerability in the SSL LOAD GSKIT action in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors, involving a call to dlopen when the effective uid is root.
7.2
CVE-2007-6050 2007-11-20 19h00 +00:00 Unspecified vulnerability in DB2LICD in IBM DB2 UDB 9.1 before Fixpak 4 has unknown impact and attack vectors, related to creation of an "insecure directory."
7.2
CVE-2007-6051 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 assigns incorrect privileges to the (1) DB2ADMNS and (2) DB2USERS alternative groups, which has unknown impact. NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
10
CVE-2007-6052 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 does not properly perform vector aggregation, which might allow attackers to cause a denial of service (divide-by-zero error and DBMS crash), related to an "overflow." NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
7.8
CVE-2007-6053 2007-11-20 19h00 +00:00 IBM DB2 UDB 9.1 before Fixpak 4 does not properly handle use of large numbers of file descriptors, which might allow attackers to have an unknown impact involving "memory corruption." NOTE: the vendor description of this issue is too vague to be certain that it is security-related.
9.3
CVE-2003-1467 2007-10-24 21h00 +00:00 Multiple cross-site scripting (XSS) vulnerabilities in (1) login.php, (2) register.php, (3) post.php, and (4) common.php in Phorum before 3.4.3 allow remote attackers to inject arbitrary web script or HTML via unknown attack vectors.
4.3
CVE-2003-1430 2007-10-22 23h00 +00:00 Directory traversal vulnerability in Unreal Tournament Server 436 and earlier allows remote attackers to access known files via a ".." (dot dot) in an unreal:// URL.
5
CVE-2003-1454 2007-10-22 23h00 +00:00 Invision Power Services Invision Board 1.0 through 1.1.1, when a forum is password protected, stores the administrator password in a cookie in plaintext, which could allow remote attackers to gain access.
5
CVE-2003-1456 2007-10-22 23h00 +00:00 Album.pl 6.1 allows remote attackers to execute arbitrary commands, when an alternative configuration file is used, via unknown attack vectors.
5
CVE-2007-5337 2007-10-21 18h00 +00:00 Mozilla Firefox before 2.0.0.8 and SeaMonkey before 1.1.5, when running on Linux systems with gnome-vfs support, might allow remote attackers to read arbitrary files on SSH/sftp servers that accept key authentication by creating a web page on the target server, in which the web page contains URIs with (1) smb: or (2) sftp: schemes that access other files from the server.
4.3
CVE-2003-1423 2007-10-20 08h00 +00:00 Petitforum stores the liste.txt data file under the web document root with insufficient access control, which allows remote attackers to obtain sensitive information such as e-mail addresses and encrypted passwords.
5
CVE-2003-1428 2007-10-20 08h00 +00:00 Gallery 1.3.3 creates directories with insecure permissions, which allows local users to read, modify, or delete photos.
4.8
CVE-2003-1372 2007-10-16 23h00 +00:00 Cross-site scripting (XSS) vulnerability in links.php script in myPHPNuke 1.8.8, and possibly earlier versions, allows remote attackers to inject arbitrary HTML and web script via the (1) ratenum or (2) query parameters.
4.3
CVE-2007-4938 2007-09-18 17h00 +00:00 Heap-based buffer overflow in libmpdemux/aviheader.c in MPlayer 1.0rc1 and earlier allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a .avi file with certain large "indx truck size" and nEntriesInuse values, and a certain wLongsPerEntry value.
7.6
CVE-2007-3794 2007-07-15 21h00 +00:00 Buffer overflow in Hitachi Cosminexus V4 through V7, Processing Kit for XML before 20070511, Developer's Kit for Java before 20070312, and third-party products that use this software, allows attackers to have an unknown impact via certain GIF images, related to use of GIF image processing APIs by a Java application.
10
CVE-2003-1332 2007-06-25 22h00 +00:00 Stack-based buffer overflow in the reply_nttrans function in Samba 2.2.7a and earlier allows remote attackers to execute arbitrary code via a crafted request, a different vulnerability than CVE-2003-0201.
7.5
CVE-2007-2736 2007-05-17 17h00 +00:00 PHP remote file inclusion vulnerability in index.php in Achievo 1.1.0 allows remote attackers to execute arbitrary PHP code via a URL in the config_atkroot parameter.
10
CVE-2007-1898 2007-05-16 20h00 +00:00 formmail.php in Jetbox CMS 2.1 allows remote attackers to send arbitrary e-mails (spam) via modified recipient, _SETTINGS[allowed_email_hosts][], and subject parameters.
5.8
CVE-2007-2445 2007-05-16 20h00 +00:00 The png_handle_tRNS function in pngrutil.c in libpng before 1.0.25 and 1.2.x before 1.2.17 allows remote attackers to cause a denial of service (application crash) via a grayscale PNG image with a bad tRNS chunk CRC value.
5
CVE-2003-1327 2007-05-15 08h00 +00:00 Buffer overflow in the SockPrintf function in wu-ftpd 2.6.2 and earlier, when compiled with MAIL_ADMIN option enabled on a system that supports very long pathnames, might allow remote anonymous users to execute arbitrary code by uploading a file with a long pathname, which triggers the overflow when wu-ftpd constructs a notification message to the administrator.
9.3
CVE-2007-2191 2007-04-24 15h00 +00:00 Multiple cross-site scripting (XSS) vulnerabilities in freePBX 2.2.x allow remote attackers to inject arbitrary web script or HTML via the (1) From, (2) To, (3) Call-ID, (4) User-Agent, and unspecified other SIP protocol fields, which are stored in /var/log/asterisk/full and displayed by admin/modules/logfiles/asterisk-full-log.php.
6.8
CVE-2007-1945 2007-04-10 23h00 +00:00 Unspecified vulnerability in the Servlet Engine/Web Container in IBM WebSphere Application Server (WAS) before 6.1.0.7 has unknown impact and attack vectors.
7.5
CVE-2007-1918 2007-04-10 21h00 +00:00 The RFC_SET_REG_SERVER_PROPERTY function in the SAP RFC Library 6.40 and 7.00 before 20070109 implements an option for exclusive access to an RFC server, which allows remote attackers to cause a denial of service (client lockout) via unspecified vectors. NOTE: This information is based upon a vague initial disclosure. Details will be updated after the grace period has ended.
5
CVE-2006-7034 2007-02-23 00h00 +00:00 SQL injection vulnerability in directory.php in Super Link Exchange Script 1.0 might allow remote attackers to execute arbitrary SQL queries via the cat parameter.
7.5
CVE-2007-1043 2007-02-21 16h00 +00:00 Ezboo webstats, possibly 3.0.3, allows remote attackers to bypass authentication and gain access via a direct request to (1) update.php and (2) config.php.
7.5
CVE-2006-2916 2006-06-15 08h00 +00:00 artswrapper in aRts, when running setuid root on Linux 2.6.0 or later versions, does not check the return value of the setuid function call, which allows local users to gain root privileges by causing setuid to fail, which prevents artsd from dropping privileges.
7.8
High
CVE-1999-0656 2000-02-04 04h00 +00:00 The ugidd RPC interface, by design, allows remote attackers to enumerate valid usernames by specifying arbitrary UIDs that ugidd maps to local user and group names.
5